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The impact of climate change and extreme weather
events on residential housing prices in Italy and
Germany at the NUTS 3 level

Martina Perez!

Abstract

This thesis investigates whether residential property prices are affected by climate change and
extreme weather events. The analysis is highly granular in both the spatial and time dimension,
combining monthly and yearly indicators at the NUTS-3 level across 107 Italian provinces
(2016-2021) and 400 German districts (2008—2021). Using panel data regression techniques,
the study provides empirical evidence that climate variability and extreme events are already
being capitalized into real estate prices, particularly in the housing sales market. While the
rental market appears less responsive, the findings suggest that temperature anomalies,
extreme precipitation, and flood risk influence residential property prices, with stronger effects
observed in Italy than in Germany. These results contribute to the growing literature on the
pricing of climate risk in real assets and highlight the relevance of localized climate exposure

for housing markets in Europe.

Keywords: Climate change, Extreme weather events, Housing prices, NUTS 3, Italy, Germany,

Climate risk, Fixed Effects Model

JEL classification: Q54, R31, R21, C33, R11

' LUISS Guido Carli University and Solvay Brussels School of Economics and Management (ULB).



Extended abstract

Climate change is increasingly recognized not only as an environmental challenge but
also as a major socio-economic risk. Among its many implications, the impact of climate
change on residential housing markets remains relatively underexplored, particularly
in the European context. Housing is a key component of household wealth, a major
source of public revenues through property taxation, and a critical asset class
underpinning financial stability. Consequently, the effects of climate change and
extreme weather events on housing values raise important questions for income and
wealth distribution.

This thesis investigates whether and to what extent changes in climate conditions and
the occurrence of extreme events have affected residential property markets in Italy and
Germany. The focus is twofold: first, to assess the impact of climate variables and
weather extremes on sale prices of residential housing; second, to explore whether
similar patterns emerge in the rental market, which may reflect shorter-term
perceptions of climate risk.

The study contributes to the emerging literature on climate economics and housing by
providing new evidence from two major European countries, using a granular empirical
approach. The analysis is conducted at the NUTS 3 level, allowing for regional
heterogeneity and spatial detail. The dataset combines housing market indicators with
climate data derived from the ECMWF ERA-5 dataset, which provides daily
observations at high spatial resolution. Additional socio-economic controls are included

to account for housing fundamentals.

The results show that climate risk is increasingly priced into housing markets,
particularly in areas most exposed to extreme weather events. In Italy, variables such
as temperature variability and extreme precipitation are significantly associated with
lower sale prices, while exposure to flood-prone areas also plays a role. The rental
market shows a similar direction of effects, though with weaker magnitude, consistent
with the idea that renters face shorter time horizons and lower economic exposure to

long-term climate risks.

In Germany, the results also point to negative effects, though less pronounced.

Variations in average temperature and temperature variability are associated with



declines in sale prices, while extreme precipitation events do not appear to have a

statistically significant impact.

These findings underscore the need to increase awareness of climate risks in the real
estate sector to support an orderly transition and prevent sudden market disruptions.
Enhancing transparency and systematically incorporating climate risks into property
valuations and financial oversight are essential. At the European level, these efforts are

key also to preserve financial stability.
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1 Introduction

Climate change is one of the most debated topics of our time. Its ramifications
extend far beyond the environment, affecting the economy, politics, and society. The
effects of climate change, such as rising temperatures, and extreme weather events (e.g.,
floods, heatwaves), are putting a strain on ecosystems and communities all over the
world. Climate conditions and extreme weather events have significant effects on
economic activity (e.g., GDP) and asset values. Recent research estimates that the
impact of extreme weather events on human activity is in the range of 19-59 trillion
USD over the next 25 years, which translates into a permanent income reduction of 11-
29% on average globally; these damages are already “committed” as they relate to the
effects of the combination of past emissions with plausible paths of future emissions

(Kotz et al., 2024).

This thesis investigates how climate change and extreme weather events affect
residential housing prices in selected European countries. The policy implications of the
impact of climate change and extreme events on housing are broad. First, the stake of
residential housing on wealth is large, especially for people with low- to medium-income.
Thus, the impact of climate conditions on residential housing values will have wealth
distributional consequences. Second, municipalities and other local authorities derive a
large part of their tax revenues from houses, and a decrease in the value of properties
will draw down their revenues. Third, residential housing represents a significant
portion of collateral held by financial intermediaries, whose value may be impacted by
climate events (Alogoskoufis et al., 2021; Meucci and Rinaldi, 2022); a significant drop
in the value of houses will likely entail financial stability issues (think about the 2008
Global Financial Crisis). Fourth, significant damages to real estate assets held by
households and firms may force governments to restore damages with significant
consequences on public finances. Fifth, an insufficient awareness of the consequences of
climate change on the value of residential housing might lead to abrupt repricing of

properties, exacerbating the negative effects mentioned above.

The aim of this thesis is therefore to test the hypothesis that climate change and
extreme weather events are already affecting residential real estate values, prices and
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rents in selected European countries. To this end, separate analyses are conducted for
sales and rental prices. Indeed, the two prices are expected to react differently to these
events. In particular, climate risk can significantly reduce house prices, while it may
have a limited impact on rental prices as long-term climate risks may not be perceived
as a concern given the shorter time horizon of the perspective renter with respect to the
perspective buyer and the limited economic exposure of the perspective renter with

respect to the value of the property.

The following questions are addressed: have past changes in climate conditions and the
occurrence of extreme events impacted residential sale prices? And how have they
influenced rental prices? The goal is to interpret the findings and compare them with
key insights from the previous literature that mainly refers to the effects of climate
change and extreme events on US housing prices in order to detect similarities and

differences with respect to the European countries.

This thesis contributes to the literature by analysing the impact of climate change and
extreme weather climate events on housing prices and rents in Italy and Germany,
using data at a small regional level (NUTS 31). It expands on previous research by
examining both sales and rental markets and comparing the results with studies
conducted both in Europe and in the United States. The results provide insights for
policy makers and shed light on the importance of climate risk awareness and

adaptation strategies in the real estate market.

The rest of the thesis is organised as follows. Section 2 presents a review of empirical
literature. Section 3 describes the data and the estimated variables. Section 4 delves
into the empirical analysis. Section 5 explains the regression results. Section 6

concludes.

' The term NUTS 3 refers to the Eurostat classification which divides each EU country into 3 levels:
NUTS 1: major socio-economic regions (i.e., macro-regions), NUTS 2: basic regions, and NUTS 3: small
regions (such as provinces).
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2 Literature review

2.1 The macroeconomic impact of climate change and extreme events

The economic impact of climate change and extreme weather events has been
studied, particularly in terms of their consequences on productivity and growth, with
mixed findings: often negative, but sometimes positive depending on context. Usman et
al. (2025) show that extreme events such as heatwaves and droughts do not only reduce
output in the short term, but also have persistent negative effects on the components of
potential output, particularly total factor productivity. Their findings highlight that
post-disaster investment in adaptation capital - such as air conditioning or insulation -
tends to yield lower output gains than equivalent investment in productive capital,
thereby dampening regional productivity. Brunetti et al. (2023) examine the negative
impacts on GDP per capita of rising temperatures in Italy at the provincial level over
the 20th century. Kotz et al. (2024) and Waidelich et al. (2024) focus their study on the
impact of climate change and extreme weather events on global GDP and point out that
global economic damage due to climate change cannot be assessed solely on the basis of
average annual temperature. Climate variability and extreme events play a key role,
especially for the most vulnerable countries. Including these factors in damage
estimates improves the accuracy of economic forecasts and helps develop more effective

mitigation and adaptation strategies.

While most studies focus on national-level impacts, Usman et al. (2025) highlight that
natural disasters have highly localised effects, and they are difficult to detect at the
national level due to their dilution when aggregated within a country. Following this
approach, this thesis examines the impact of climate change and extreme weather
events on housing prices in Italy and Germany at the NUTS 3 level, a granular

geographic scale that allows for capturing local effects.

It is worth noting that not all the studies agree with the common view that climate
change has a negative impact on the economy in all circumstances. Roth Tran and
Wilson (2024) found out that in the US when natural disasters trigger government aid
and/or insurance payouts, natural disasters result, both on average and in the long run,

in higher personal income per capita, higher wages, and higher house prices, while
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employment and population remain unchanged. They suggest that part of the observed
income growth after a disaster may reflect shifts in workforce composition toward

higher-wage workers, as lower-wage workers are priced out of these housing markets.

2.2 The determinants of house prices

An extensive literature has analysed the main determinants of residential house
prices, generally distinguishing between demand-side and supply-side factors. Demand-
side determinants include household income, the real interest rate on home loans,
financial wealth, demographic and labour market variables, the expected return on real
estate investment. On the supply side, the determinants are generally described as an
increasing function of the profitability of building activity, which 1s positively related to
the level of house prices and negatively to real construction costs. The latter include
land prices, construction wages and material costs (Egert and Mihaljek, 2007). Demand-
related variables encompass regional income, unemployment rates, labour force

participation (Schunre, 2005), and net migration (McQuinn, 2004).

Cunha and Lobao (2021) show that the determinants of real estate prices vary
significantly depending on the geographical context. While at the EU level GDP and
interest rates are key factors, at the national and regional level other elements, such as
tourism and the number of building permits issued, play a determining role. These
results highlight the complexity of price formation in the real estate market and suggest

that there 1s no single model valid for all geographical contexts2.

2.3  The effect of climate change and extreme events on housing prices

Empirical research on the impact of climate events on housing prices focuses
mainly on US data. Ma and Yildirim (2023) find a negative relationship between
extreme weather exposure and sale prices, while rental prices are not affected as renters
are less concerned about long-term climate risks. Gourevitch et al. (2023) find that the

majority of extremely overpriced real estates are located in coastal areas with no flood

2 Using quantile regression, Zietz et al. (2007) show that variables such as floor area, lot size and number
of bathrooms have a greater effect on more expensive houses than on less expensive ones. This implies
that traditional methods (such as linear regressions) may overestimate the marginal value of these
characteristics for low-priced homes and underestimate it for high-priced homes, highlighting the
importance of analysing prices in a segmented manner.
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risk disclosure regulations and low levels of climate change awareness. As a result,
property prices in these areas often fail to reflect actual climate-related risks,
particularly the threat of flooding. Furthermore, a large portion of overvalued properties
are owned by low-income residents, who are therefore more vulnerable to home equity
losses in the aftermath of flood events. Municipalities that mostly rely on property taxes
for funding are also at risk, as climate-induced declines in housing values can translate
into significant budgetary shortfalls. Keys and Mulder (2020) provide evidence that
increasing awareness of sea level rise risk has recently led to significant shifts in
housing demand in coastal Florida. While lender behaviour has remained stable,
prospective buyers have become more hesitant to purchase homes in high-risk areas.
Bernstein et al. (2019) find that exposure to sea-level rise is leading to significant price
discounts even in the absence of an increase in short-run flooding risk. Fairweather et
al. (2024) conducted a nationwide experiment to assess the impact of flood risk
disclosure on the US housing market. The authors show that increased awareness of
flood risk reduced the demand for houses in high-risk areas, leading to lower prices and
more efficient purchase decisions. Baldauf et al. (2020) investigate the role of
heterogeneity in climate change beliefs in the formation of housing prices. Specifically,
they show that housing prices in the US market reflect local differences in beliefs about
long-term climate risks. The authors develop a theoretical model in which individuals
derive utility from living in neighbourhoods composed of agents with similar beliefs,
showing that this assortment generates different price elasticities with respect to
climate risks. In doing so, they find that housing located in areas with higher climate
awareness (“believer neighbourhoods”) sells at significantly lower prices than housing
in areas where climate change is perceived to be less relevant (“denier neighbourhoods”).
The results suggest that future climate risks are being capitalized into prices already,
but unevenly, due to fragmented beliefs. However, the study remains agnostic as to
whether it is the “sceptics” who underestimate the risk or the “believers” who

overestimate it.

In Europe, Votsis and Perrels (2015) detect potential housing price differentials caused
by the public release of high-resolution flood maps in Finland. The estimations identify
a statistically significant price decline, suggesting that when risk information is

available, the market adjusts accordingly. According to Loberto and Spuri (2023), about
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a quarter of Italy's real estate assets are exposed to flood risk — with a value amounting
to almost EUR 1 trillion in 2020. The potential economic damage is represented by the
expected annual loss, calculated by combining the probability of the event, the value of
the exposed properties and their vulnerability. The latter depends on factors such as
the floor level of the house and the construction materials. Estimates show that the
expected annual loss could reach EUR 3 billion, even considering conservative
scenarios. Moreover, the risk is very heterogeneous over the territory: areas such as
Emilia-Romagna and Liguria are particularly exposed?3. The work highlights how an
accurate assessment of the effects of climate change on the real estate market requires

highly granular data, as flood risk is highly localised.

Trautmann (2024) highlights that the real estate market is significantly influenced by
both direct physical climate risks and indirect factors related to the green transition.
Although the overall effect on prices is mostly negative, the author highlights cases of
properties that may benefit indirectly, such as properties located in relatively safer
areas that may experience positive spillover effects in demand. In particular, properties
in cold regions may benefit directly from higher temperatures, with lower heating costs
and better climatic amenities (Albouy et al., 2013; Sinha et al., 2021). Furthermore,
some agricultural territories may increase their value due to the expansion of arable
land due to global warming, or as a result of a general reduction in the global supply of
specific crops (Ovalle-Rivera et al., 2015; Lustgarten, 2020). Finally, the transition to
climate neutrality could increase the value of energy-efficient properties with
sustainable climate control systems (Taruttis and Weber, 2022). Areas with an
abundance of sustainable energy could attract energy-intensive industries, thus

stimulating the local economy and increasing real estate demand.

The evidence for Germany and Italy also confirms that climate preferences are relevant
for the housing market. Rehdanz and Maddison (2005) show, for the German case, that
households are willing to pay more for houses located in area with mild and less rainy
winters, while they penalise areas with excessively hot summers. Similarly, Maddison

and Bigano (2003) show that in Italy households despise high summer temperatures

3 These findings are consistent with the present analysis. As shown in Figures 13 and 14, Emilia-Romagna
and Liguria emerge among the regions most affected by extreme precipitation events.
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and winter precipitation, with preferences for clear skies in some areas (e.g. Milan). In

both cases, therefore, the value of climatic amenities has implications for house prices.

In line with these results, Cascarano and Natoli (2023) analyse how climate variations
affect search and matching processes in the Italian real estate market. Combining daily
data on temperatures in several Italian cities with information from online real estate
listings and physical appointments with real estate agents, the authors identify two
main findings. First, extremely high temperatures significantly reduce both online and
physical searches for housing, leading to an increase in average time on the market for
properties and a delay in transactions. Second, these weather conditions induce a
change in buyer preferences, which tend to avoid homes that are not perceived as
“climate-safe,” that 1s, not resilient to future climate risks. As a result, such homes
experience persistent price reductions. So, while extreme heat discourages search, the
cooler months seem to boost online search, while not generating a corresponding
increase in physical search. Overall, the study highlights a key finding: climate change
may act as a determinant in search mechanisms in the housing market, especially for

houses less adapted to climate change.

3 Data and variables

The choice of dataset to be used to analyse the impacts of climate change and
extreme weather events is a widely debated issue in the literature. With respect to
extreme events, one of the most used sources for natural disasters is the Emergency
Events Database (EM-DAT)4, compiled by the Centre for Research on the Epidemiology
of Disasters (CRED). Botzen et al. (2019) point out that the use of EM-DAT has several
limitations: varying thresholds for inclusion of events, damage estimates based on local
sources that are often inaccurate or overestimated, and a possible correlation between
measures of disaster intensity and GDP per capita, as losses are higher and better

documented in developed countries.

In light of these critical issues, natural disasters can be alternatively identified on the

basis of high-resolution meteorological variables, together with changing climate

4 https://www.emdat.be/.
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conditions (Bilal and Kanzig, 2024; Kotz et al., 2024). Following this approach, the
analysis relies on climate data from the ERA-5 dataset of the European Centre for
Medium-term Weather Forecasts (ECMWF). In particular, it draws on data from the
Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), an initiative aimed at
providing a coherent methodological framework for the assessment of climate change
impacts®. The ISIMIP ERA-5 20CRv3¢ dataset provides daily global meteorological data
on a grid with a spatial resolution of 0.5° x 0.5° in latitude and longitude, corresponding
approximately to 55 km x 40 km in the Central European region. The climate data
collected include: precipitation (pr), near-surface air temperature (tas), and near-
surface wind speed (sfcwind). The data cover the period from 1901 to 2021. For the
purposes of this thesis, the analysis is restricted to the years 1981 to 2021.

To match climate data with NUTS 3 administrative boundaries, regional maps from
Eurostat were used’”. These maps are stored in shapefile format, a widely used
geospatial vector data format, commonly used in Geographic Information Systems
(GIS). Within the shapefile, regions are represented as polygons, which can vary in
segmentation detail®. Since NUTS 3 regions spanned multiple grid cells (see Appendix
A.1 as an example), a weighted average of the climate data for the region was performed,
with weights determined by the proportion of the area of the region lying in the 0.5° x
0.5° grids (Kotz et al., 2024; Bilal and Kanzig 2024)°.

For Italy, the surface areas at risk of flooding in each province - expressed as a
percentage of the province’s total area - were obtained from the Istituto Superiore per
la Protezione e la Ricerca Ambientale (ISPRA) for different flood probability scenarios?0.
These data are the result of a multi-year process that also involves the District Basin
Authorities (Loberto and Spuri, 2023). The process consists of two phases: (1)

1dentification of potentially floodable areas; (i1) attribution of a risk level to each area.

5 Retrieved from
https://data.isimip.org/search/page/3/tree/ISIMIP3a/InputData/climate/atmosphere/20crv3-erab/.

6 20CRv3 stands for 20th Century Reanalysis Version 3.

7  Retrieved from https://ec.europa.eu/eurostat/web/gisco/geodata/statistical-units/territorial-units-
statistics.

8 The 1m resolution has been used to ensure accuracy.

9 The process involved overlaying the climate grids to the provinces, calculating the intersection areas
and their coverage percentages, allowing for proper weighting of climate data.

10 Retrieved from https://indicatoriambientali.isprambiente.it/it/pericolosita-da-alluvione/aree-
pericolosita-idraulica.
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In the first phase, the authorities identify potentially floodable areas on the basis of
both past events and a prospective assessment that partially takes into account the
effects of climate change. In the second step, three possible scenarios are assumed for
the probability of flooding, expressed in expected years for an event of a given magnitude
to recur (the so-called “return period”): high (return period between 20 and 50 years);
medium (return period between 100 and 200 years); low (return period greater than 200
years and up to 500 years). For each of the three scenarios, the exact coordinates of the
hydraulic hazard areas, the origin of the risk, and a more precise estimate of the return

period are provided.

Residential property values, advertisement data on sales and rents at the NUTS 3 level
administrative units (“province” in Italy, “kreise” in Germany), are available for both
Italy and Germany. For Italy, monthly data were collected from Immobiliare.it for the
period 2016-202111. For Germany, annual data were collected from RWI - Leibniz-
Institut fir Wirtschaftsforschung!2, with a time coverage from 2008 to 2021. German
data are hedonic prices, which means that the observed differences in prices reflect
changes under comparable property characteristics. They are categorized into several
segments: House Purchase, Apartment Purchase, Apartment Rental and are available
both as relative prices, measuring how prices in a given district deviate from the
national average prices in Germany (i.e., the ratio between regional price level and
national price level), and as changes in regional price indices compared to 2008, covering

the same period.

The analysis covers 107 Italian provinces and 400 German districts at NUTS 3 level.
Italian provinces allow an analysis with a larger time series dimension, due to the
availability of monthly data. In contrast, for German districts, the cross-sectional
approach is more appropriate, as the data are available at an annual frequency and the
number of German kreise is much higher than that of Italian provinces. To ensure

comparability between Italian and German data, relative house price and rents in each

11 Residential data were collected up to 2021 to match them with the available climate data. Retrieved

from https://www.immobiliare.it/mercato-immobiliare/.

12 RWI - Leibniz-Institut fir Wirtschaftsforschung; ImmobilienScout24 (2024): Regional Real Estate Price

Index for Germany - SUF, 2008-05/2024. RWI-GEO-REDX. Version: 1. RWI — Leibniz Institute for

Economic Research (doi.org/10.7807/immo:redx:suf:v14). See Thiel (2024) for a description of the dataset.
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province with respect to the national average were calculated for Italy based on national

sale and rental data from Immobiliare.it.

For what regards the other determinants of house prices and rents, their availability at
NUTS 3 level for European countries is limited, as well as their availability at the
monthly frequency of Italian house prices and rents. Therefore, the analysis has to
accept, in most cases, some sort of compromise. With respect to income per capita, a
likely powerful explanatory variable of diversity of houses prices across different areas,
Eurostat publishes nominal GDP and population at NUTS 3 level but only on a yearly
frequency. Statistic on population, expressing the demographic factors behind house
prices, are also available from Eurostat on an annual basis at NUTS 3 level, except for
net migration and German population density that are sourced from Ardeco. With
respect to financial variables, mortgage rates at a monthly basis are available from the
ECB, but only at national level. Table 1 provide an overview of determinants of house

prices, other than climate factors used in this study.

Table 1
Economic and demographic data

. NUTS

Units Frequency level Source
Nominal GDP Millions of euros Yearly 3 Eurostat
Pop qlatlon Inhabltgnts per Yearly 3 Ardeco/Eurostat
density square kilometre

Net
Net migration immigrants/Total Yearly 3 Ardeco
population

Mortgage rates Percentage Monthly National ECB

Note: data on population density for Germany were retrieve directly from Ardeco. Data on population
density for Italy were elaborated dividing population data from Eurostat by the province area. The
different treatment of Italian data is motivated by missing data about population density in the Ardeco
database for year 2021 at NUTS 3 level.

Economic and financial variables are restricted to the period covered by house price data

and climate data (December 2016 - December 2021 for Italy; 2008-2021 for Germany).
NUTS 3 data span for 107 Italian provinces and 400 German kreise, with a total of 6527
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data points for Italy (monthly data; 642 data points for annual data) and 5541 data

points for Germany (annual data)!s.

3.1 Descriptive analysis of price dynamics

In Italy, relative house prices and rents across 107 provinces from 2016 to 2021
exhibit significant dispersion. House prices range from approximately one-third to
nearly twice the national average. In contrast, the dispersion of relative rents is notably
lower than that of relative house prices. Specifically, house prices vary from around
€600 to over €4,100 per square meter, while rents range from €3 to €19 per square meter

(see Table 2).

In Germany, data from 400 kreise spanning 2008 to 2021 reveal an even greater
dispersion in both relative house prices and rents compared to the Italian data. The
variation is particularly pronounced for relative house prices, which show higher
dispersion than relative apartment prices. It is important to note that German price
and rent data are not directly comparable to the Italian figures, as they are expressed

in relative terms - indexed to the 2008 price level for each respective kreis (see Table 4).

It should be noted that the average values of relative prices and rents differ from 1, both
for Italy and for Germany. Indeed, relative data are calculated as the ratio of province
data with respect to the weighted national average. Where advertisement in the largest
(and most expensive) cities weights the most (Italy), the mean of relative prices and
rents tends to be below one. Whereas, where the opposite occurs (Germany), the mean

tends to be above one.

13 Of the original 5.600 data points for Germany 59 were removed for missing population and/or GDP
data.
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Table 2
Descriptive statistics - dependent variables — Italy monthly — 2016-2021

Variable Mean SD Min Max N

Prices 1,602 619 606 4,114 6527
Relative prices 0.82 0.32 0.32 2.15 6527
Rents 7.68 2.34 3.20 18.82 6527
Relative rents 0.76 0.23 0.29 1.80 6527

Note: prices and rents are expressed as euros per square meter. Relative prices and
relative rents are computed with respect to the national average.

Table 3
Descriptive statistics — dependent variables — Italy annual - 2016-2021

Variable Mean SD Min Max N
Prices 1,606 621 606 4,114 642
Relative prices 0.82 0.32 0.32 2.15 642
Rents 7.63 2.31 3.68 17.77 642
0.75 0.23 0.34 1.75 642

Relative rents

Note: prices and rents are expressed as euros per square meter. Relative prices and
relative rents are computed with respect to the national average.

Table 4
Descriptive statistics — dependent variables — Germany annual — 2008-2021

Variable Mean SD Min Max N
Prices -Apts 128 41 51 441 5541
Relative prices - Apts 1.03 0.43 0.17 4.12 5541
Prices - Houses 123 35 63 367 5541
Relative prices - 1.25 0.58 0.33 4.69 5541
Houses

Rents - Apts 121 21 76 235 5541
Relative Rents 1.03 0.22 0.63 2.67 5541

Note: prices and rents are expressed as indices with respect to 2008 (=100). Relative
prices and relative rents are computed with respect to the national average.

Figure 1 shows the distribution of the Italian sale prices at monthly and annual
frequencies in terms of euros per square meter. The histograms indicate that Italian

house sale prices are right-skewed. Indeed, most observations concentrated below the
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national average and a long right tail reflects a smaller number of high-priced houses.
The distribution of absolute price data reflects both the dispersion of prices across
provinces and the change of prices over the years. To isolate the cross-sectional
dimension, Figure 2 represent the distribution of relative sale prices. Again, the
skewness is evident at both monthly and annual frequencies. By contrast, Figures 3 and
4 show that rents exhibit a slightly more symmetric distribution, with lower overall
dispersion both in absolute and in relative terms. Indeed, monthly and annual rents are
more tightly clustered around the mean and median, suggesting a more balanced

distribution across provinces compared to sale prices.

Figure 1
Italian sale prices — 2016-2021
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Figure 2
Italian relative sale prices — 2016-2021
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Italian rents — 2016-2021
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Italian relative rents — 2016-2021

Figure 4
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The skewness 1s even more pronounced in the case of absolute sale prices for both

apartments and houses in Germany (Figure 5). With respect to relative sale prices, the

distribution is almost symmetric in the case of apartments, whereas it tends to be right-

skewed for houses (Figure 6). A right-skewed pattern emerges also for absolute (Figure

7) and relative rent prices (Figure 8). Overall, the inspection of German data suggests

a greater heterogeneity in the German residential real estate market across districts

with respect to Italy (see also the descriptive statistics for relative prices and rents in

Table 3 and Table 4).

German sale prices — 2008-2021

Figure 5
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Figure 6

German relative sale prices — 2008-2021
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Another aspect to be taken into account for the subsequent analysis is the fact that the

apparent similarity between monthly and annual distribution of Italian data hides

important differences in terms of the dispersion of the relevant variable within each

province. Indeed, the dispersion within each province of candidate dependent variables

is lower in the case of monthly observations with respect to annual observations

(Figures 9 to 12). This circumstance together with the fact that some of the explanatory

variables have annual frequency (and, hence, they cannot explain small monthly

variations) may affect the explanatory properties of a monthly regression.
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Figure 9

Italy - House prices — within province dispersion of variable — 2016-2021
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Figure 10
Italy — Rents — within province dispersion of variable — 2016-2021
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Figure 11
Italy — Relative prices — within province dispersion of variable — 2016-2021
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Figure 12
Italy — Relative rents — within province dispersion of variable — 2016-2021
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3.2 Climate variables

Following the methodology of Kotz et al. (2024), several regional climate
indicators were calculated. The original methodology was modified to deal also with
data at a monthly frequency (Italy). Appendix A.2 describes additional climate
indicators that have been computed and then discarded, as they resulted not significant

in the econometric analysis.
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Annual indicators — Italy and Germany

The first set of climate variables was constructed at annual frequency and is used
consistently across both Italy and Germany.
TempVar is the daily deviation from the mean temperature in each month of the year
averaged across all days in the given sample (1981-2021) and then averaged over the

entire year:

1 — 1 D — 2
Tempvarx,y = EZ%:%Z \/E Zd=1(Tx,d,m,y - Tx,m) (1)

where:

e D, are the number of days in a given month,
® Tyamy 1s the temperature in province x on day d, month m and year y,

e T, m 1s the mean temperature for month m in province x.

AvgTemp is the yearly mean temperature.
ExtremePrec is defined as the sum of total precipitation in a year when daily
precipitation (P,,) exceeds the 99.9th percentile of the historical precipitation

distribution (1981-2021) (P99.9,):
Dy
ExtremePrecy, =¥ >, H(Pyq — P99.9,) * Py 2)

where:

e H represents the Heaviside step function,

e D, are the number of days in a given year.

In the case of Italy ExtremePrec was multiplied by the percentage of high flood prone
area values in each Italian province, assuming that the impact of flood will be magnified

according in the area most exposed to hydrogeological risks.
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Monthly indicators - Italy

For Italy, TempVar is the daily deviation from the mean temperature within each

month of the year averaged across all days in the given sample (1981-2021):

1 m = )2
TempVar,,, = \/ Do ZZ=1(Tx,d,m,y - Tx,m) ®)

AvgTemp is the monthly mean temperature.

ExtremePrecHPH is defined as the sum of total precipitation in a month when daily
precipitation exceeds the 99.9th percentile of the historical precipitation distribution
(1981-2021) multiplied by the percentage of high flood prone area values in each Italian

province:
ExtremePrecHPH, , = (Yo", H(Pyq — P99.9,) * Py4) * HPH_perc (4)

To more accurately analyse the impact of climate variables on house prices, the
variables were transformed using the 12-month difference (i.e. the simple difference
from the same month of the previous year)!4. This transformation makes it possible to
capture year-to-year variations, isolating the effect of seasonal fluctuations that could
influence climate variables and make it more difficult to identify long-term trends.

The correlation matrices among annual climate variables for Italy and Germany,
calculated over the period available for each country, reveal rather different structures

in the linear links between the indicators (Table 5 and Table 6).

Table 5

Correlation matrix between climate variables (Italy)

AvgTemp TempVar ExtremePrecHPH
AvgTemp 1.000 -0.743 -0.030
TempVar -0.743 1.000 -0.001
ExtremePrecHPH -0.030 -0.001 1.000

14 A prefix “Ldiff” was added to the labels to define the variables.
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Table 6

Correlation matrix between climate variables (Germany)

AvgTemp TempVar ExtremePrec
AvgTemp 1.000 -0.197 -0.055
TempVar -0.197 1.000 -0.065
ExtremePrec -0.055 -0.065 1.000

In Italy a negative correlation is observed between mean temperature and temperature
variability (-0.74), indicating that in areas with increasing temperatures, the mean
temperature range tends to be smaller, and vice versa. In the case of Germany, the
correlation coefficients are all close to zero, with values between -0.06 and -0.20. The
correlations of the extreme precipitation indicators with other climate variables are

negligible for both countries.

Overall, it appears that the climate variables selected move largely independently:
mean temperature, temperature variability and extreme precipitation do not overlap
informatively, but tend to offer complementary perspectives (reducing the risk of
multicollinearity issues). This, combined with the spatial heterogeneity (see the
following maps), reinforces the methodological choice to include all three indicators
simultaneously in the empirical analysis in order to more fully capture the dynamics of

climate risk.

Figures 13-17 provide a visual representation of the geography of climate conditions in
Italy and Germany, across three key years: 2008, 2016, and 202115, The maps reveal not
only differences in absolute values, but also heterogeneities in the spatial distribution
and temporal evolution of climate phenomena. North-South contrasts in terms of

average temperature are marked in Italy.

In Italy, the comparison between 2016 and 2021 reveals a shift in the location of extreme

precipitation. While such events were already significant in Alpine and coastal regions

15 These years were selected to represent the maximum time span available and to ensure comparability
between the two countries: 2008 is the first year available for Germany, 2016 is the first observable year
for Italy and also the first in common, while 2021 represents the most recent climate scenario.
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in 2016, by 2021 they extended into broader areas of the South and Sicily, indicating
increasing meteorological instability even in regions that had previously been less

affected.

Germany, observed over a longer period, displays even more pronounced climatic
changes. The evolution of extreme precipitations is again especially noteworthy: while
relatively limited in 2008, they become more widespread in 2021, particularly in the
western regions, where severe flood events occurred - most notably in the Rhineland -

highlighting the growing exposure to hydrogeological risks.

However, in both cases, when it comes to average temperature and temperature
variability, comparing just two years - at the beginning and end of the sample - do not
reveal clear spatial trends, even when using a finer scale. These variables exhibit a
nuanced dynamics that only become visible through a year-by-year visual analysis. To
better capture this evolution, a sequence of annual heatmaps has been produced and
presented in Appendix A.3, which illustrates more distinctly how local climate

conditions have evolved over time.

Visual representations reinforce the notion of spatial and temporal heterogeneity in
climate shocks and provide a valuable interpretative framework for understanding how
such phenomena may impact local economic dynamics. They serve as an essential bridge
between the observed environmental changes and the empirical analysis developed in

the subsequent sections.
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Figure 13
Italy - 2016

46°N

42N

36°N

8°E

12°E

16°E

46N

N

38N

BN

18°E

46°N
4N
Average Temperature (°C)
42N
15
10
5 40'N
38N
36'N

Temperature Variability (°C)
35

30
25

8°E 10°E 12 4E 16'E 18°E

10'E 12°E 14°E 16'E 18°E

Extreme Precipitation (mm#2)

35



Figure 14
Italy - 2021
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Figure 15
Germany - 2008
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Figure 16

Germany - 2016
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Figure 17
Germany - 2021
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4 Empirical analysis

Housing demand can be expressed as a function of real price level of housing (P) and
other factors shifting demand (X) (Geng, 2018). Vector X typically includes variables
such as real disposable income per capita, households real net financial wealth, real
interest rates, housing stock per capita, demographic demands, and institutional and

structural indicators (such as tax deductions, rent regulation)!6. Assuming that housing

16 See for instance, Poterba (1984), Meen (2001), Aoki et al. (2002) and Ozmen et al. (2019).
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supply (S) is fixed at least in the short to medium term, the equilibrium real price of

housing (P*) is determined solely by demand factors.
Formally:
DX,P*)=S (5)

P* can then be expressed in the reduced form as a function of the variables included in

vector X:
P = f(X) ©

Demand-side determinants include variables expressing household spending capacity
(e.g., net income, wealth), user costs associated with buying and holding a house (e.g.,
Interest rates, taxation), demographic factors influencing housing demand (e.g.,
population density, migration), and other factors reflecting the attractiveness and

perceived value of a given location, including climate related factors.

In the present analysis, the variables included in the vector X are grouped into three
components: economic variables (W), demographic variables (D), and climate-related
variables (Z). W includes economic factors such as GDP per capita and mortgage rates;
D captures demographic pressures on local housing markets and includes population
density and net migration; Z incorporates a set of climate related indicators, such as
average temperature, temperature variance, and extreme precipitation events.
Moreover, as the dependent variable, house prices, is expressed in nominal terms, the

same holds for the economic variables.

This leads to the following formulation:

p*=f(W,D,Z) (7)
where p* represents nominal prices.

Based on this specification, several panel regressions were estimated with the following

general structure:
Yie=a+ Wi +yDic + 6Zic + &5 (8)
where:
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e Y. represents the dependent variable (logarithm of house prices and logarithm
of rents);

e WW;, is a vector of economic variables (nominal GDP per capita and mortgage
rates);

e D;. 1s a vector of demographic variables (population density and net migration
rate);

e Z;.1s a vector of climate variables (average temperature, temperature variance,
extreme precipitation);

e &, 1s the error term;

e the suffices i,¢ indicate location and time, respectively.

In this baseline specification, both region fixed effects and time fixed effects might be
included to account for unobserved heterogeneity across space and over time. Region
fixed effects control for time-invariant characteristics, while time fixed effects absorb

national trends and macroeconomic shocks common to all provinces.

An alternative specification makes use of relative house prices and relative rents (i.e.,
percentage deviation from the national average) and economic independent variables
are expressed as the ratio with respect to the national average. Mortgage rates are
excluded from this specification, as they are only available at the national level and thus

do not vary across regions.
Yie = a+ Pwir+ydic+ 62 + & )
where:

e ;. represents the dependent variable (relative house prices and relative rent
prices);

e w;, 1is a vector of economic variables (relative nominal GDP per capita and
mortgage rates);

e d;, 1s a vector of demographic variables (relative population density and relative

net migration rate).

When using relative prices or relative rents as the dependent variable, time fixed effects
are excluded. This is because taking the ratio with the national average effectively

removes national-level trends and common macroeconomic shocks that affect all regions
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equally - an effect that time fixed effects would otherwise capture. In this sense, the use
of relative variables serves a similar purpose to the inclusion of time fixed effects.
However, region fixed effects are retained in some estimations to control for time-

Invariant unobserved heterogeneity across provinces.

The variables and the frequency of the data (monthly or annual) vary depending on the
specific regression and the country considered (Italy or Germany). For Germany 59
observations are missing because data on population or other variables are absent for

some kreise in some years. The panels are therefore “unbalanced”.

Table 7 to Table 9 show the descriptive statistic of the explanatory variables used in the
econometric analysis. In order to carry out econometric estimation using relative prices
and rents as dependent variable economic and demographic variables have been also

expressed 1n relative terms with respect to national averages.

Table 7
Italy — Descriptive statistics of independent variables — Monthly data - 2016-2021

Variable Mean SD Min Max N

Nom GDP Per Capita 0.03 0.01 0.01 0.06 6527
Pop Density 269 378 36 2615 6527
Net Migration 0.00 0.00 -0.02 0.04 6527
Mortgage Rates 0.02 0.00 0.01 0.02 6527
Ldiff AvgTemp -0.03 1.90 -5.47 6.03 6527
Ldiff TempVar 0.01 0.91 -2.56 2.65 6527
ExtremePrecHPH 14 110 0 2706 6527
Rel Nom GDP Per Capita 0.91 0.25 0.52 1.98 6527
Rel Pop Density 1.35 1.90 0.18 13.08 6527
Rel Net Migration 0.84 4.63 -30.33 20.92 6527

Note: “Rel” values refer to the ratio of the relevant NUTS 3 variable relative to the national average.
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Table 8
Italy — Descriptive statistics of independent variables — Annual data - 2016-2021

Variable Mean SD Min Max N

Nom GDP Per Capita 0.03 0.01 0.01 0.06 642
Pop Density 269 378 36 2615 642
Net Migration 0.00 0.00 -0.02 0.04 642
Mortgage Rates 0.02 0.00 0.01 0.02 642
AvgTemp 13.65 3.00 1.90 18.47 642
TempVar 2.53 0.36 1.59 3.64 642
ExtremePrecHPH 21 72 0 917 642
Rel Nom GDP Per Capita 0.91 0.25 0.52 1.98 642
Rel Pop Density 1.35 1.90 0.18 13.08 642
Rel Net Migration 0.79 4.54 -30.33 20.92 642

Note: “Rel” values refer to the ratio of the relevant NUTS 3 variable relative to the national average.

Table 9

Germany - Descriptive statistics of independent variables — Annual data - 2008-2021

Variable Mean SD Min Max N

Nom GDP Per Capita 0.03 0.02 0.01 0.20 5541
Pop Density 534 697 36 4794 5541
Net Migration 0.00 0.01 -0.04 0.06 5541
Mortgage Rates 0.02 0.01 0.01 0.05 5541
AvgTemp 9.44 1.00 4.88 11.93 5541
TempVar 3.59 0.36 2.05 4.58 5541
ExtremePrec 108 337 0 5169 5541
Rel Nom GDP Per Capita 0.92 0.40 0.34 4.74 5541
Rel Pop Density 2.34 3.06 0.15 20.26 5541
Rel Net Migration 0.92 7.48 -59.20 89.43 5541

Note: “Rel” values refer to the ratio of the relevant NUTS 3 variable relative to the national average.



5 Regression results

This section presents the results of the empirical findings on the relationship
between climate dynamics and housing market outcomes in Italy and Germany. Across
all specifications, heteroskedasticity is tested and corrected using robust standard
errors. In addition, the joint significance of the explanatory variables is assessed using
Wald tests, the results of which confirm the consistency and robustness of the estimated

models.

5.1 Main results

The first set of results reported in Table 10 refers to Italian annual data for
relative housing prices and rents. The estimates are based on a pooled OLS estimation

(PO), which excludes both time and regional fixed effects.

Climate variables emerge as relevant determinants of housing market outcomes.
Temperature variability is negatively and significantly associated with both relative
prices and rents, suggesting that households and landlords perceive climate instability
as a source of risk or as a characteristic that tend to decrease the intrinsic value of
residential real estates in the given area. Extreme precipitation also shows a negative
and marginally significant effect in both models. Average temperature is significant
only in the price equation, indicating that higher temperatures may depress housing

values.

Among the control variables, GDP per capita is positively and significantly associated
with both prices and rents, confirming that local income disparities drive housing
market differences across provinces. Population density is positively associated with
rents but not with prices, possibly reflecting the stronger demand for rental properties
in more urbanized areas. Net migration does not appear to be significantly related to
either outcome in this specification, which may reflect the short time frame and limited

variation in migration flows across provinces.

The relative price specification allows for a direct interpretation of the estimated
coefficients in terms of deviations from the national average. In the first column of Table
10, a one-unit increase in relative nominal GDP per capita is associated (i.e., an increase

equal to the national GDP per capita, assuming that change in nominal GDP per capita
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of the given province do not affect the corresponding national average) with a 0.68-point

increase in the relative housing price index. Turning to the climate variables, a 1°C

Increase in average temperature relative to the national average is associated with

a 0.028-point decrease in relative housing prices. A 1°C increase in temperature

variability leads to a more substantial reduction of 0.303 points.

Table 10

Italy — Relative house prices and rents - 2016-2021

1) 2
Dependent Variable Relative Prices Relative Rents
Rel Nom GDP per capita 0.680*** 0.652%**
(0.000) (0.000)
Rel Pop Density 0.015 0.013**
(0.235) (0.015)
Rel Net Migration -0.001 0.001
(0.765) (0.628)
AvgTemp -0.028** 0.003
(0.028) (0.663)
TempVar -0.303%** -0.081**
(0.000) (0.044)
ExtremePrecHPH -0.000* -0.000*
(0.090) (0.051)
Method PO PO
N 642 642
NUTS 3 dummies No No
Time frequency Yearly Yearly
R-squared overall 0.347 0.499
R-squared within
p-value Wald F 0.000 0.000
Standard errors Standard errors
robust to robust to
Std err name heteroskedasticity heteroskedasticity
adjusted for 107 adjusted for 107
clusters clusters
Panel type Balanced Balanced

Note: P-values are shown in parentheses and ¥,
significance at the 10%, 5% and 1% levels, respectively.

and *** denote
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Table 11 reports the results for log-transformed absolute housing prices and rents as
the dependent variables. This model includes time fixed effects (FE) to control for
national-level shocks and trends, while preserving the cross-sectional

variation necessary to identify the impact of spatially heterogeneous climate exposures.

Climate variables continue to display significant and economically meaningful effects.
For housing prices, average temperature, temperature variability and extreme
precipitation are negatively and significantly associated with property values.
While average temperature is not significant in the rent regression, both temperature
variability and extreme precipitation remain negatively associated with rents,
confirming that even tenants respond to climate-related variables - though less strongly
than buyers (i.e. the magnitude of the coefficients is generally lower compared to the
price regression). Economic and demographic fundamentals behave as
expected. Nominal GDP per capita is strongly and positively associated with both prices
and rents, suggesting that higher income levels contribute to increased housing demand
and valuation. Similarly, population density shows a small but statistically significant
positive effect in both models. Net migrationis also positively and significantly
correlated with housing values and rents, indicating that population inflows exert

upward pressure on the housing market.

The log-linear specification allows for an economic interpretation of the results. For
example, in the first column of Table 11, it emerges that an increase of €1,000 in per
capita income (the coefficient is divided by 1,000 since GDP per capita is expressed in
millions of euros) results in a 2.33% increase in house prices. A one-unit increase in
population density (inhabitants per km?) leads to a 0.01% increase in house prices (the
full coefficient is 0.0001). An increase of net migration equal to 1% of total population of
the province leads to an increase of 12% in house prices. Regarding the climate
variables, a 1°C increase in average temperature leads to a 3% reduction in house prices.
Additionally, a 1°C increase in temperature variability is associated with a 37.9%
decrease in house prices. To assess how plausible such a sensitivity of house prices to
temperature variability is, it 1s important to consider that the independent variable is
computed using three averages: (i) daily temperature averages; (i1) monthly average of
daily temperature average; (ii1) average of yearly standard deviation of temperatures

(calculated using (1) and (i1)). Therefore, a significant change in temperature conditions
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1s needed to get a change of 1° C in temperature variability. For comparison, Kotz et al.
(2024) obtain a contemporaneous (lag 0) coefficient of -9.3 and 49.04 considering the
sum a contemporaneous and lagged (up to 10 lags) effects with respect to the annual
change of temperature variability: a 1 C° increase would determine a 9.3% decrease in
GDP and if repeated over 11 years a 49% decrease. With respect to rental markets the
effects are much lower. A 1 C° increase in average temperature is associated with a
modest 0.3% decrease in rents and an increase of 1 C° in temperature variability with

a 15.4% decrease.

Table 11
Italy — House prices and rents - 2016-2021

(1) 2)

Dependent Variable Log Prices Log Rents
Nom GDP per capita 23.300%** 24.744%*%*
(0.000) (0.000)
Pop Density 0.000*** 0.000***
(0.001) (0.001)
Net Migration 12.469%** 11.079%**
(0.000) (0.000)
AvgTemp -0.032%** -0.003
(0.000) (0.406)
TempVar -0.379%** -0.154%**
(0.000) (0.000)
ExtremePrecHPH -0.000* -0.000**
(0.081) (0.028)
Method FE FE
N 642 642
NUTS 3 dummies No No
Time dummies Yes Yes
Time frequency Yearly Yearly
R-squared overall 0.384 0.543
R-squared within 0.377 0.537
p-value Wald F 0.000 0.000
Std err name Std. Error Std. Error
Panel type Balanced Balanced

Note: P-values are shown in parentheses and *, ** and *** denote
significance at the 10%, 5% and 1% levels, respectively.
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Table 12 presents the main results for Germany, using relative values for apartment
prices, house prices, and apartment rents as the dependent variables. As for the Italian
case (relative prices and rents) all models are estimated using pooled OLS without fixed
effects, preserving cross-sectional variation across districts while removing national

trends.

With regard to climate variables, average temperature is negatively and significantly
associated with relative apartment prices, but not with house prices or rents.
Temperature variability is also significant only in the apartment sales model, where it
shows a negative association with prices. In contrast, extreme precipitation does not
display statistically significant effects in any of the specifications. Economic and
demographic fundamentals are consistently significant across all models. Relative
nominal GDP per capita is strongly and positively associated with housing prices and
rents in all segments of the market, while population density also shows a positive and
significant relationship. Net migration, measured as the deviation from the national
average, 1s negatively and significantly correlated with all three dependent variables.
This result is somewhat counterintuitive, as pressure from new settler seems to depress

real estate values.
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Table 12
Germany — Relative house prices and rents — 2008-2021

1) 2 3
Dependent Variable Rel Apt Prices Rel House Prices Rel Rents
Rel Nom GDP per capita 0.363*** 0.514%** 0.215%**
(0.000) (0.000) (0.000)
Rel Pop Density 0.024** 0.067*** 0.020%**
(0.018) (0.000) (0.000)
Rel Net Migration -0.006*** -0.007*** -0.003***
(0.000) (0.000) (0.000)
AvgTemp -0.048%** -0.034 -0.002
(0.003) (0.147) (0.794)
TempVar -0.122%** 0.005 0.007
(0.006) (0.855) (0.520)
ExtremePrec 0.000 0.000 0.000
(0.496) (0.276) (0.836)
Method PO PO PO
N 5541 5541 5541
NUTS 3 dummies No No No
Time frequency Yearly Yearly Yearly
R-squared overall 0.232 0.381 0.339
R-squared within
p-value Wald F 0.000 0.000 0.000
Standard errors Standard errors Standard errors
robust to robust to robust to
Std err name heteroskedasticity heteroskedasticity heteroskedasticity
adjusted for 400 adjusted for 400 adjusted for 400
clusters clusters clusters
Panel type Unbalanced Unbalanced Unbalanced

Note: P-values are shown in parentheses and *, ** and *** denote significance at the 10%, 5% and
1% levels, respectively.

Table 13 reports the results for Germany using log-transformed absolute housing prices
and rents as the dependent variables. The models are estimated, as for the Italian case,
with time fixed effects but no spatial dummies, the structure is consistent across the

three housing market segments: apartment prices, house prices, and apartment rents.

Regarding climate variables, average temperature shows a significant and negative
association across all models, suggesting that long-term exposure to higher

temperatures is consistently associated with lower housing values, both in the
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ownership and rental segments. Temperature variability is also negatively associated
with housing outcomes, reaching significance in the house and rent models, though not
in the apartment price model. As in previous specifications, extreme precipitation does
not exhibit any statistically significant effect. Economic and demographic variables are
highly significant across all specifications. Nominal GDP per capita is strongly and
positively associated with all housing outcomes. Population density is statistically
significant only in the model for house prices while net migration specification shows a
consistent and significant positive effect across all the three regressions. A possible
explanation of the different sign of the net migration coefficient in Table 12 and 13 may
be that in Germany new entrants tend to move into cheaper or less-demanded provinces

(e.g., rural areas), so their prices rise a bit, but still stay below the national average.

With respect to Italy the sensitivity of house prices to nominal GDP change is lower: an
increase of €1,000 in per capita income tends to increase residential prices and rents in
a range between 0.2 and 0.3% (with respect to 2.3-2.4% for Italy).l” The sensitivity of
real estate prices to net migration approximately halve and it is about a tenth in the
case of rents. A change in average temperature produces results of the same magnitude
with respect to the Italian case (i.e., a 1 C° leads to a decrease in real estate prices of
about 3%, with a much smaller impact for rents). Instead, temperature variability tends

to produce smaller effects on real estate prices and rents than Italy.

17 Tt should be noted that nominal GDP per capita in Germany is approximately 1.6 times higher than in
Italy. As a result, €1,000 corresponds to 1.8% of nominal GDP per capita in Germany and 2.9% in Italy.
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Table 13
Germany — House prices and rents — 2008-2021

1) 2 3
Dependent Variable Log Apt Prices Log House Prices Log Rents
Nom GDP per capita 3.737*** 2.312%** 1.670%**
(0.000) (0.000) (0.000)
Pop Density 0.000 0.000*** 0.000
(0.115) (0.000) (0.638)
Net Migration 6.528%** 5.426%** 1.634%**
(0.000) (0.000) (0.003)
AvgTemp -0.020%** -0.015%** -0.013%**
(0.000) (0.001) (0.000)
TempVar -0.047 -0.068** -0.055%**
(0.162) (0.011) (0.001)
ExtremePrec 0.000 0.000 0.000
(0.763) (0.599) (0.176)
Method FE FE FE
N 5541 5541 5541
NUTS 3 dummies No No No
Time dummies Yes Yes Yes
Time frequency Yearly Yearly Yearly
R-squared overall 0.650 0.712 0.779
R-squared within 0.155 0.172 0.137
p-value Wald F 0.000 0.000 0.000
Standard errors Standard errors Standard errors
robust to robust to robust to
Std err name heteroskedasticity heteroskedasticity heteroskedasticity
adjusted for 14 adjusted for 14 adjusted for 14
clusters clusters clusters
Panel type Unbalanced Unbalanced Unbalanced

Note: P-values are shown in parentheses and *, ** and *** denote significance at the 10%, 5% and
1% levels, respectively.

Overall empirical findings presented in this section provide preliminary evidence that,
both in Italy and in Germany, weather variability and extreme events are already being

priced in the residential real estate market, particularly in the sales market.

5.2 Robustness checks

To assess the robustness of the main findings, a set of alternative model

specifications is estimated. These include regressions with additional fixed effects,
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different time frequency (monthly instead of yearly), and alternative variable
transformations. Different model choices can affect both the significance and the

magnitude of the estimated coefficients.

Starting from Italy, the focus is on comparing specifications with or without spatial and

temporal fixed effects, as well as exploring monthly data.

Table 14 reports the result of a model that includes cross-sectional fixed effects to the
analysis of the yearly relative housing prices and rents. The results clearly highlight a
key limitation of this approach: once spatial fixed effects are included, climate
coefficients become statistically insignificant in both price and rent regressions. Indeed,
due to the limited within variation of the dependent variables, cross-sectional fixed
effects tend to explain a large part of the variance of house prices across provinces. This
finding suggests that longer time series will need to be used to properly identify the

effects of climate events while controlling for other regional characteristics.
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Table 14
Italy — Relative house prices and rents — 2016-2021

1) ()

Dependent Variable Rel Prices Rel Rents
Nom GDP per capita 0.326* 0.655%**

(0.069) (0.000)
Pop Density 0.858*** 0.013***

(0.002) (0.000)
Net Migration -0.001%** 0.001

(0.014) (0.436)
AvgTemp 0.001 0.001

(0.887) (0.795)
TempVar -0.002 -0.110%**

(0.799) (0.000)
ExtremePrecHPH 0.000 0.000

(0.673) (0.188)
Method FE FE
N 642 642
NUTS 3 dummies Yes No
Time frequency Yearly Yearly
R-squared overall 0.988 0.520
R-squared within 0.199 0.512
p-value Wald F 0.000 0.000

Standard errors
robust to
Std err name heteroskedasticity Std. Error
adjusted for 107

clusters

Panel type Balanced Balanced

Note: P-values are shown in parentheses and *, ** and *** denote
significance at the 10%, 5% and 1% levels, respectively.

Table 15 explores further robustness checks. Column (1) introduces mortgage rates as
an additional control variable. However, since this variable is only available at the
national level, it lacks cross-sectional variation. As expected, the coefficient is
statistically insignificant and adds no explanatory power to the model. For this reason,
mortgage rates are excluded from all later specifications to avoid distorting the
estimation due to their aggregate nature. Column (2) and (3) implement a specification

that includes both cross sectional and time fixed effects, commonly referred to as a two-
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way fixed effects model. Again, cross-sectional fixed effects tend to explain a large part

of the relatively modest variance of house prices within provinces in the period under

examination. Economic and climate variables lose statistical significance, and in some

cases display counterintuitive signs (as for the coefficient on net migration that becomes

significantly negative,

empirical findings).

Table 15
Italy - House prices and rents — 2016-2021

(1) 2) 3)
Dependent Variable Log Prices Log Prices Log Rents
Nom GDP per capita 9.074* 9.074* 5.298
(0.055) (0.054) (0.270)
Pop Density 0.002 0.002 0.001
(0.104) (0.104) (0.575)
Net Migration -1.457** -1.457** 0.227
(0.036) (0.035) (0.720)
AvgTemp 15.240
(1.000)
MortgageRates -0.020 -0.020 -0.018
(0.164) (0.164) (0.403)
TempVar 0.020* 0.020* 0.026
(0.071) (0.070) (0.143)
ExtremePrecHPH 0.000 0.000 0.000
(0.193) (0.193) (0.322)
Method FE FE FE
N 642 642 642
NUTS 3 dummies Yes Yes Yes
Time dummies Yes Yes Yes
Time frequency Yearly Yearly Yearly
R-squared overall 0.990 0.990 0.961
R-squared within 0.520 0.520 0.276
p-value Wald F 0.000 0.000 0.000
Standard errors Standard errors Standard errors
robust to robust to robust to
Std err name heteroskedasticity heteroskedasticity heteroskedasticity
adjusted for 107 adjusted for 107 adjusted for 107
clusters clusters clusters
Panel type Balanced Balanced Balanced

Note: P-values are shown in parentheses and *, ** and *** denote significance at the 10%, 5% and

1% levels, respectively.

which contradicts theoretical expectations and previous
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Tables 16 and 17 report the results obtained using monthly data. These specifications
aim to test whether the main findings hold at higher frequency. Table 16 uses pooled
OLS models with relative prices and rents as dependent variables, while Table 17
reports fixed effects models with log-transformed absolute values. However, the results
from the monthly data are less consistent and generally weaker than those from annual
models. The use of higher-frequency data amplifies the issue of low within-province
variability in prices and rents, leading to poorer identification of the effects of climate
risks. As a result, climate variables are often statistically insignificant, and in some
cases display unexpected signs. In Table 16, temperature variability remains negatively
and significantly associated with both relative prices and rents, and extreme
precipitation shows a marginal effect in the price model. Yet, the majority of the other
coefficients are not statistically significant. In Table 17, where time fixed effects are
added and absolute prices are used, the climate variables lose significance almost

entirely, and only extreme precipitation retains a small negative effect in both models.
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Table 16

Italy — Relative house prices and rents — 2016-2021

1) ()
Dependent Variable Rel Prices Rel Rents
Rel Nom GDP per capita 0.638%** 0.559%**
(0.000) (0.000)
Rel Pop Density 0.017 0.019%**
(0.241) (0.003)
Rel Net Migration -0.002 -0.001
(0.317) (0.678)
Ldiff AvgTemp 0.000 0.003%**
(0.265) (0.000)
Ldiff TempVar -0.003%*** -0.003***
(0.000) (0.001)
ExtremePrecHPH -0.000* 0.000
(0.073) (0.205)
Method PO PO
N 6527 6527
NUTS 3 dummies No No
Time frequency Monthly Monthly
R-squared overall 0.292 0.455
R-squared within
p-value Wald F 0.000 0.000
Standard errors Standard errors
robust to robust to
Std err name heteroskedasticity heteroskedasticity
adjusted for 107 adjusted for 107
clusters clusters
Panel type Balanced Balanced

Note: P-values are shown in parentheses and *,

** and *** denote

significance at the 10%, 5% and 1% levels, respectively.
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Table 17
Italy - House prices and rents — 2016-2021

) @

Dependent Variable Log Prices Log Rents
Nom GDP per capita 21.737*** 21.386***
(0.000) (0.000)
Pop Density 0.000*** 0.000***
(0.000) (0.000)
Net Migration 7.486%** 8.508%**
(0.000) (0.000)
Ldiff AvgTemp -0.006 -0.003
(0.251) (0.445)
Ldiff TempVar -0.006 -0.003
(0.411) (0.607)
ExtremePrecHPH -0.000%* -0.000*
(0.032) (0.099)
Method FE FE
N 6527 6527
NUTS 3 dummies No No
Time dummies Yes Yes
Time frequency Monthly Monthly
R-squared overall 0.323 0.493
R-squared within 0.318 0.487
p-value Wald F 0.000 0.000
Std err name Std. Error Std. Error
Panel type Balanced Balanced

Note: P-values are shown in parentheses and *, ** and *** denote
significance at the 10%, 5% and 1% levels, respectively.

For the German case, Table 18 reports the results from relative price and rent
regressions that include NUTS 3 fixed effects. Economic fundamentals remain
statistically significant and correctly signed across all models. However, climate
variables lose significance, and their coefficients are generally close to zero. Only
average temperature shows a significant and negative association with relative
apartment prices, while all other climate indicators are insignificant across housing
segments. These results mirror the pattern observed for Italy: when regional fixed

effects are included, much of the within province variability needed to identify climate
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risk effects 1s absorbed, limiting the model's ability to detect such relationships.
Notably, net migration becomes positive and significant for apartment and house prices
but turns negative in the rental model. Table 19 strengthens the fixed effect structure
by including both spatial and temporal dummies and using log-transformed absolute
prices and rents as dependent variables. Despite the stricter control structure, climate
variables regain statistical significance. Both average temperature and extreme
precipitation are negative and significant across all outcomes, while temperature
variability is significant only in the house price model. These findings show that when
outcome variables are appropriately scaled and modelled with sufficient variation, the

climate signal becomes identifiable even under restrictive specifications.
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Table 18
Germany —-Relative house prices and rents— 2008-2021

1) 2 3
Dependent Variable Rel Apt Prices Rel House Prices Rel Rents
Rel Nom GDP per capita 0.115%** 0.182%** 0.215%**
(0.003) (0.003) (0.000)
Rel Pop Density 0.134*** 0.161*** 0.020%**
(0.000) (0.000) (0.000)
Rel Net Migration 0.003%** 0.004*** -0.003***
(0.000) (0.000) (0.000)
AvgTemp -0.007** 0.013*** -0.002
(0.012) (0.001) (0.446)
TempVar 0.003 0.004 0.007
(0.345) (0.263) (0.339)
ExtremePrec 0.000 0.000 0.000
(0.148) (0.466) (0.856)
Method FE FE PO
N 5541 5541 5541
NUTS 3 dummies Yes Yes No
Time frequency Yearly Yearly Yearly
R-squared overall 0.940 0.954 0.339
R-squared within 0.069 0.083
p-value Wald F 0.000 0.000 0.000
Standard errors Standard errors
robust to robust to
Std err name heteroskedasticity heteroskedasticity Std. Error
adjusted for 400 adjusted for 400
clusters clusters
Panel type Unbalanced Unbalanced Unbalanced

Note: P-values are shown in parentheses and *, ** and *** denote significance at the 10%, 5% and
1% levels, respectively.



Table 19
Germany — House prices and rents — 2008-2021

1) 2 3
Dependent Variable Log Apt Prices Log House Prices Log Rents
Nom GDP per capita 5.134%** 4.380*** 3.292%%*
(0.000) (0.000) (0.000)
Pop Density 0.001*** 0.001*** 0.000***
(0.000) (0.000) (0.000)
Net Migration -2.108%** -0.688 -0.978%**
(0.003) (0.161) (0.002)
AvgTemp -0.065%** -0.037*** -0.041%**
(0.000) (0.000) (0.000)
TempVar -0.022 -0.018* -0.008
(0.117) (0.057) (0.108)
ExtremePrec 0.000 -0.000%** -0.000%**
(0.113) (0.000) (0.000)
Method FE FE FE
N 5541 5541 5541
NUTS 3 dummies Yes Yes Yes
Time dummies Yes Yes Yes
Time frequency Yearly Yearly Yearly
R-squared overall 0.840 0.889 0.921
R-squared within 0.791 0.858 0.906
p-value Wald F 0.000 0.000 0.000
Standard errors Standard errors Standard errors
robust to robust to robust to
Std err name heteroskedasticity heteroskedasticity heteroskedasticity
adjusted for 400 adjusted for 400 adjusted for 400
clusters clusters clusters
Panel type Unbalanced Unbalanced Unbalanced

Note: P-values are shown in parentheses and *, ** and *** denote significance at the 10%, 5% and
1% levels, respectively.

5.3 Discussion of results

Taken together, the results point to a consistent message. While economic
fundamentals are the dominant forces shaping housing prices and rents, there is
evidence that climate change and extreme weather events are being priced in, especially
in vulnerable areas. The distinction between sale and rental markets, as well as

between absolute and relative prices, provides additional nuance and supports the
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initial assumption that real estate markets react differently to long-term versus short-

term climate risks.

In the Italian case, the availability of monthly data offers greater temporal detail, but
the observation window is much narrower (2016-2021). This reduces intra-provincial
variability over time and makes it more complex to identify long-term relationships. In
addition, the higher temporal frequency may introduce more noise into the data,
especially for variables such as extreme weather phenomena, which often show more

visible effects only over longer time horizons.

In summary, the differences in results between Italy and Germany largely reflect
differences in the quality, frequency and temporal extent of the available data.
Highlighting these limitations is important for a correct interpretation of the results
and suggests that future research could benefit from longer and harmonised time series

across European countries.

6 Conclusion

Climate change represents one of the most relevant and complex challenges of
our time, with effects that extend far beyond the environmental sphere, impacting the
real economy, financial stability and wealth distribution. This thesis analysed the
impact of climate change and related extreme weather events on residential housing
prices and rents in two major European economies - Italy and Germany - using granular

data at the NUTS 3 level and differentiating between the sales and the rental markets.

Empirical results confirm the starting hypothesis: extreme weather conditions and
climate variability are already reflected in real estate prices, particularly in the buying
and selling segment. Analyses conducted for Italy show that variables such as
temperature variability and extreme precipitation are significantly associated with
lower housing prices, exposure to flooding risk seems also to play a role. The rental
market, while showing a similar direction, is less sensitive, consistent with the shorter
time horizon that characterizes renters' decisions and the limited economic exposure of
renters with respect to the value of the property. The results for Germany confirm the
presence of negative effects of climate change and extreme events, albeit smaller in

magnitude than in Italy, especially with regard to average temperature and its
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variability. Extreme precipitations, on the other hand, do not seem to have a

statistically significant impact in the German case.

When comparing with the US literature, important similarities emerge, but also some
structural differences. As pointed out by Ma and Yildirim (2023), the buying and selling
market in the United States also reacts significantly to climate change, while rents are
less sensitive. However, US studies show greater price responsiveness especially in
high-risk coastal areas, with strong effects related to subjective perceptions of climate
risk and the availability of public information about risk (Gourevitch et al., 2023;
Fairweather et al., 2024). In Europe, and particularly in Italy and Germany, the effects
of climate variables on residential housing prices seems to be more homogeneous but
less amplified, possibly due to a lower degree of disclosure about the risk associated to

climate change in a particular area.

In the US, evidence shows that the homes that are most overpriced with respect to
climate risk are often owned by low-income households, which are therefore exposed to
high equity risks. In Europe, the literature is still limited on this front, but the results
of this thesis suggest that distributional effects could become significant if climate

repricing intensifies.

Overall, the analysis conducted suggests that climate change and extreme weather
events are no longer prospective phenomena, but they already affect local housing
markets. This has important policy implications. First, climate change and extreme
weather events can amplify wealth inequalities, penalizing low-income segments of the
population the most. Second, the resilience of local public finances is at risk, as a decline
1n property values can reduce tax revenues. Third, financial stability may be jeopardized
by a widespread decline in the value of real estate, which is a major part of bank
collateral. Finally, a delay in internalizing climate risks into real estate prices can lead

to sudden revaluations, with systemic effects.

This analysis opens up several future research developments. A first step could be to
expand the sample to other European countries, including extending the time horizon
to more recent years, to capture increasingly frequent and intense climate events. In
addition, it would be useful to assess the impact of other extreme phenomena, such as
wildfires, droughts or sea level rise, and analyse how these interact with other economic
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variables, such as mortgage rates, insurance premiums, household debt or credit
conditions. A further line of research could be to distinguish effects related to physical
risks from those related to adaptation responses!8. Another important direction would
be to investigate spillover effects across neighbouring provinces, for instance exploring
whether climate shocks in one area affect adjacent housing markets through migration
flows. Moreover, given the increasing frequency of climate-related events, developing
forecasting models to anticipate the future impact of extreme weather on housing prices

could prove valuable for both policymakers and market participants.

More generally, awareness of climate risks in the real estate sector is crucial to ensure
an orderly transition and to avoid sudden shocks. In this sense, strengthening
transparency and information on climate risks and integrating them into real estate
valuations and financial regulation are essential steps. At the European level, such
actions are crucial not only to guide investments and protect citizens, but also to
safeguard financial stability, as the real estate sector is one of the main channels of

transmission of climate risks to the economic and financial system.

18 An illustrative example is the Dutch national strategy for flood prevention and climate adaptation. See,
for instance, Bloemen et al. (2019) for a detailed analysis.

63



References

Albouy, D., Leibovici, F., and Warman, C. (2013). Quality of life, firm productivity, and
the value of amenities across Canadian cities. Canadian Journal of Economics,
46(2):379 — 411.

Alogoskoufis, S., Dunz, N., Emambakhsh, T., Hennig, T., Kaijser, M., Kouratzoglou, C.,
Murnoz, M. A., Parisi, L., and Salleo, C. (2021). "ECB’s economy-wide climate stress
test," Occasional Paper Series 281, European Central Bank.

Aoki, K., Proudman, J., and Vlieghe, G. (2002). House prices, consumption, and
monetary policy: A financial accelerator approach (Bank of England Working Paper
No. ISSN 1368-5562). Bank of England.

Baldauf, M., Garlappi, L., and Yannelis, C. (2020). Does climate change affect real estate
prices? Only if you believe in it. The Review of Financial Studies, 33(3), 1256—-1295.

Bernstein, A., Gustafson, M. T., and Lewis, R. (2019). Disaster on the horizon: The price
effect of sea level rise. Journal of Financial Economics, 134(2), 253-272.

Bilal, A. and Kanzig, D., (2024). The Macroeconomic Impact of Climate Change: Global vs.
Local Temperature, CEPR Discussion Papers 19203, C.E.P.R. Discussion Papers.

Bloemen, P., Van Der Steen, M., Van Der Wal, Z. (2019). Designing a century ahead:
climate change adaptation in the Dutch Delta, Policy and Society, Volume 38, Issue
1, Pages 58-76.

Botzen, W. J. W., Deschenes, O., and Sanders, M. (2019). The economic impacts of
natural disasters: A review of models and empirical studies. Review of
Environmental Economics and Policy, 13(2), 167—188.

Brunetti, M., Croce, P., Gomellini, M., Piselli, P. (2023). Dinamica delle temperature e
attivita economica in Italia: un'analisi di lungo periodo. Questioni di Economia e
Finanza, No. 787. Banca d’Italia.

Cascarano, M., and Natoli, F. (2023). Temperatures and search: Evidence from the
housing market Working Papers No. 1419). Banca d’Italia.

Cunha, A. M., and Lobao, J. (2021). The determinants of real estate prices in a European
context: A four-level analysis. Journal of European Real Estate Research, 14(3), 331-
348.

Egert, B., and Mihaljek, D. (2007). Determinants of house prices in Central and Eastern
Europe (BIS Working Paper No. 236). Bank for International Settlements.

64


https://ideas.repec.org/p/cpr/ceprdp/19203.html
https://ideas.repec.org/p/cpr/ceprdp/19203.html
https://ideas.repec.org/s/cpr/ceprdp.html

Fairweather, D., Kahn, M. E., Metcalfe, R. D., and Sandoval Olascoaga, S. (2024).
Expecting climate change: A nationwide field experiment in the housing market
(NBER Working Paper No. 33119). National Bureau of Economic Research.

Geng, N. (2018). Fundamental drivers of house prices in advanced economies (IMF
Working Paper No. 18/164). International Monetary Fund.

Gourevitch, J. D., Kousky, C., Liao, Y., Nolte, C., Pollack, A. B., Porter, J. R., and Weill,
J. A. (2023). Unpriced climate risk and the potential consequences of overvaluation
in US housing markets. Nature Climate Change, 13(3), 250-257.

Keys, B. J., and Mulder, P. (2020). Neglected no more: Housing markets, mortgage
lending, and sea level rise (NBER Working Paper No. 27930). National Bureau of
Economic Research.

Kotz, M., Levermann, A., and Wenz, L. (2024). The economic commitment of climate
change. Nature, 615(7925), 521-526.

Loberto, M., and Spuri, M. (2023). L'impatto del rischio di alluvione sulla ricchezza
immobiliare in Italia (The impact of flood risk on real estate wealth in Italy). Bank of
Italy Occasional Paper(768).

Lustgarten, A. (2020). How Russia Wins the Climate Crisis. The New York Times.

Ma, L., and Yildirim, Y. (2023). "High Temperature, Climate Change and Real Estate
Prices." SSRN Electronic Journal.

Maddison, D., and Bigano, A. (2003). The amenity value of the Italian climate. Journal
of Environmental Economics and Management, 45(2), 319-332.

McQuinn, K. (2004). A model of the Irish housing sector. Central Bank and Financial
Services Authority of Ireland Research Technical Paper No. 1/RT/04.

Meen, G. (2001). Modelling spatial housing markets: Theory, analysis and policy
(Advances in Urban and Regional Economics, Vol. 2). New York, NY: Springer.
Meucci G., and Rinaldi F. (2022). “Bank exposure to climate-related physical risk in
Italy: an assessment based on AnaCredit data on loans to non-financial

corporations” Questioni di economia e finanza, N. 706 Banca d’Italia.

Ovalle-Rivera, O., Laderach, P., Bunn, C., Obersteiner, M., and Schroth, G. (2015).
Projected Shifts in Coffea arabica Suitability among Major Global Producing
Regions Due to Climate Change. PLoS ONE, 10(4):e0124155.

Ozmen, M., Kalafatcilar, K., and Yilmaz, E. (2019). The impact of income distribution

on house prices. Central Bank Review.
65



Poterba J. M. (1984). Tax Subsidies to Owner-Occupied Housing: An Asset-Market
Approach, The Quarterly Journal of Economics, Volume 99, Issue 4, Pages 729-752.

Rehdanz, K., and Maddison, D. (2005). The Amenity Value of Climate to Households in
Germany (Working Paper FNU-39, revised). Research Unit Sustainability and
Global Change, Hamburg University and Centre for Marine and Atmospheric
Science.

Rose, N., and Dolega, L. (2022). It’s the weather: Quantifying the impact of weather on
retail sales. Applied Spatial Analysis and Policy, 15(189—-214).

Roth Tran, B., and Wilson D. J. (2024). “The Local Economic Impact of Natural
Disasters.” Federal Reserve Bank of San Francisco Working Paper 2020-34.

Schnure, C. (2005). Boom-bust cycles in housing: The changing role of financial
structure (IMF Working Paper No. 05/200). International Monetary Fund.

Sinha, P., Caulkins, M., and Cropper, M. (2021). The value of climate amenities: A
comparison of hedonic and discrete choice approaches. Journal of Urban Economics,
126.

Taruttis, L. and Weber, C. (2022). Estimating the impact of energy efficiency on housing
prices in Germany: Does regional disparity matter? Energy Economics, 105.

Thiel, P. (2024). FDZ Data Description: Regional Real Estate Price Index for Germany,
2008-05/2024 (V14), RWI Projektberichte, Essen.

Trautmann, C. (2024). Climate change and real estate prices: A review of physical and
transition factors. WHU - Otto Beisheim School of Management.

Usman, S., Gonzalez-Torres Fernandez, G., and Parker, M. (2025). Going NUTS: The
regional impact of extreme climate events over the medium term. FEuropean
Economic Review, 178:105081.

Votsis, A., and Perrels, A. (2015). Housing prices and the public disclosure of flood risk:
A difference-in-differences analysis in Finland. Journal of Real Estate Finance and
Economics, 53(4), 450—471.

Waidelich, P., Batibeniz, F., Rising, J., Kikstra, J. S., and Seneviratne, S. I. (2024).
Climate damage projections beyond annual temperature. Nature Climate Change,
14, 592-599.

Zietz, dJ., Zietz, E. N., and Sirmans, G. S. (2007). Determinants of house prices: A
quantile regression approach. The Journal of Real Estate Finance and Economics,

37(4), 317-333.
66



Appendix

A.1 NUTS 3 maps

Figure 1 clearly shows that, as mentioned above, NUTS 3 regions often span

multiple climate grid cells.

Figure Al
Taranto, Italy — Climate data and NUTS 3 administrative boundaries
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A.2 Other climate indicators

Annual indicators — Italy and Germany

AvgPr is the yearly mean precipitation. ExtremeWind!? is defined as the sum of
total wind in a year when daily near surface wind speed exceeds the 99.9th percentile

of the historical precipitation distribution (1981-2021).

19 ExtremeWind is not discussed in Kotz et al. (2024); however, it was calculated using the same
methodology applied to extreme precipitation in the aforementioned paper.

67



Monthly indicators - Italy

AvgPr is the monthly mean precipitation. ExtremeWind is defined as the sum of
total wind in a year when daily near surface wind speed exceeds the 99.9th percentile

of the historical precipitation distribution (1981-2021).

The variables AvgPr and ExtremeWind were initially considered in the analysis but
later excluded from the final model because the results obtained did not show

statistically significant effects.

A.3 Heatmaps

Figure A2
Italy — Average Temperature Heatmap - °C
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Italy - Temperature Variability Heatmap - °C

Figure A3
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Figure A4
Germany — Average Temperature Heatmap - °C
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Figure A5
Germany - Temperature Variability Heatmap - °C
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