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Abstract

Proteins are arguably one of the most interesting families of macromolecules as they
are the base building block for most living organisms, involved in virtually all biologi-
cal processes. Protein structures can be modeled as three-dimensional graphs based on
their residue contact networks, making them well-suited for Graph Machine Learning
approaches. This thesis conducts a large-scale analysis on the entire human proteome
aimed at classifying proteins based on their physiological roles. The work includes dif-
ferent approaches for pattern recognition defined on graph structures based on feature
engineering, kernel methods and Graph Neural Networks. Two main feature engineer-
ing techniques are employed: the first one is based on the spectral densities of protein
graphs, while the second approach is based on the fundamental concept of algebraic
topology known as simplicial complexes. Another approach to protein classification
was based on Graph Neural Networks with an extensive exploration of recent message
passing techniques and possible network architectures. The aforementioned techniques
were evaluated on two main tasks: (i) binary classification of protein structures based
on whether they perform enzymatic functions, and (ii) multiclass classification of en-
zymatic proteins according to their enzyme class. Performances have been validated
on the entire human proteome by means of repeated stratified splitting to correctly and
robustly assess the performance of the analyzed approaches. The final results highlight
the Jaccard-based kernel as best performer for the binary task with a balanced accuracy
of 0.90 while in the multiclass scenario the GNN architecture displayed the highest dis-
criminative capabilities with a balanced accuracy of 0.92. These results indicate that the
multiclass EC class assignment is more complex compared to binary enzymatic classifi-
cation with the more flexible GNN structure being able to outperform all other methods
without significant overfitting. Such results demonstrate that graph-based representa-
tions of protein structure enable competitive functional prediction with classical kernel

methods and modern message-passing architectures providing comparable strengths.
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Chapter 1

Introduction

1.1 Biological Motivation

Proteins are the most indispensable type of macromolecules for cellular and organic
physiology. Proteins are in charge of many biological processes, the most relevant
being: catalyzing metabolic reactions, transducing and integrating biological signals,
transporting ions and metabolites, providing mechanical scaffolding and regulating
gene expression [2, 103]. Enzymes, in particular, accelerate chemical transformations
by stabilizing transition states and lowering activation barriers, thereby enabling re-
action rates compatible with life. Perturbations in protein function underlie diverse
pathologies [93], from metabolic errors to cancer, so accurate functional annotation is
a prerequisite for biological understanding and therapeutic discovery.

Despite decades of progress in biochemistry and structural biology, comprehensive
functional characterization has not kept pace with the rapid accumulation of sequences
and structures. Moreover, inferring function from sequence alone is complicated by
factors like domain shuffling [53], convergent evolution [97], and the presence of multi-
functional [49] proteins. Three-dimensional approaches on the other hand impose strict
physicochemical constraints on activity: the geometry of active sites and the organiza-
tion of co-factors collectively shape specificity and catalytic role. These considerations
motivate the appearance of computational intelligence strategies that exploit structural

information to propose functional hypotheses and guide experiments.



Within this context, inferring a protein’s physiological role from its structure is both
timely and relevant. Structure-based learning approaches offer a scalable complement
to experimental annotation by leveraging patterns that recur across families and folds
—such as common structural motifs and global architectural features— to distinguish
enzymatic from non-enzymatic proteins and to assign functional classes. By using
structural signals in predictive models, such methods aim to bridge the annotation gap

and accelerate biological insight across large proteomes.

1.2 Enzymatic Proteins and the EC Numbering System

Proteins can be divided into two macro-categories: enzymatic and non-enzymatic. As
previously mentioned enzymatic proteins (i.e., enzymes) facilitate chemical reactions
often decreasing the amount of energy required for the reaction to speed it up. To carry
out their function, enzymes bind substrates at key locations called active sites and are
very specific, binding only specific substrates for specific reactions [56]. Each enzyme
is associated with an Enzyme Commission (EC) Number [102], assigned by the Nomen-
clature Committee of the International Union of Biochemistry and Molecular Biology
(IUBMB). The EC numbering system presents the hierarchical structure highlighted in
Table 1.1.

Level Description
EC x Main class (e.g., Oxidoreductases, Transferases, etc.)
EC x.x Subclass — type of compound or group involved
EC x.x.x | Sub-subclass — specific type of reaction
EC x.x.x.x | Serial number of the enzyme in this sub-subclass

Table 1.1: Hierarchy of the EC Numbering System — Source: Adapted from [96]

The TUBMB defined a total of seven distinct main classes of enzymes which are
briefly described in Table 1.2. Classes 1 to 6 were defined in the first Report of the
Commission on Enzymes in 1961 [45] while class 7 was defined later in 2018 because
the pre-existent classes were not capable of representing properly the role of proteins

specialized in moving molecules and ions across membranes [95].



EC Class | Name Function

EC 1 Oxidoreductases | Catalyze oxidation—reduction (redox) reactions
by transferring electrons between substrates.

EC?2 Transferases Transfer functional groups (e.g., methyl, glyco-
syl) from one molecule (donor) to another (ac-
ceptor).

EC3 Hydrolases Catalyze hydrolytic cleavage of bonds by addi-
tion of water (e.g., ester, glycosidic bonds).

EC4 Lyases Cleave bonds by means other than hydrolysis or
oxidation, often forming double bonds or rings.

EC5 Isomerases Catalyze intramolecular rearrangements, con-
verting a molecule into one of its isomers.

EC6 Ligases Join two molecules by forming new bonds, typ-
ically coupled to ATP hydrolysis.

EC7 Translocases Catalyze the movement of ions or molecules
across membranes or their separation within
membranes.

Table 1.2: Main EC Classes, Names, and Functions — Source: Adapted from [66]

1.3 Graph-Based Representations of Protein Structures

A powerful way to abstract the three-dimensional organization of proteins is to repre-
sent them as graphs. In this formulation, amino acid residues are mapped to nodes,
while edges encode spatial proximity or chemical interactions between residues. The
most common definition relies on a distance threshold applied to Ca atoms resulting in
a Protein Contact Network (PCN) [27]. This abstraction preserves essential information
about the protein’s fold and intramolecular connectivity enabling systematic computa-
tional analysis.

Representing proteins as PCNs provides a natural substrate for exploring Graph
Machine Learning (GML) methods, which are specifically designed to exploit rela-
tional and topological information of graph structures. Unlike conventional vector-
based encodings, graph representations capture both local patterns and global architec-
tural features. These properties make PCNs particularly suitable for function prediction
tasks, where subtle structural characteristics often govern specificity and catalytic ac-
tivity. Furthermore, graph abstractions are highly flexible: additional information such

as residue type, chemical descriptors, or edge weights based on inter-residue distances



can be seamlessly incorporated to enrich the representation.

By leveraging PCNs, modern learning algorithms can uncover structural signals
fundamental for the analysis of complex topological structures like proteins. In this way,
graph-based representations act as a bridge between raw structural data and predictive
models, offering a scalable framework for linking protein structure to physiological

function.

1.4 Research Objectives and Tasks

This thesis investigates the capabilities of a diverse set of GML techniques, includ-
ing embedding strategies inspired by the granular computing information processing
paradigm [5, 80], graph kernels, and Graph Neural Networks (GNNs), to recognize
structural patterns for accurate protein classification. The focal objective is to classify
proteins in the human proteome according to their physiological functions, formulated
as two complementary tasks: (i) a binary discrimination between enzymatic and non-
enzymatic proteins (hereinafter Task A) and (ii) a multiclass assignment of enzymatic
proteins to their first-level EC classes (hereinafter Task B). The study explores advanced
graph representations based on spectral densities and algebraic topology, subsequently
evaluating the efficacy of both classical and deep learning classifiers on said tasks.

A distinctive contribution lies in the direct, uniform benchmarking of spectral- and
algebraic-topology-based descriptors against modern GNNs, an empirical comparison
that appears not to have been systematically executed under shared experimental con-
ditions in prior literature. The evaluation protocol is intentionally rigorous: strati-
fied hold-out validation with fixed splits across all models, systematic hyperparame-
ter optimization, and class-imbalance-aware performance measurements are employed
to reflect real-world data characteristics. This design enables paired comparisons and
strengthens the reliability of the conclusions. The analysis is conducted at proteome
scale on approximately 50, 000 unique human protein structures and spans 12 distinct
combinations of learning algorithms and PCN representation techniques, ensuring a
comprehensive and fair assessment of methodological strengths and limitations across

topological embeddings and deep learning architectures.
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These elements combined establish the work as a baseline reference for future stud-
ies, offering reproducible results and methodological guidelines to inform the design

and evaluation of graph-based approaches for proteome-scale EC class annotation.

1.5 Thesis Outline

The work is organized according to the following structure: Chapter 2 reports a pre-
sentation of the main theoretical background of the explored ML and GML approaches
and an analysis of the previous scientific works with similar grounds; Chapter 3 presents
the technical details on how the data was retrieved and filtered for the analysis; Chap-
ter 4 includes the theoretical and technical description of all methods exploited in the
thesis, from modelling to final performances evaluation; Chapter 5 highlights the em-
pirical results deriving from the experimentation carried out and the main data-driven
findings; finally Chapter 6 presents a brief recap of the work and the final conclusions
together with considerations regarding strengths, limitations and possibilities for future

developments of the work.



Chapter 2

Literature Review

This chapter will be split in two separate parts: Section 2.1 will introduce the foun-
dational literature regarding the ML and GML techniques exploited in the thesis, Sec-
tion 2.2 on the other hand will present a brief taxonomy of the present research and a
compendium of scientific literature regarding GML approaches for physiological role

prediction in proteins.

2.1 Theoretical Background

2.1.1 An Introduction to Graphs

A graph can be defined as a pair of sets G = (), ) where V represents a finite set of
nodes and £ C V x Vis the finite set of edges [28]. A graph is said to be undirected if its
edges represent symmetric relations between nodes, formally the existence of an edge
(u,v) € €& with u,v € V guarantees the existence of (v,u) € £ which is equivalent to
(u, v). Directed graphs on the other hand have edges representing directed relations so
the existence of (u,v) does not guarantee the existence of (v,u) and the two edges do
not carry the same meaning. Graphs in their simple formulation do not account for self-
loops (i.e., edges of the type (u, u)) and multi-edges (i.e., multiple edges connecting the
same two nodes). Most commonly in graph notation n = |V| and m = |&|.

One of the most well-known ways to represent a graph is the so-called adjacency

matrix: a square matrix of shape n x n that can be defined as



1 if (v;,v;) € &,
A = (v5, ) 2.1)

0 otherwise.
which for simple undirected graphs takes the form a symmetric binary matrix with
zero diagonal [28].
Starting from A it is possible to define the function D(v;) = Z?Zl A, ;, laying the
foundation for another fundamental graph-related definition: the degree matrix D. D is

a diagonal matrix of shape n x n that can be defined as

D, - D(v;) ifi=j, 22)
0 otherwise.

Furthermore it is possible to assign an arbitrary number of features to the elements
of a graph, effectively creating an attributed graph which can be defined as G, =
(V,E,Va, E,) where V, and &, are two sets of attributes for nodes and edges respectively
[8].

Thanks to such properties, graphs are optimally fitted to describe complex topologi-
cal scenarios in which atomic elements (i.e., nodes) have non trivial binary interactions
among each other. A prime example of this representation capabilities are indeed pro-
tein structures which can be represented as labelled (attributed) graphs also known as

PCNs (further details can be found in Section 4.1).

2.1.2 Graph Embeddings

In order to solve classification problems inside the graph domain directly graph match-
ing techniques have been developed with the aim of evaluating the similarity of different
graph structures. The most relevant techniques under the graph matching umbrella are:
isomorphism tests [67], partial graph matching [105] and inexact graph matching [22],
all which are however very limited in the context of graph classification. Especially
when it involves large graph structures or a large quantity of graphs, such limitations

derive more often than not from prohibitive computational costs (e.g., subgraph isomor-



phism is NP-complete) [15, 23].

A common alternative is to map graphs into an embedding space where standard
classifiers operate efficiently. An embedding procedure transforms complex structured
inputs into vectors in a simpler Euclidean metric space. This process effectively creates
a compact fingerprint of each input structure enabling scalable learning [40, 72] while
on the other hand, an effective embedding space should be able to preserve as much

information as possible from the original graph structure [62].

2.1.3 Simplicial Complexes

Simplicial complexes are a concept from algebraic topology which has been widely
explored in the domain of graph analysis [65,77,85]. They are in essence groups of
elements (i.e., simplices) glued together along their faces. A simplex of order k (k-
simplex) is effectively a convex hull of (k + 1) points: a point is a 0-simplex, a line a
1-simplex, a triangle a 2-simplex and so on. Every non-empty subset of a simplex is a
face of said simplex which is itself a simplex of lower order. Following this reasoning a
simplicial complex (S) can be defined as a group of simplices (s) having the following

two properties:

1. if s € §, every face in s is also included in S

2. if 51,89 € S, then s1 N s5 is a face of both s; and s5

Starting from a generic simplicial complex it is possible to define the so-called k-
skeleton, representing a simplicial complex whose forming simplices are all at most
of order k. It is easy to see how a simple unweighted graph can be seen exactly as
a 1-skeleton where graph nodes represent points in the skeleton and each edge is a
1-simplex.

Simplicial complexes are a powerful tool for graph analysis especially in the case of
labeled graphs: if each node has its own distinctive label it is possible to create a finite
alphabet of all different simplices of node-labels composing the structure which can be
exploited to create a symbolic histogram of the graph [63]. Simplicial complexes are

also suited to model interactions of any order which makes them versatile enough to

8



be adapted to networks with complex local substructures (e.g., PCNs), more on this in

Section 4.2

2.1.4 Kernel Methods

Kernel methods enable learning non-linear patterns by mapping data into a (possibly
infinite-dimensional) feature space, where linear models such as Support Vector Ma-
chines (SVMs) operate efficiently [16]. The fundamental building block for kernel
methods are kernel functions, which are used to implicitly embed the data towards
a possibly infinite-dimensional Hilbert space H in which linear classification of data
points is more likely [25]. Considering an input space of any kind X, a kernel function
can be defined as a continuous function K : X x X — R. Furthermore K (-, -) is said to

be a positive semi-definite kernel if and only if it respects the following two properties:

K(z;,xj) = K(xj, ;) Vo, z; € X (2.3)
ZZCiCjK<$i,$j) >0 Ve, € RV, z, € X 2.4)

i=1 j=1

Considering an instance matrix X € n X m where n is the number of observations
and m the number of features per observation, any positive semi-definite kernel applied
to observations of X yields a so-called positive semi-definite Gram Matrix (of shape
n x n). This Gram matrix, under Mercer’s Theorem [68] (which requires X to be
compact and K to be continuous), admits a feature map ¢ into a (possibly infinite-
dimensional) Hilbert space H. This phenomenon justifies the so-called kernel trick [87],

described by the following equation:

Equation (2.5) highlights how, instead of performing explicit mapping with the
function ¢(-) followed by the dot product among vectors in #, it is possible to use
a positive semi-definite kernel function K (-, -) that satisfies Mercer’s condition which

implicitly performs both operations. A prime example of positive definite kernel is



the Radial Basis Function (RBF) kernel which takes the form of K (z,y) = ezl
which can be intuitively read as an exponentially decaying similarity of squared dis-
tance, points very close together act as almost identical while influence falls off rapidly
as they move apart depending on the magnitude of ~.

Kernel methods have been widely applied in the domain of graphs since the early
2000s with the appearance of the first graph kernels [55]. Graph kernels can be defined
(with a similar logic as the one presented previously) as a positive semi-definite function
K in the space of graphs G for which there is a map ¢ : G — H such that K (G, G;) =
(0(Gh), ¢(G,)) for any Gy, G € G [73].

2.1.5 Graph Spectrum

Starting from the graph matrix representations presented in Section 2.1.1 it is possi-
ble to define two other important matrices for graph analysis. The first one being the

Laplacian Matrix L defined as

L=D-A (2.6)

The matrix L encodes topological information about the network. Many structural
insights can be extracted from its spectrum: from the number of connected components
[100], to the algebraic connectivity [35], and the total number of spanning trees [18].

Starting from L it is possible to define another real symmetric matrix: the Normal-

ized Laplacian Matrix L as

L=D'2LD /2 (2.7)

L conveys similar structural information as L but has various additional properties,
the most important being that all of its eigenvalues (i.e., its spectrum) lie in the range
[0, 2] independently of the characteristics of the underlying graph [17]. Given such
property it is possible to consider the spectral decomposition of L as

L =PDPT (2.8)

10



where D = diag {Alf, s )\E} is a diagonal matrix containing the n eigenvalues of
L where n is equal to the number of nodes in the original graph. The eigenvalues con-
tained in D can be interpreted as a sort of signature of the underlying graph, they are
however difficult to compare given their variable dimensionality (equal to the number

of nodes in the graph), Section 4.4 will present a method to circumvent this issue.

2.1.6 Graph Neural Networks

Deep learning began with architectures designed for data living on regular Euclidean
domains. Multilayer perceptrons (MLPs) learn generic non-linear functions on vector
inputs; convolutional neural networks (CNNs) leverage locality and weight sharing on
grids for images and audio; recurrent neural networks (RNNs) share parameters along
sequences. Graph-structured data break these assumptions: there is no canonical or-
dering of nodes, sizes vary, and neighborhoods are irregular. Graph neural networks
(GNNs5s) arose to bring the same inductive biases (e.g., locality and parameter sharing)
to graphs [13,39,84]. The earliest GNN formulations extended recursive neural net-
works to arbitrary graphs and introduced contractive propagation to guarantee conver-
gence [39,84]. These models already contained the core idea of repeatedly exchanging
information along edges and updating node states.

Two complementary message passing (MP) methodologies crystallized how to “con-
volve” on graphs: (i) spectral view which defines convolution via the graph Laplacian
eigenbasis and learn filters in the spectral domain [14,43] and (i) spatial view which op-
erates directly on neighborhoods with permutation-invariant aggregations [42,99, 104].
A key discovery on GNNs relates their discriminative power to the Weisfeiler—Leman
(WL) graph isomorphism test: message-passing GNNs are more often than not as pow-
erful as the 1-WL test [70].

Figure 2.1 presents the standard structure of a GNN for graph classification: some
initial pre-processing is applied to graph structures to prepare them to pass through
convolutional layers in which MP is applied. After a variable number of MP rounds the
resulting node level representations get pooled into a unique vector corresponding to a

graph level representation which gets subsequently fed to a classification head (typically

11



a MLP structure) which is devoted to making the final graph level predictions.

Graph Structure CONVOLUTIONAL
LAYER(S) POOLING LAYER

CLASSIFICATION
Node Features PREPROCESSING Message Passing Node Level Pooling operation Graph Level HEAD Graph Level
> Representations Representation Predictions
jormalizati ional) Normalization Standard MLP
jon Linear Activation

(Optional)

Edge Features
(Optional)

Figure 2.1: Standard GNN structure

2.2 Previous Work on Proteins’ Physiological Role Pre-

diction

2.2.1 Problem Framing and Task Taxonomy

In this thesis, physiological role prediction is operationalized as two supervised tasks
on protein structures. The first is a binary classification that distinguishes enzymes vs.
non-enzymes; the second is a multiclass assignment of the first level EC number. The
EC hierarchy and class definitions established by IUBMB (Tables 1.1 - 1.2) are adopted.

Methodologically, a two-stage formulation popularized in early structure-based work
[10,29,30] is adopted: a binary classification between enzymatic and non-enzymatic
proteins (Task A) followed by first level EC number classification on the enzymatic
subset (Task B). The thesis mirrors pipelines that model proteins as PCNs whose nodes
are residues (or secondary-structure elements) and edges encode spatial proximity, en-

abling graph-based learning downstream.

2.2.2 Early Alignment-Free ML Approaches

Plenty of studies in literature deal with the classification of proteins according to their
physiological role. One very early example is Dobson & Doig (2003) [29], who aimed
to distinguish enzymatic from non-enzymatic proteins without using sequence or struc-
tural alignments which were very popular at the time (e.g., BLAST [3], FASTA [79],

etc.). They described proteins using both simple sequence-derived features (e.g., amino
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acid composition, etc.) and structure-derived features (e.g., secondary structure con-
tent, largest pocket size, etc.). These feature vectors were classified using SVMs with
adaptive feature selection yielding a simplified model that achieved around 80% ac-
curacy. A natural evolution of this study is Dobson & Doig (2005) [30] where the
authors expand the classification problem to predict also the first level EC number of
the analyzed proteins maintaining similar input features in a One-vs-One (OvO) set-
ting. The performances of this later study are stained by strong class imbalance with
accuracy scores ranging from around 80%, for well balanced classes, to around 50%
for highly imbalanced situations. Together, these studies established the feasibility of
alignment-free, feature-based ML for physiological-role prediction while highlighting
two themes that recur in later work: (i) structure-derived descriptors can add value be-
yond sequence-only baselines; and (ii) evaluation must account for class imbalance and

protocol design (see Section 4.9).

2.2.3 Proteins as PCNs for GML

Protein contact networks —also called residue interaction/contact networks— abstract
a protein’s 3D structure as a graph whose nodes are residues (typically Ca atoms) and
whose edges encode spatial proximity; common design choices include an 8 A cutoff
(or a 4-8 A window to suppress trivial backbone neighbors) and, in some variants,
weighted edges based on inverse distances [27].

Early work by Borgwardt et al. (2005) [10] modeled proteins at the level of secondary-
structure elements (SSEs), connecting SSEs via sequential and structural edges, and
trained SVMs with random-walk graph kernels in a two-stage pipeline (usual enzyme
vs. non-enzyme followed by first-level EC class) on balanced EC subsets. Adding struc-
tural edges and specific global attributes improved performance over sequential-only or
attribute-free baselines [10].

Martino et al. (2017) [64] work with Ca contact networks adding edges when
residues are in the range [4-8] A and summarize them via topology- and spectrum-based
descriptors (e.g., normalized-Laplacian spectral densities, centralities, etc.) to feed ker-

nel methods and SVM variants. With this approach the residue—residue contacts define
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the learning substrate for the applied ML algorithm. This study is also focused on the
first level EC number prediction for a subset of the proteome of E. coli.

De Santis et al. (2018) [26] embed heterogeneous PCN and sequence descriptors
(spectral density, centralities, protein size, Betti numbers, primary sequence) into a
dissimilarity-space and test three strategies: (i) features selected via genetic algorithms
with PARC/v-SVM, (ii) an isometric embedding with standard classifiers, and (iii) a
cluster-based one-class model that learns feature weight. They achieve an F1-score of
~ 0.70 with »-SVM and up to 0.75 with the one-class system on 1, 224 E. coli proteins
(703 enzymes, 521 non-enzymes).

Various other studies exploited PCNs for a plethora of computational intelligence
tasks, from standard classification to more advanced generative tasks [59-61]. Given
their versatility and intuitiveness PCNs have been deemed the perfect technique for pro-
tein analysis and have been used as basis for all ML experiments presented in Chapter

4.

2.2.4 GNNs for EC number Prediction

Structure-aware GNNs are able to operate directly on PCNs, in this setting, node at-
tributes usually include residue identity and/or physicochemical descriptors (and op-
tionally secondary structure/solvent accessibility), while edges carry geometric fea-
tures such as inter-residue distances or orientation; a message-passing encoder with
graph pooling yields a graph-level representation that feeds one or more classification
heads (see Section 2.1.6). Many pipelines implement a two-stage protocol in which
a dedicated binary head filters enzymes before EC classification, whereas others fold
non-enzymes into a unified multiclass objective by adding a “non-enzyme” label or
thresholding EC logits and others operate on two distinct datasets directly one for the
enzyme vs. non-enzyme classification and another for EC number prediction (the latter
being the chosen method for this thesis as anticipated in Section 2.2.1).

Representative PCN-based approaches include works such as Graph Convolutional
Networks (GCN) by Kipf & Welling (2016) [54] that combine residue features with

proximity edges to predict EC labels often alongside Gene Ontology terms [38]. More
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recent equivariant GNNs inject 3D geometry directly into message passing either by
coupling sequence transformers with E(3)-equivariant layers over residue graphs de-
rived from experimental or AlphaFold2 structures [9], or by using geometric vector
perceptrons that jointly propagate scalar and directional features on PCNs [50]. Across
studies, using PCNs as the learning substrate consistently improves over sequence-only
baselines, with the largest gains in remote-homology regimes. When reliable coordi-
nates are available, equivariant architectures tend to outperform plain GNN models on
both enzyme detection and top-level EC classification.

Most recent architectures require significant computing capabilities and in order
to mediate between the effectiveness of most recent approaches and acceptable model
training times this thesis includes only standard GNN models (as in Figure 2.1) whose
structures have been optimized for the two tasks of interest. Various MP strategies and
different topologies are explored in order to find the best possible architecture with rea-

sonable training times on the available machines (for additional details refer to Section

4.8).

2.2.5 Datasets Choice

Previous studies constructed their dataset starting from either selected balanced subsets
of proteins [10], which facilitated modelling but was poorly representative of the real
biological distribution of proteins in living organisms, or from subsets of proteomes of
simple organisms such as E. coli [26,64]. More recent studies regarding Deep Learning
architectures built more comprehensive datasets composed hundreds of thousands pro-
teins, with some reaching more than 500, 000 structures [9]. This thesis takes a hybrid
approach, the starting dataset represents the entirety of the human proteome composed
of approximately 70, 000 distinct structures, said dataset was filtered to select proteins
with a single first-level EC number and good enough resolution to be candidates for
PCN construction. After the data cleaning procedure the resulting dataset included
more than 48,000 proteins with approximately 21,000 enzymatic structures, all the
details can be found in Chapter 3. Task A exploited the entirety of the dataset while

Task B leveraged only the enzymatic proteins. This process allowed the realization of a
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large-scale analysis of protein structures with specific focus on the human proteome.
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Chapter 3

Data Collection

The initial dataset for the analysis consisted of 69, 979 distinct protein structures repre-
senting the entirety of the human proteome. The original files were mass downloaded
from Protein Data Bank (PDB) on March the 1% 2025 and subsequently parsed via spe-
cialized Python packages such as BioPython [21] and BioPandas [81] in order to extract

the following relevant characteristics for each protein:

* Coordinates of all Car atoms belonging to standard amino acids, essential for the
construction of PCNs (In the case of alternate locations' the average coordinates

were considered)
¢ Residue names related to each Co atom

* Resolution of the experiment used to determine the positions of atoms in the

structure
* First Level EC Number(s)

The resulting protein structures were then filtered, specifically, proteins belonging

to the following categories were discarded:

1. Any protein showing an evidently degenerate structure (e.g., one single residue,

very far residues, etc.)

For additional details refer to Proteopedia, Alternate Locations in PDB Files
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2. Any protein which exhibits multifunctional [49] or moonlighting [48] properties

(i.e., presenting more than one first level EC Number)

3. Any protein with missing resolution or with a resolution exceeding 3A. This
threshold was chosen because, given the residue interaction range of [4-8]A, only

highly detailed structures are informative for the analysis.

After filtering, the dataset was composed of 48, 019 proteins divided in 26, 312 non
enzymatic structures and 21, 707 enzymatic ones. The enzymatic ones were further
distributed as presented in Table 3.1, notably classes 5 (Isomerases), 6 (Ligases) and
7 (Translocases) are substantially underrepresented in the dataset compared to other
EC Classes and will probably prove to be hard to correctly classify. EC Class 7 in
particular is represented by only 28 structures across the entire dataset, this phenomenon
is probably due to it being the newest EC class, introduced only in 2018 [95]. Given
this extreme scarcity in the dataset Translocases were ignored in the context of Task B.

Given the two layer experimental procedure of this work two distinct datasets were
created: (1) a dataset of all 48, 019 structures divided in Non-Enzymatic and Enzymatic
(i.e., belonging to any EC Class) for Task A and (ii) a dataset of 21,679 enzymatic
structures (after the removal of Translocases), each with its own first level EC Number
for Task B. This two datasets were used in parallel for all of the experimental steps of

this work.

EC Count Percentage

1 2959 13.63%
2 8878 40.90%
3 7181 33.08%
4 1557 7.17%
5 660 3.04%
6 444 2.05%
7 28 0.13%

Table 3.1: EC Number Distribution for Enzymatic Proteins
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Chapter 4

Methodologies

This section will include the technical and theoretical specifications of all methods used

in the experimental framework of the thesis.

4.1 Proteins as PCN-Graphs

As anticipated in Section 2.2.3 protein structures downloaded from PDB were processed
by creating PCNs following the same approach found in [26,27,64]. Starting from the
3D coordinates of atoms in the proteins (often retrieved by means of X-Ray Crystallog-
raphy [7]) only atoms belonging to the 20 standard amino acids were considered (see
Table 4.1), specifically their Ca atoms were used as nodes in the resulting PCNs. Ca
atoms were connected if the Euclidean distance among them was in the range [4-8]A,
the lower bound was set in order to discard trivial first-neighbor interactions along the
chain of a protein while the upper bound is set to 8A which corresponds approximately
to two van der Waals radii of Ca atoms [78]. Outside such range residues are assumed
to have no relevant interaction. The final PCNs are graphs whose nodes are labeled with
the name of the residue corresponding to each Ca atom. Edges were deliberately kept
attribute-free to foster learning directly from the interactions of residues. Following the
same rationale the resulting graphs have no notion of the original 3D space, they only
retain information about the connectivity structure of the amino acids.

Figure 4.1 presents the structure of human serum albumin (1AO6 on PDB) both in
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Amino acid PDB 3-letter code | Amino acid PDB 3-letter code
Alanine ALA Leucine LEU
Arginine ARG Lysine LYS
Asparagine ASN Methionine MET
Aspartic acid ~ ASP Phenylalanine PHE
Cysteine CYS Proline PRO
Glutamine GLN Serine SER
Glutamic acid GLU Threonine THR
Glycine GLY Tryptophan TRP
Histidine HIS Tyrosine TYR
Isoleucine ILE Valine VAL

(a) Protein Model on PDB

engineering techniques and residue interactions.

Table 4.1: The 20 Standard Amino Acids and Their Abbreviated Residue Names in
PDB - Source: Adapted from [82]

its original form directly from PDB 3D structure visualization (Figure 4.1a) and in its
PCN representation (Figure 4.1b) where each node is colored according to the origi-
nal residue of the relative Ca atom. Nodes of the PCN were placed in the correct 3D
location for visualization purposes only, the exact same structure appears as in Fig-
ure 4.2 when drawn according to Fruchterman-Reingold force-directed algorithm [36].

This highlights how the performances of the models will depend uniquely on feature

(b) PCN from Ca atoms

Figure 4.1: Representations for Human Serum Albumin (1AO6)
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Figure 4.2: Human Serum Albumin Force-Directed Representation

4.2 Graph Embedding via Simplicial Complexes

Starting from PCNs as described in the previous Section together with the notion of
Simplicial Complexes anticipated in Section 2.1.3 it is possible to conceptualize a graph
embedding technique based on Simplicial Complexes. Simplices of node-labels (i.e.,
amino acid names) can be used to create a symbolic histogram of the protein structure
by counting how many times each simplex appears in the protein. Each graph structure
can be effectively embedded in the Euclidean Space with a multi-set of its simplices.
This process however lacks representation capabilities when applied to out-of-the-box
PCNs which are able to describe only pairwise relationships (PCNs are by definition

simple, unweighted graphs). Considering 20 different amino acids there could be only

(20+2—1

5 ) = 210 possible combinations of length two which would probably harm the

expressive power of the embedding.

In order to circumvent this issue the edges of PCNs were aggregated creating clique
hypergraphs. An hypergraph is a graph generalization in which edges (commonly
known as hyper-edges) can connect an arbitrary number of nodes at the same time, for-
mally an hypergraph can be defined similarly to a graph as H = (V, &) in which V is
a finite set of nodes (same as plain graphs) while &, € V" is a set of hyper-edges which
can connect any number of nodes of V simultaneously. Hypergraphs have been ex-
plored in literature to represent a great variety of complex systems (e.g., co-authorship
networks, metabolic networks, brain functional networks, etc.) due to their flexibility

and expressive power [32,41,52,69,75,101]. A clique hypergraph in particular is an
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hypergraph generated starting from a plain graph in which maximal cliques were sub-
stituted with hyper-edges of the same order [4, 107]: a simple example of this process
would be a triangle in the graph G described by edges {(A4, B), (B, (), (A, C)} which
gets projected in the hypergraph H as a single hyper-edge {(A, B, C)}. The same pro-
cedure is carried out for cliques of all orders. In order to find all maximal cliques to
merge into hyper-edges an iterative version of Bron-Kerbosch algorithm was used [12].

The complete dictionary of possible hyper-edges could in theory be enormous. Con-
sidering maximal cliques of all sizes up to R and treating each as a combination of the
20 amino acids (order irrelevant, repetitions allowed), the number of possible composi-

tions is

S (rF20 -1\ g~ (rH19) _ (R+20 2
;( r )ZZ( 19 ):< 20 )—1=®(R) 4.1)

r=1

where R is the size of the largest maximal clique in the dataset. In practice however
the number of distinct hyper-edges in the dataset is much smaller (~ 16, 000).

The instance matrix X% resulting from such embedding via simplicial complexes
has shape n x |d| where n is the number of proteins in the dataset and d is the dictionary
of distinct simplices in the dataset. Considering ¢(H;, d;) a function that counts how
many times the simplex d; appears in the clique hypergraph H; the instance matrix X

can be defined as

X% = ¢(H;, d;) (4.2)

Given the two-step experimental framework described in Section 2.2.1, two distinct

instance matrices were constructed: (i) X(AS)

including a dictionary d 4 of all simplices
from both enzymatic and non-enzymatic proteins (~ 16, 000 in total) for Task A; and
(i1) XSBS) including a dictionary dp of only simplices coming from enzymatic proteins

(~ 13,000 in total) for Task B.
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4.2.1 INDVAL Scores

The dimensionality of the graph embedding via simplicial complexes presented in the
previous section is far from the worst possible case (Equation (4.1)) however consid-
ering the fact that the datasets involved in the analysis consist of tens of thousands of
distinct proteins it was relevant to investigate whether it was possible to perform some
degree of feature selection while maintaining stable classification performances during
the modelling phase.

In order to carry out this procedure with a model-agnostic rationale the INDVAL
score was considered. The INDVAL score is a sensitivity and specificity integrated
evaluation originally proposed to individuate the most characteristic species of a given
environment [31]. According to the INDVAL criterion, a species s is a good represen-

tative for an environment F if

1. sis present only (or almost only) in environment /2 — proxy for specificity

2. s1is present in all (or almost all) of environments /2 — proxy for sensitivity

The same exact rationale can be used for individuating signature substructures for
a specific type of proteins. In order to adapt the INDVAL scores to the experimen-
tal framework of this thesis it is possible to draw a parallel where each simplex of
node-labels in the aforementioned dictionary d is considered a species and each class is
considered an environment. With this approach it was possible to construct a restricted
version of the embedding presented in section 4.2 where only the sub-structures with
the best INDVAL scores are considered.

Considering j a specific class and ¢ a specific simplex the unified INDVAL score

can be defined starting from the following scores:

# structures in class j having simplex
A= m — , 4.3)
patterns having simplex ¢

# structures in class j having simplex ¢
VA

4.4
# patterns belonging to class j @4)
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where A, ; is a measure of specificity, maximized when simplex ¢ appears only in
class j, and B;; is a measure of sensitivity, maximized when all structures of class j

have the simplex ¢. By combining A; ; and B; ; the final INDVAL score I ; reads as:

‘[’l,j - Al,] * BZJ ° 100 (4.5)

Given the fact that A; ; € [0, 1] and B; ; € [0, 1] it follows that I; ; € [0, 100] with the
following interpretation: an INDVAL Score I; ; of 100 is assigned to the perfect simplex
(i.e., substructure) from a classification point of view. In practical terms, simplex ¢
would appear in all observations of class ;7 and never in observations belonging to any
other class (i.e., it would exactly mimic the class label).

Given a classification task where the symbolic histogram technique was used to
embed the input data it is possible to define its INDVAL matrix I of shape |C| x |d|
where d is the dictionary of all the symbols in the dataset and C' is the set of unique
classes. Each value in I corresponds to the INDVAL score of simplex d; for class C;

After the creation of I it is possible to select sub-structures (features) which had at
least one of their INDVAL scores above a certain user-defined threshold 7. The choice
of 7 is not straightforward and strongly depends on the specific dataset as there is no
guarantee of the existence of the so-called perfect symbol: INDVAL scores could be
upper bounded at a value far lower than 100 in a specific dataset. It is however possible
to pick 7 with a data driven approach thanks to some intuitive heuristics.

Considering the experimental framework of the thesis two distinct INDVAL matri-
ces were defined: I4 with shape |C'4| X |d 4| for Task A and Iz with shape |Cg| X |dp|
for Task B. Figures 4.3 and 4.4 present the number of features included in each dataset
(Task A and B) for every possible 7. It is apparent how there is no perfect symbol in any
of the two datasets, in particular the maximal INDVAL scores were 43.03 and 73.52 in
Task A and Task B respectively. Notably most of the scores are near 0 as highlighted by
the abrupt decrease in number of included features as the threshold increases. The two
vertical lines in the figures represent the two chosen thresholds 74 = 6 and 75 = 10
(for Task A and B respectively). Such thresholds were chosen in order to let the final

INDVAL embedding retain ~ 10% of the original feature set while mostly respecting
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the elbow rule heuristic [94]. This sharp feature selection will put to test the effective-

ness of INDVAL scores in selecting the most relevant sub-structures for classification

problems.
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Figure 4.3: Number of Features at Various Threshold Levels for Task A

The INDVAL feature selection procedure generated two instance matrices: XSNDVAL)

with ~ 1,600 features for Task A and X'YPVAL with ~ 1, 300 features for Task B.
As a final remark both X''PVAL and XIPYAL were obtained by removing features of

X;S) and X%}g) by comparing entries in I 4 and 15 with 74 and 75 respectively.

4.3 (Hyper)Graph Kernels

As anticipated in Section 2.1.4 graph kernels are among the most widely used tech-
niques for machine learning tasks on graph structures [74]. The methods presented in
this section will take as inputs the embedding created by leveraging the clique hyper-
graph expansion of PCNs combined by the notions on simplicial complexes presented in
Section 4.2. The two following (hyper)graph kernel methods are adapted from Martino
& Rizzi (2020) [65] and can be constructed directly starting from X(AS) and Xg).
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Figure 4.4: Number of Features at Various Threshold Levels for Task B

4.3.1 Histogram Cosine Kernel

The Histogram Cosine Kernel (HCK) between any two PCNs can be computed as the
cosine similarity between their respective symbolic histogram representations (rows in
X (9)). Considering x; = Xf) the HCK between any two PCNs 7 and j can be defined
as

<Xi7 Xj>

Kno(xi,x;) = —290 2 [0, 1 46
we(% %) = T el € 01 “.8)

4.3.2 Jaccard Kernel

The Jaccard Kernel (JK) starts from the exact same symbolic histogram as the HCK but
is computed as the ratio between the intersection and the union of the two multisets.
Considering again d as the dictionary of all simplices represented in the histograms and

X; = X' the JK between any two PCNs 7 and j can be defined as

1,
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d
Z min{mik, xjk}
Ky(xi,%;) = 22 € [0,1] (4.7)

Z max{Tx, Tji}
k=1

4.4 Spectral Density

As anticipated in Section 2.1.5 the spectrum of the Normalized Laplacian Matrix L
of a graph (hereinafter referred to as graph spectrum) can be interpreted as a sort of
fingerprint regarding the connectivity properties of the graph itself. The most popular
example of such properties being the multiplicity of the eigenvalue O corresponding
exactly to the number of connected components in the graph.

While the set of eigenvalues of L is highly informative for characterizing global
connectivity, its cardinality equals the number of nodes n in the graph, which prevents
a direct, size-agnostic use across graphs of different orders which is key in supervised
learning pipelines as the one presented in this work.

In order to circumvent this issue it is worth recalling that all eigenvalues of L are
real non-negative numbers and specifically lie in the range [0, 2], for these reasons it is
possible to approximate the spectral density of a graph thanks to kernel density estima-
tion (KDE) [61] with a Gaussian Kernel [76]. In order to do so, L is treated as random

matrix with known spectral density p(z) [47,64] that can be defined as:

_ %Z ( ") (4.8)

— V2ro?
where o represents the bandwidth of the kernel which, in order to scale it automat-
ically with graph-sizes, was decided in accordance with Scott’s rule [88]. Considering
n the number of nodes and ¢ the sample standard deviation (relative to eigenvalues), o

was defined as

A

o= (4.9)

nl/s

To move from the continuous density to a fixed-length feature vector, B = 200 uni-
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formly spaced points in [0, 2] were sampled, producing a spectral embedding s € R
for each PCN. This process yields comparable, size-agnostic descriptors that integrate
seamlessly into the classification pipeline. Figure 4.5 shows the estimated spectral den-
sity for Human Serum Albumin (1AO6); the corresponding embedding is given by the

sequence of KDE evaluations at the 200 grid points.

Density

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Eigenvalue

Figure 4.5: Spectral Density KDE Estimation for Human Serum Albumin (1AO6)

Applying the above KDE-based spectral embedding to each PCN yields two in-

stance matrices, XfPECTRAL) and XgPECTRAL), corresponding to Task A and Task B,
respectively. In both matrices, rows index proteins and columns store the B = 200
evaluations of their spectral density on the uniform grid over [0, 2]. Hence both datasets

have identical feature dimensionality (B = 200).

4.5 Summary of Representation Techniques

In summary, the experimental framework of the thesis relies on three complementary

representations derived from protein contact networks (Section 4.1).
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First, the simplicial complex embedding (Section 4.2) augments PCNs via clique
hypergraphs to capture higher-order, residue-labeled interactions; the resulting sym-
bolic histograms offer direct compatibility with both standard ML algorithms and kernel
methods emphasizing label-aware local structures. The main limitations of said method
are the combinatorial growth of the dictionary (see Equation (4.1)) and its high sparsity.
Two non parametric hypergraph kernel approaches have been explored on the simplicial
complex embedding (Section 4.3) as they allow the convenient insertion of non-linear
similarity metrics among graph structures. As anticipated in Section 2.1.4 kernels do
not produce explicit embeddings of the input data but complete Gram matrices which
encode similarity among input objects. Such matrices need specialized attention during
the modelling phase as they are not suited for the majority of ML models.

Second, INDVAL-based feature selection (Section 4.2.1) retains substructures that
are simultaneously specific to and prevalent within classes, yielding compact dictionar-
ies (i.e., ~ 10% of the original features considering thresholds 74 and 75) with a model-
agnostic rationale. Threshold choice remains however data-dependent and could filter
out individually weak but jointly informative patterns.

Third, the spectral density representation (Section 4.4) maps each PCN to a fixed-
length vector by estimating the Normalized Laplacian eigenvalue density on [0, 2], pro-
viding a size-agnostic summary of global connectivity that is robust to graph size; its
weaknesses include loss of residue labels and local motif identity and potential cospec-
tral graphs.

Taken together, the simplicia/INDVAL path prioritizes labeled, higher-order local
structure with controlled dimensionality, whereas spectral density contributes a com-
pact, global fingerprint; these views are complementary within the supervised frame-
work of Section 2.2.1.

Table 4.2 presents a schematic summary of the dimensions of each embedding

methodology explored.

’Dimensionality varies slightly across splits of the data, refer to Section 4.11
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Dimensionality
Representation Task A Task B
Simplicial Complexes | ~ 16,000% | ~ 13,000°
INDVAL ~ 1,600% | ~1,300%
Spectral Density 200 200

Table 4.2: Dimensionality of Embedding Strategies

4.6 Standard Classifiers

The embedding techniques presented in the previous sections have afterwards been
compared using a variety of well-known ML algorithms for classification. Early ex-
periments explored most of the families of classification models (e.g., linear models,
tree-based models, SVMs, K-NN, logistic regression with splines, etc.). After some
early pruning the choice of optimal candidates for the study was: (i) ¢;-Linear-SVM
for its speed and feature selection capabilities, (ii) Kernel v-SVM for its ability to work
also with pre-computed kernels and great flexibility and (ii1) Random Forest for its all-

around good performances on a great variety of tasks.

4.6.1 /;-Linear-SVM

The ¢;-norm linear SVM model learns a maximum-margin hyperplane by minimiz-
ing the empirical squared hinge loss under regularization [24]. Using an ¢;-penalty on
the weight vector w promotes sparsity and leads to embedded feature selection [106].
The ¢; regularizer drives many coefficients exactly to zero, improving interpretabil-
ity and reducing variance: such properties make ¢;-penalty particularly desirable for
high-dimensional, sparse representations such as symbolic histograms [33]. The opti-
mization problem remains convex and can be handled efficiently: ¢; solutions however
may be less stable under strong feature collinearity than their /,-regularized counter-
parts [108]. ¢;-norm linear SVMs can also handle multiclass classification problems
thanks to the One-vs-Rest (OvR) strategy [98]. Mathematically speaking, ¢;-norm lin-

ear SVM solves the following optimization problem [33]:

n 2
min ||wlj; + C Z(max{(), 11—y wai}> (4.10)

i=1
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where x; represents the feature vector for observation i, y; its associated class label
(encoded as {—1,1}) and C' is the so-called regularization parameter. C' governs the
balance between the two terms of the objective function and is defined as strictly pos-
itive. Its value is inversely related to the strength of the regularization: small values of
C enforce stronger penalization on the coefficients, while larger values of C' reduce the
relative impact of the penalty. Intuitively, as C' increases, the contribution of the empir-
ical squared hinge loss becomes predominant with respect to the /;-norm term, leading
the model to prioritize a closer fit to the training data. In this sense, the parameter C'
effectively controls the trade-off between model complexity and generalization abil-
ity, determining whether the resulting hyperplane adheres more tightly to the training
samples or emphasizes sparsity in the weight vector.

Notably, there is no upper bound for the hyper-parameter C', which can make the

search for the optimal values quite cumbersome depending on the specific dataset.

4.6.2 Kernel v-SVM

v-SVM is a variation of the standard C'-SVM (whose linear version was presented in
the previous section, although with ¢; regularization) first introduced by Scholkopf et
al. (2000) [86]. The parameter v replaces C' as the primary regularizer and provides
interpretable control over model complexity: it is an upper bound on the fraction of
training errors and a lower bound on the fraction of support vectors [20]. By definition,
v e (0,1].

While the linear version of v-SVM can be expressed in primal form (similar to
Equation (4.10)), extending it to non-linear decision boundaries requires kernelization.
Since explicitly mapping data into a high-dimensional feature space ¢(x) is generally
infeasible, the dual ¥-SVM formulation is preferred as it allows the data to appear only
in the form of inner products [44]. Replacing feature vectors with kernel evaluations
K(xi,%x;) = (¢(x:), ¢(x;)) allows the model to operate implicitly in a kernel Hilbert
space H without explicitly computing ¢(x) (see Section 2.1.4). This kernel trick en-
ables efficient non-linear classification while preserving the convexity of the optimiza-

tion problem.
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The dual problem for kernel -SVM is formulated as follows [20]

1T
min 5 Qo

st. 0<a; <7, i=1,...,1,
4.11)

where Q;; = yiy; K (x4, xj), e is the vector of all ones, [ denotes the number of
training samples, and «; are the Lagrange multipliers associated with the constraints.
The corresponding decision function for a new input x is expressed in terms of the

support vectors:

!
f(x) = sign <Z Y K (%, %) + b> . (4.12)
i=1

It is important to note that not all values of v € (0, 1] are viable for every classifi-
cation problem, Chang & Lin (2001) [19] demonstrated that Equation (4.11) is feasible
only if

2mi ;=1 ;= —1
v S mln(#y’t Z 7#3/1 ) S 1 (4.13)

This phenomenon restricts heavily the possible values for v especially in highly
imbalanced classification scenarios

In summary, Kernel v-SVM generalizes the linear case to non-linear feature spaces
while retaining the interpretability of the v parameter. Its bounded range often simplifies
hyperparameter tuning compared to C-SVM, although the practical choice of v remains
dataset- and kernel-dependent. As with other SVM variants, multiclass classification

can be addressed through the OvR strategy [98].

4.6.3 Random Forest

Random Forest (RF) is an ensemble method introduced by Breiman (2001) [11] that
extends decision trees through randomized bagging and feature subspacing to reduce

variance and improve generalization. Each tree is trained on a bootstrap sample of
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the training set (sampling n instances with replacement) and, at every internal node,
the split is chosen by maximizing the impurity decrease considering a random subset
of features of size myy [11]. This dual source of randomness (resampling rows and
subspacing columns) decorrelates individual trees, so that their aggregation via majority
vote (for classification tasks) generates a relatively low-variance estimator. Formally,

for a forest with B trees {h;}£_,, the RF classifier predicts

j(x) = mode{ hy(z) };4, (4.14)

and class-posterior estimates are obtained by averaging per-tree posteriors:

PY =c|z)= Y =c|x). (4.15)

IIMCU

Individual trees are typically grown to near purity without pruning using impurity
criteria such as the Gini index [37] or Entropy [90].

RF models are naturally able to compute the importance of each input feature quan-
tified in mean decrease in impurity (MDI). In practice RFs are robust to high-dimensional
and mixed-type inputs, require few hyper-parameters, and accommodate class imbal-
ance via class weights or stratified sampling. These properties make RF a natural base-
line for both the symbolic-histogram and the spectral-density embeddings employed in

this work [58,92].

4.7 Summary of Standard Classification Algorithms

Each of the classification algorithms presented in the previous section was used on all
of the embedding methods described in Sections 4.2, 4.2.1 and 4.4. In order to explore
the representation capabilities of the kernel methods described in Section 4.3 only the
v-SVM model was explored as it naturally supports pre-computed kernels thanks to the
dual formulation of the SVM problem presented in Equation (4.11). Table 4.3 presents
a synthetic summary of which classification model was used in combination with each

representation strategy.
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(;-SVM  v-SVM  RF
Simplicial Complexes Embedding v v v
INDVAL Embedding v v v
Spectral Density Embedding v v v
Histogram Cosine Kernel X v X
Weighted Jaccard Kernel b 4 v X

Table 4.3: Summary of Representation Methods and Related Classification Algorithms
4.8 GNNs

As anticipated in Section 2.1.6 GNN architectures have been demonstrated to be ex-
tremely capable for graph classification often reaching state-of-the-art results. Despite
GNN s often respecting the conceptual topology of Figure 2.1 there exist a plethora of
different MP strategies and a virtually infinite number of different architectures to test,
many of which would have prohibitive training times. In order to accommodate for the
limited computing power available and to prevent known issues related to MP such as
over-smoothing (i.e., most node collapsing to near-identical representations after nu-
merous MP steps [83]), the tested GNN architectures were limited to relatively shallow
structures. Specifically all of the tested topologies had at most 5 MP steps, 5 classi-
fication head layers and latent dimensions (for each node representation) of at most
256.

GNN s take as input PCN structures directly without the need for further processing
or explicit embeddings. Recall that in this specific applicative case each node has one
categorical feature (i.e., its amino acid name), such label was represented either via
One-Hot-Encoding (OHE) with a binary vector in {0, 1}?! (20 dimensions for standard
amino acids plus 1 for possibly unknown ones) or via dense learnable embeddings with
a maximum of 128 elements.

After the initial data input and node features embedding graph nodes pass through
MP layers. In terms of MP strategies the exploration revolved around some of the most
relevant MP paradigms in literature included in the PyTorch Geometric (PyG) python

package [34]:

1. Graph Convolution: first presented in Morris et al. (2019) [71] it implements

a first-order, Weisfeiler—Leman—style message passing in which each node up-
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dates its representation by combining a transformation of its own features with
an aggregated transformation of its neighbors. For a node ¢ with features x; and

(optional) scalar edge weights ¢, ;, the layer computes

X; = Wix; + Wy > e, (4.16)

FEN(3)
where W, W, are learnable weight matrices and the neighborhood aggrega-
tion is permutation-invariant (e.g., sum/mean/max with sum being the common
choice). This operator respects graph isomorphism symmetries and in theory
matches the expressive power of the 1-WL test that characterizes many GNN

architectures.

. Sage Convolution: first presented in Hamilton et al. (2017) [42] it performs
inductive message passing by combining a node’s own representation with a
permutation-invariant aggregation of its neighbors. For a node 7 with features
x; it computes

x; = Wix; + Wy meanjen()X; (4.17)

where W, W, are learnable weights and the neighborhood aggregation is typi-

cally the mean. Optionally, an input projection can be applied before aggregation.

. GCN Convolution: first presented in Kipf et al. (2016) [54] it implements a
renormalized, symmetrically normalized neighborhood aggregation. Using an
adjacency matrix with self-loops A=A+Tand degree matrix D with D;; =

Zj flij, the layer computes

~

N
N

X' =D 2AD IXW (4.18)
equivalently, at node level,
! T 1
x;=W"' >y —— x; (4.19)
JEN ()U{i} i @

where W is learnable and d;, dj correspond to D;; and ﬁjj respectively. This
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propagation enforces permutation invariance and stabilizes training via degree

normalization.

. GIN Convolution: first presented by Xu et al. (2019) [104] it realizes an ex-
pressive permutation-invariant aggregation by summing neighbor features with a
scaled self-feature and then applying a multi-layer perceptron. The scaling coef-
ficient € can be fixed or learned, controlling the relative contribution of the central

node. The canonical update is

X,=he|(l+e)x+ > x|, (4.20)
JEN(3)

where hg denotes an MLP. This sum-based design matches the discriminative

power of the 1-WL test under suitable conditions.

. GAT Convolution: first presented by Velickovi¢ et al. (2017) [99] it imple-
ments data-dependent, permutation-invariant message passing by learning atten-
tion weights over edges. For each attention head £ = 1, ..., K, attention logits

are computed as

eg?) = LeakyReLU(a(k)T[W(k)XiHW(’“)X]-]) (4.21)

normalized across the incoming neighborhood A of i,

a0 = softmax;en(ufiy (eg.c)) (4.22)

and used to aggregate neighbor features,

2 = Y ol Whx, (4.23)
JEN()U(i}

The layer output is obtained by combining the K heads either by concatenation
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or averaging,

K .
H b1 ng) (concatenation)

X, = (4.24)
Lyw, 2" (average)

optionally with dropout on features and attention coefficients. The PyG imple-

mentation follows this formulation and typically includes self-loops in the graphs

so that the central node performs self-attention during MP.

Notably each GNN topology exploits only one of the aforementioned strategies at
a time with no change in the dimensions of node representations after any MP layer
besides the first which projects node representations up to the chosen hidden dimensions
of the network.

After MP the next important step of a GNN for graph classification is graph pooling
which aggregates the node representations into a single vector corresponding to a graph
latent representation.

In the context of this work pooling was carried out either via permutation invariant
aggregations (max/mean/sum) or via Attentional Aggregation. Attentional Aggregation
is a pooling method presented by Li et al. (2019) [57] which performs soft attention over
nodes, computing a convex combination of transformed features with data-dependent
weights. Given elements {xn}fj;l belonging to group ¢, the aggregation is

N;

r, = 3 softmax(hyue(X,)) - ho(Xy) (4.25)
n=1
where hgae : R — R (F being the dimensionality of the node representations)
produces un-normalized attention scores that are then normalized across the elements
in group ¢, and hg is a learnable transformation (typically a MLP) applied to each
element before weighting. The softmax ensures permutation invariance and normalizes
the sum to one within each group. In this particular application the entirety of the nodes
in the graph was considered a single group to be aggregated
The last step after pooling is the actual classification step carried out thanks to a
typical MLP structure.

Table 4.4 shows a summary of the all of the parameters that were used to define
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candidate GNN structures, notably parameters presenting a | after their name are con-
ditional parameters that were defined only if other parameters presented specific values
(e.g., # GAT Heads was defined only for topologies using GAT Convolution). The pre-
sented topologies were explored efficiently thanks to the bayesian optimization strategy

presented in Section 4.10.

Parameter Name Type | Values Notes
Data Embedding Type Cat | OHE, Type of Embedding for
dense Amino Acids
Embedding Dimensions T | Int [8, 128] Size of Dense Embeddings
Activation Type Cat | ReLU, Non Linear Activation Func-
LeakyReLU]| tion for the GNN
Negative Slope | Float | [0.01, 0.3] | Slope for Negative Inputs in
LeakyReLLU
MP Strategy Cat | Graph,
Sage,
GCN, GIN,
GAT
# MP Layers Int [1,5] Upper Bound Reduced to 3
for GAT MP 2
Normalization Type Cat | Graph, Type of Normalization in MP
GraphSize, | Layers
Batch,
Layer,
None
Hidden Dimensions Int [64, 256] Upper Bound Reduced to 128
for GAT MP ?
Pooling Type Cat | Mean, Type of Graph Pooling
Sum, Max,
Attention
After Pooling Norm. Cat | Batch, Normalization Used After
Layer, Pooling
None
# MLP Layers Int [0, 5]
MLP Dropout float | [0, 0.5] Dropout for the Classification
Head
# GAT Heads { Int {2, 4,8} Defined only for GAT MP
# GIN MLP Layers Int [1,3] Defined only for GIN MP

Table 4.4: Summary of Parameters for Candidate GNN Topologies

2Upper-bounds for parameters were modified to handle computational needs of GAT Convolution
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4.9 Performance Metrics

A core aspect of any ML application are performance metrics which are essential to un-
derstand the real capabilities of a specific model and consequently to compare different
approaches.

Considering the fact that the experimental framework of this work is based on clas-
sification tasks the most complete and informative performance metric is by definition

the confusion matrix (CM). The CM of a binary classifier can be defined as in Table 4.5

Pred. Positive | Pred. Negative
Actual Positive TP FN
Actual Negative FP TN

Table 4.5: Binary Confusion Matrix

whose entries are:
TP: Observations correctly predicted as positive cases (True Positives)
FN: Positive cases incorrectly predicted as negative (False Negatives)
FP: Negative cases incorrectly predicted as positive (False Positives)
TN: Observations correctly predicted as negative cases (True Negatives)

In a multiclass setting the CM can be easily generalized by creating a matrix with
dimensions equal to the number of distinct classes in which the diagonal presents cor-
rectly classified observations and other values represent misclassified observations. The
most relevant limit of the CM is that it is difficult to numerically evaluate a model from
its CM directly.

Starting from the entries of a CM it is possible to define most of the standard per-

formance metrics used for classification tasks, the most relevant ones being:

Accuracy: defined as % € [0, 1]. It represents the fraction of observations cor-

rectly classified by the model

Precision: defined as % € [0, 1]. It represents the fraction of actually positive instances

among the predicted positive instances. (Also known as Positive Predictive Value)
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Recall: defined as € [0,1]. It represents the fraction of actually positive values

TP+FN

correctly predicted by the model. (Also known as Sensitivity)

F1-Score: defined as 2 2rciionrecall 1) 11 Tt is the harmonic mean of precision and recall
precision+recall ’
and is often capable of conveying more information about model performance

despite being harder to interpret.

Bal. Accuracy: considering C' the number of classes in the dataset Balanced Accuracy is defined

as & Ly, TP +FN € [0,1]. Tt represents the macro average of Recall across
all classes in the dataset. It avoids inflated performances in the case of imbal-
anced datasets which makes it often preferable to standard Accuracy. Balanced

Accuracy can be adjusted for chance and is reformulated as

¢ L TP7+FN —Ceq/1-0),1 (4.26)
1-5

The presented performance measures can be easily extended to multiclass scenarios

by averaging their binary version over all available classes. Adjusted Balanced Ac-
curacy (ABA), specifically the formulation of Equation (4.26), is naturally suited for
multiclass scenarios and also avoids performance inflation on imbalanced datasets. For
these reasons it was used as main performance metric throughout this work, specifically
validation ABA was used as objective function value for the selection of the best set of

hyper-parameters for all tested models (more details in Section 4.10).

4.10 Hyperparameter Optimization Strategy

Hyper-parameter selection in this work was formalized as the global optimization (min-
imization was used for presentation purposes in this section) of a black-box objective
f & — R over a mixed (continuous, integer, categorical) search space X'. The optimal

set of parameters z* can be defined as:

x* € argmin f(z) (4.27)

reX
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where each evaluation of f corresponds to training and validating a model under a
specific hyper-parameter configuration. The adopted approach belongs to the Bayesian
Optimization (BO) paradigm, a class of sequential design strategies that fit a probabilis-
tic surrogate M to the history D,, = {(x;, y;) }i-; (with y; = f(z;)) and select the next
candidate by maximizing an acquisition function o(x;D,, M) balancing exploration
and exploitation [89]. Classical BO instantiates M as a Gaussian Process (GP) and
often uses the Expected Improvement (EI) acquisition [51]. Under a GP posterior with
mean p(z), standard deviation o(z) and letting y* = min;<, y; (in the minimization

case), EI takes the form

El(z) = (y" — ()@ (2(2)) + o(x)¢ (2(x)) (4.28)

y*—p(x)
o(z)

(CDF) and ¢ the related Probability Density Function (PDF) [91]. Intuitively standard

where z(z) = , ® is the standard normal Cumulative Distribution Function
BO tries to model p(y|x) from the history of past trials.

In this work BO was implemented via multivariate Tree-Structured Parzen Estima-
tors (TPE): a sequential model-based optimizer that replaces the usual p(y|z) mod-
elling with a more convenient density estimation of p(x|y), yielding a sampling rule
closely related to EI while being naturally compatible with mixed and conditional
search spaces [1, 6]. Its multivariate variant further models joint dependencies among
hyper-parameters, improving search efficiency when strong interactions are present

[46].

4.10.1 TPE and Bayesian Optimization

Standard BO selects x,,,1 by maximizing EI using an explicit surrogate of p(y|x) (e.g.
the GP) [89]. TPE inverts this perspective and directly models the conditional densities
of configurations given performance. Fix a quantile level v € (0, 1) and the correspond-
ing performance threshold y* such that P(y < y*) = ~. Partition the observations into

the good and bad sets as follows:
Dgood — {CBl Sy, < y*}’ Dbad — {sz Ly > y*}
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TPE then builds two kernel density estimates (KDEs),

) |
l(z) =plxly<y") = [Deood | Z Kp(z — ), (4.29)
IiEDgOOd
. 1
g(x) =plx|y >y") = W _;m Kip(x — x;), (4.30)

with kernels K, (-) adapted to each parameter type (Gaussian for continuous, Aitchi-
son—Aitken or categorical histograms for discrete) [6]. Using Bayes’ rule, the EI objec-
tive:

*

El(z) = /y (v —y)p(y | z)dy (4.31)

—00

can be rewritten (details in [6]) as:

El(z) (7 +(1—7) —) h (4.32)

Maximizing Equation (4.32) is equivalent to minimizing g(z)/¢(z). Consequently,
TPE proposes candidates by sampling from ¢(z) and selecting those with the smallest
ratio g(x)/{(z).

An advantage of TPE is its compatibility with tree-structured search spaces, where
some hyper-parameters are active only when certain categorical choices are made (as
in Table 4.4). The densities in Equations (4.29) and (4.30) are built along the active
branches, avoiding the need to impute values for inactive variables.

The original TPE assumes independence across dimensions by factorizing the KDE
as a product of univariate kernels, this can underperform when the hyper-parameters
exhibit strong interactions among each other. The multivariate TPE variant replaces the

factorized model with a joint KDE over the active subspace of parameters described as:
() = =Y Kulw—x),  Kylu)=|H|"?K(H " u) (4.33)
n

(and analogously for g(z)), where H is a bandwidth (covariance) matrix and K a mul-
tivariate base kernel. Joint KDEs capture cross-parameter correlations directly, improv-

ing the fidelity of the ratio in (4.32) and thus the quality of the acquisition.
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In summary the optimization pipeline of this work consisted of a TPE-based BO
loop (as in Eqgs. 4.31-4.32) exploiting a multivariate TPE process implemented in the
Optuna Python package [1]. This choice provides (i) intelligent exploration of the
possibly very large parameter spaces limiting the number of necessary trials, (i1) native
support for mixed and conditional hyper-parameters and (iii) improved performances in

the presence of hyperparameter interactions thanks to joint KDE modelling.

4.11 Data Resampling and Splitting Strategy

In both experimental settings—Task A (enzyme vs. non-enzyme) and Task B (first-level
EC-class classification)—the corresponding dataset was partitioned into five, mutually
exclusive, stratified folds to preserve label proportions within each split. A five-run
protocol was then executed per task and per model. In each run, a different fold acted
as the hold-out test set, one of the remaining four folds served as the validation set
for hyperparameter selection and the remaining three folds constituted the training set.
Consequently, each instance in the dataset appeared exactly once in the test set and up to
four times in the union of training and validation sets, yielding a nominal 60%/20%/20%
train/validation/test partition per run.

Hyperparameter optimization, as described in Section 4.10, was performed inde-
pendently for every run using only the training folds and the corresponding validation
fold of each run. The selected configuration was then assessed on the run’s test fold,
which remained untouched during model selection. This design eliminates information
leakage from test data into model tuning and ensures that performance estimates reflect
true generalization.

The same five fold indices were fixed across all representation strategies and learn-
ing algorithms to enable paired, like-for-like comparisons. The procedure provides five
independent test scores per model and per task; considering the mean and standard
deviation over these scores offers a more robust and variance-aware summary of per-
formance than a single split, while allowing a fair evaluation of both the representation
strategies and the models at the best of their capabilities.

Note that in the case of the representation strategies involving simplicial complexes,
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a distinct dictionary of simplices d was generated for each data split. The dictionary was
defined as the union of simplices appearing in the training and validation folds and the
resulting symbolic histograms were calculated according to such dictionary also for the

test fold.
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Chapter 5

Results

This section reports the performances of the tested methods together with the main
outcomes of the analysis. The two experimental tasks, Task A and Task B, are presented
separately in Sections 5.1 and 5.2, respectively.

All tables in this section will present performance metrics averaged over the 5 dis-

tinct data splits (see Section 4.11) in the form avg * std unless differently specified.

5.1 Task A

Recall that Task A consists of a binary classification problem aimed at distinguish-
ing enzymatic from non-enzymatic proteins. The dataset for this task includes the en-
tirety of the curated human proteome, comprising 48,019 protein structures divided into

26,312 non-enzymatic and 21,707 enzymatic ones.

5.1.1 Spectral Density Embedding

Table 5.1 shows the performances for all models working with the spectral density em-
bedding of PCNs in Task A. The RF model has the best training performances however
it exhibits serious overfitting making v-SVM the best performer in both Validation and
Testing.

The /1-Lin-SVM classifier exhibits substantially weaker performance compared to

the other models. This behavior can be largely attributed to the characteristics of the
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Model Metric Train Validation Test
ABA | 0.942 +£0.021 0.749 £0.004 0.745 £ 0.006
v-SVM ACC 0970 £0.010 0.876 £0.002 0.874 £0.003
F1 0.967 £0.011 0.863 £0.002 0.861 +0.003
ABA | 0.356+£0.005 0.351+0.010 0.356 +0.009
(1-Lin-SVM | ACC 0.678 £0.003 0.675 £0.005 0.677 £0.004
F1 0.658 £0.003 0.655+0.004 0.657 +£0.004
ABA | 0.975+0.008 0.715+0.007 0.721 +0.009
RF ACC 0.986 £0.004 0.857 £0.004 0.859 +0.004
F1 0.985+£0.005 0.845+0.003 0.848 +0.005

Table 5.1: Performances on Spectral Embedding for all Models - Task A

spectral density embedding. Since all graph spectra are supported in the range [0, 2],
the KDE procedure samples exactly the same 200 evaluation points for every protein.
This design ensures comparability across spectra but also introduces strong limitations.
A prime example would be the Gaussian kernel smoothing enforcing continuity so, as
a consequence, most estimated densities share very similar global shapes.

Under these conditions, KDE evaluations at two close points z1, s € [0,2] will
yield nearly identical values. Hence, adjacent columns of the instance matrix are ex-
pected to be highly linearly correlated. Figure 5.1 confirms this phenomenon by show-
ing the correlation structure of Xf’PECTRAL): not only consecutive columns, but also
columns near the spectral boundaries display high pairwise correlation.

Because ¢;-Lin-SVM is by definition a linear classifier, the presence of strong linear
collinearity in the input features degrades its ability to identify sparse and discrimina-

tive subsets of variables. This explains the markedly inferior performance observed in

comparison to the non-linear v-SVM and the tree-based RF model.

5.1.2 Simplicial Complexes Embedding

Table 5.2 highlights the performances for all models working with the Simplicial Com-
plexes symbolic histogram embedding of PCNs in Task A. v-SVM appears again as the
most powerful model among the tested ones however in this setting all classifiers per-
form quite similarly with »-SVM taking the lead by a very small margin. ¢;-Lin-SVM

works especially well in this setting with a very large number of features as its implicit
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Figure 5.1: Pearson Correlation of Spectral Features - Task A

feature selection allows for the sparsification of the solution shortening running times
and making predictions less noisy. Despite being a purely linear model ¢;-Lin-SVM
performs only 0.7% worse than »-SVM and takes a fraction of the training time while

simultaneously ignoring on average 78% of the input features in the process.

Model Metric Train Validation Test
ABA | 0.982 +£0.006 0.875+0.004 0.874 +0.003
v-SVM ACC | 0.991 £0.003 0.938+0.002 0.937 +0.002
F1 0.991 £0.003 0.932 +0.002 0.931 +0.002
ABA | 0.959+0.008 0.869 +0.002 0.868 +0.002
¢1-Lin-SVM | ACC | 0.980 +0.004 0.935+0.001 0.934 +0.001
F1 0.978 £0.004 0.928 +0.001 0.928 +£0.001
ABA | 0.954 +0.008 0.877+0.005 0.873 +0.006
RF ACC | 0.978 £0.004 0.942+0.002 0.940 +0.003
F1 0.976 £0.004 0.934 +0.003 0.931 +£0.003
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Table 5.2: Performances on Simplicial Complexes Embedding for all Models - Task A

As discussed in Section 4.6, RF models are inherently able to evaluate the impor-
tance of input features with the MDI method. ¢;-Lin-SVM, on the other hand, are
capable of deleting the least relevant features from the input data. These capabilities,
combined with the fact that each feature in the simplicial complexes embedding rep-

resents the number of times a specific local sub-structure appears in a PCN, make it




possible to analyze which sub-structures are more relevant when trying to separate En-
zymatic and Non-Enzymatic proteins.

Figure 5.2 presents the top 10 most relevant features according to RF models. RF
feature importance scores were averaged across all 5 runs and normalized to 1. Figure
5.3 shows a similar plot on the hyperplane coefficients coming from ¢;-Lin-SVM: only
features which were never removed in any of the five splits were considered, the abso-
lute value of their coefficients was afterwards averaged and normalized to 1. With this
approach it is possible to get a plot similar to Figure 5.2 giving insights on the relevance
of features for the ¢;-Lin-SVM model.

It is interesting to note how, despite RF and /;-Lin-SVM being two very different
models with nothing in common among their formulations, the same simplex ASP-
ASP-HIS appears among the most relevant ones for both the models. The independent
identification of said sub-structure by both classifiers suggests that this configuration

might reflect a biologically meaningful structural or functional signature.
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Figure 5.2: Top 10 Most Relevant Simplices According to RF MDI on Simplicial Com-
plexes Embedding - Task A
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Figure 5.3: Top 10 Most Relevant Simplices According to ¢;-Lin-SVM Coefficients on
Simplicial Complexes Embedding - Task A

5.1.3 INDVAL Embedding

Table 5.3 shows the performances for all models when paired with the INDVAL embed-
ding in Task A. In this setting the RF model is the best performer with a test ABA 1.7%
higher on average compared to ¥-SVM. ¢;-Lin-SVM underperforms slightly compared
to the other methods, this is probably due to the feature vector being much smaller
(~ 10% of the Simplicial Complexes Embedding) and already pre-filtered according
to the INDVAL Score. The conditions combined with ¢;-Lin-SVM algorithm pushing
coefficients to zero in this context was probably sub-optimal and resulted in the removal
of potentially relevant variables.

Since features in the INDVAL Embedding are a filtered sample of features in the
Simplicial Complexes embedding it is possible to conduct the same exact procedure as
in the previous section when it comes to feature importance scores.

Figures 5.4 and 5.5 present the top 10 most relevant features for both RF and ¢, -Lin-

SVM. In this case there are no common simplices among the two models however it is
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Model Metric Train Validation Test
ABA | 0.986 £0.003 0.875+0.004 0.871 +0.002
v-SVM ACC 0.993 £0.002 0.937 £0.002 0.935 £0.001
F1 0.992 £0.002 0.931 £0.002 0.929 +0.001
ABA | 0.850+£0.006 0.806+0.002 0.803 +0.005
(1-Lin-SVM | ACC 0.925 £0.003 0.904 £0.001 0.902 +0.002
F1 0918 £0.003 0.894 +0.001 0.892 +0.003
ABA | 0.979 £0.006 0.889 +0.004 0.886 % 0.003
RF ACC 0.990 £0.003 0.947 £0.002 0.945 +0.002
F1 0.989 £0.003 0.940 £0.002 0.938 +0.002

Table 5.3: Performances on INDVAL Embedding for all Models - Task A

interesting how the most important sub-structure according to RF is always ASP-ASP-
HIS even after INDVAL feature selection. This phenomenon shows how such 3-simplex
is relevant both in terms of INDVAL Score (as it surpasses the imposed threshold) and

from a discriminative point of view (as it is consistently relevant across models)
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Figure 5.4: Top 10 Most Relevant Simplices According to RF MDI on INDVAL Em-
bedding - Task A
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5.1.4 (Hyper)Graph Kernels

Table 5.4 shows v-SVM performances on both explored kernel methods in Task A. No
other classification model was tested for kernel representations as v-SVM was the only
one that supported pre-computed kernels as inputs (see Section 4.6.2). Both kernels

perform remarkably well, the JK especially exhibits the best results reaching ABA of

0.900 on the test set.
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Model | Kernel | Metric Train Validation Test
ABA | 0.954 +£0.007 0.882+0.003 0.879 +0.003
HCK | ACC | 0977 +0.003 0.941 +£0.002 0.939 +0.002
L SVM F1 0.975+£0.004 0.935+0.002 0.933 +0.002
ABA | 0.994 £0.005 0.902 +0.003 0.900 +0.002
JK ACC | 0.997 £0.003 0.952+0.002 0.951 +0.001
F1 0.996 +0.003 0.946 +0.002 0.945 +0.001

The kernel-based approaches confirm the effectiveness of non-linear similarity mea-

Table 5.4: Performances on Kernel Methods — Task A
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sures between symbolic histograms. In particular, the Jaccard Kernel consistently out-
performed the Histogram Cosine Kernel across validation and test sets suggesting that
Jaccard-style similarity is better suited for PCN-based simplicial histograms. It is im-
portant to acknowledge that, compared to explicit embeddings, the computational lim-
itations of kernel methods are relevant. For example the construction of full Gram
matrices scales quadratically with the number of proteins and their interpretability is
reduced compared to explicit embeddings where feature importances can be directly

inspected.

5.1.5 Binary GNN

Table 5.5 presents GNN performances for Task A. A different GNN topology has been
optimized for each split of the dataset considering hyper-parameter candidates pre-
sented in Table 4.4. From these 5 separate optimization some clear trends have emerged
in the optimal structures. 80% of the optimal topologies leveraged one-hot encoding for
node labels and graph convolution for MP while all of them leveraged max pooling and
batch normalization in MP layer. None of the optimal models leverages after pooling
normalization and MLP heads have at most 3 layers. The hidden dimensions were close
to the upper bound of the relative search space, 60% of the topologies selected 224 as

optimal values while the others selected 192.

Model | Metric Train Validation Test

ABA | 0.963 +0.004 0.902+0.005 0.898 +0.005
GNN | ACC 0.981 £0.002 0.951 £0.002 0.949 +0.003
F1 0.979 £0.002 0.946 £0.002 0.944 +0.003

Table 5.5: GNN Architecture Performances - Task A

5.1.6 Summary of Task A

Table 5.6 synthesizes the comparative results for the binary enzyme vs. non-enzyme
classification task and three main conclusions emerge. First, spectral density embed-

dings under-perform across models (most markedly for ¢;-Lin-SVM) due to the strong
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collinearity induced by KDE sampling similar distributions on a fixed grid, which un-
dermines sparse linear discrimination. Second, representations based on symbolic his-
tograms of simplicial complexes, with or without INDVAL selection, are consistently
strong and stable across models: RF and »-SVM achieve competitive performance, and
the linear ¢;-Lin-SVM becomes viable in this high-dimensional, sparse regime thanks
to its embedded feature selection. Third, non-linear similarity functions on the sym-
bolic histograms yield the highest accuracies among all pipelines: the JK attains the top
average test performance (testing ABA of 0.900), slightly surpassing the HCK, albeit at
the cost of quadratic Gram-matrix construction and reduced interpretability compared
to explicit embeddings.

End-to-end deep learning on raw PCNs via GNNs performs almost on par with the
best kernel approach (testing ABA of 0.898), offering a compelling alternative that for-
goes handcrafted features while preserving competitive generalization. Overall, Task
A can be addressed effectively by both classical ML and DL approaches. When bal-
ancing accuracy and interpretability, simplicial-complex embeddings combined with
tree-based or margin-based classifiers offer an excellent trade-off; when maximizing
absolute accuracy with fixed training sizes, the JK is marginally superior while when
prioritizing end-to-end learning and feature minimalism, GNNs provide a scalable so-

lution with comparable performances.

Representation Strategy v-SVM (1-Lin-SVM RF GNN
Spectral Density 0.745 £ 0.006 | 0.356 +£0.009 | 0.721 + 0.009 -
Simplicial Complexes | 0.874 +0.003 | 0.868 + 0.002 | 0.873 £ 0.006 -
INDVAL 0.871 £0.002 | 0.803 +0.005 | 0.886 +0.003 -
Histogram Kernel 0.879 £ 0.003 - - -
Jaccard Kernel 0.900 = 0.002 - - -

Raw PCNs - - - 0.898 + 0.005

Table 5.6: Test Set ABA for all Models and Representation Strategies - Task A

Table 5.7 presents the test set confusion matrix of the z-SVM model on JK as a final

intuitive visualization of the maximal performances attained in Task A
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Predicted
Non-Enzyme Enzyme
5046 216
246 4095

Non-Enzyme

True Enzyme

Table 5.7: Best Performer Confusion Matrix - Task A

5.2 Task B

Task B consists of a multiclass classification problem focused on assigning the correct
first-level EC number to enzymatic proteins. The dataset for this task includes 21,679
enzymatic protein structures (after filtering out Translocases due to their scarcity), each

annotated with a single first-level EC class.

5.2.1 Spectral Density Embedding

Table 5.8 presents the multiclass performances for all models combined with Spectral
Embedding in Task B. Compared to the Task A scenario the ¥-SVM model evidently
outperforms the other two candidates and confirms itself as the best model for enzyme

classification based on spectral density also in a multiclass setting.

Model Metric Train Validation Test
ABA | 0.992+0.015 0.747+0.012 0.733 +£0.012
v-SVM ACC | 0998 +0.003 0.862+0.004 0.859 +0.003
F1 0.998 +0.003 0.861 £0.004 0.858 +0.004
ABA | 0426 +0.003 0.433+0.012 0.423 +0.009
f1-Lin-SVM | ACC | 0.570+0.004 0.572+0.009 0.567 +0.004
F1 0.566 £0.004 0.567 £0.009 0.563 +£0.004
ABA | 0.955+0.018 0.701 £0.011 0.686 = 0.005
RF ACC | 0.931 £0.026 0.814+0.011 0.809 +0.015
F1 0.932+0.026 0.816 +0.010 0.811+0.014

Table 5.8: Performances on Spectral Embedding for all Models — Task B

The /,-Lin-SVM model performances are stained by high linear correlation in the

input dataset also in the multiclass scenario, Figure 5.6 shows the Pearson correla-

SPECTRAL)

tion matrix for dataset XSB which is extremely similar to the correlation ma-

trix presented in Figure 5.1 for XfPECTRAL). This phenomenon is to be expected as
XSBSPECTRAL) is effectively a filtered version of XfPECTRAL) where rows regarding
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Non-Enzymatic proteins and Translocases were removed.

50

100

Spectral Features

150 -0.5

0 50 100 150 200
Spectral Features

Figure 5.6: Pearson Correlation of Spectral Features - Task B

5.2.2 Simplicial Complexes Embedding

Table 5.9 shows the performances of all models working with the simplicial complexes
embedding in Task B. Such results highlight the effectiveness of linear models in high-
dimensional and sparse feature spaces. Despite its simplicity, the ¢;-Lin-SVM consis-
tently emerges as the best performing classifier, surpassing both non-linear approaches
such as ¥-SVM and more flexible ensemble methods like Random Forests. This out-
come shows off how the implicit feature selection mechanism induced by the ¢; regular-
ization is highly effective when dealing with symbolic histograms derived from clique
hypergraphs. By enforcing sparsity in the weight vector, the model discards a large
fraction of non-informative simplices while retaining the most discriminative substruc-
tures, which translates into superior generalization capabilities. The number of sim-
plices deemed as irrelevant by ¢;-Lin-SVM averages to ~ 10, 600 out of the ~ 13,000
in the dataset which means that approximately 81% of the features were ignored for
classification purposes.

From a feature importance perspective, the same methodology adopted for Task A
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Model Metric Train Validation Test
ABA | 0.998 £0.002 0.876 +£0.011 0.864 +0.009
v-SVM ACC 0.999 £0.000 0.954 £0.002 0.949 £ 0.003
F1 0.999 £ 0.000 0.954 £0.002 0.948 +0.003
ABA | 0.995+0.003 0.905+0.012 0.902+0.013
(1-Lin-SVM | ACC 0.992 £0.004 0.956 £0.006 0.953 +£0.006
F1 0.992 £0.004 0.956 £0.005 0.954 +0.006
ABA | 0.992+0.006 0.891+0.009 0.882+0.009
RF ACC 0.989 +£0.007 0.950 £0.006 0.946 +0.005
F1 0.990 +£0.006 0.950 +£0.006 0.946 +0.005

Table 5.9: Performances on Simplicial Complexes Embedding for all Models — Task B

can be applied also for Task B to identify the most relevant substructures within the
simplicial complexes embedding. Figure 5.7 presents the 10 most relevant simplices in
the dataset according to the RF model, it is interesting to see how the 3-simplex ASP-
ASP-HIS consistently emerges as the most influential feature across both classification
scenarios, reinforcing its role as a potentially critical structural motif for enzymatic
function recognition. In addition the identification of common motifs in both binary and
multiclass settings underlines the interpretability advantage of representation strategies
directly based on structural patterns.

When it comes to ¢1-Lin-SVM the feature importance analysis for a multiclass sce-
nario becomes less intuitive: in accordance with the OvR strategy a different classifier
is built for each class in the dataset and each of the classifiers is a completely indepen-
dent model. At inference time all the models make their predictions and the one having
the strongest prediction is the one effectively assigning the label.

Figure 5.8 shows feature importance plots similar to Figure 5.3 for each of the 6
distinct EC Classes in the dataset for Task B. These per-class coefficients must be inter-
preted within the OVR setting: each panel reflects a classifier trained against all remain-
ing classes, hence coefficients encode class-specific discriminants and are not directly
comparable across classes nor to RF MDI scores. In practice, the ¢; penalty enforces
marked sparsity and the vast majority of simplices receive zero weight so only a small
class-relevant subset carries discriminative power. The patterns highlighted by ¢;-Lin-
SVM complement those highlighted by RF indicating both shared and class-dependent

structural signals captured by models with different classification strategies. Since each
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Figure 5.7: Top 10 Most Relevant Simplices According to RF MDI on Simplicial Com-
plexes Embedding - Task B

OvVR classifier is fit independently, raw coefficient magnitudes reflect its own regular-
ization path and are best read as within-class rankings rather than absolute importances.
Finally, given the construction of the histogram dictionary, families of closely related
simplices may be correlated, given these conditions ¢; solutions tend to select a single
representative feature and can exhibit modest instability, for this reason minor variations
in the top lists across classes are hard to correctly interpret.

Despite such limitations it is worth noting that the 3-simplex ASP-ASP-HIS appears
of great importance for both Oxidoreductases (EC Class 1) and Transferases (EC Class
2) as well as the notable differences in the distributions of the top 10 coefficients: for
classes 2 to 5 the relevance distribution appears fairly evenly distributed (i.e., many
of the best simplices have relatively close importance scores). Classes 1 and 6 on the
other hand exhibit the opposite pattern, only the best 2 simplices have relatively similar
importances while others display a great drop in relevance.

A final consideration on ¢;-Lin-SVM implicit feature selection is that there is no
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simplex that has been selected as relevant for all classes, this signals that different en-
zymatic classes are effectively differentiated by diverse structural motifs which further

strengthens the grounds for PCN representation via simplicial complexes.
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Figure 5.8: Most Relevant Simplices for each EC Class According to /;-Lin-SVM on
Simplicial Complexes Embedding - Task B
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5.2.3 INDVAL Embedding

Table 5.10 presents the performances of all models working with the INDVAL embed-
ding in Task B. Also in this case the best performing model is ¢;-Lin-SVM which,
despite having the lowest training ABA attains the best value in testing. This does not
hold for standard accuracy results where it is the worst among the models also in testing.
It is worth recalling that standard accuracy measures the proportion of correctly classi-
fied samples across the entire dataset, it is therefore strongly biased towards the most
represented classes. ABA on the other hand computes per-class recalls first and then
averages them, the same weight is assigned to each class regardless of its frequency. As
a consequence, a higher ABA accompanied by a lower accuracy indicates that the clas-
sifier is able to capture informative patterns also in minority classes even if this comes
at the cost of slightly reduced performance on majority ones. In practice, such behavior
suggests that the model is better balanced across the class spectrum and performs better
on under-represented EC classes.

The strong ¢, penalty allows for a highly regularized model which on the INDVAL
dataset excludes on average ~ 592 features from the classification, approximately 46%
of the dataset. As expected the feature selection is less harsh compared to the previous
section due to features being already pre-selected according to the INDVAL criterion. It
is also important to note how, compared the results in Table 5.9 the INDVAL embedding
achieves an average testing ABA only 1% lower than the full simplicial complexes
embedding while being less than 10% the size. With this in mind the INDVAL scores
appears to be exceptional in selecting the most relevant sub-structures for classification.

Figure 5.9 shows the feature importance plot for the RF model which again indi-
cates as most important feature the 3-simplex ASP-ASP-HIS confirming even further
the relevance of such substructure.

Figure 5.10 on the other hand presents the same visualization as in Figure 5.8 but
for the INDVAL embedding. It is easy to see how the Feature Importances are more
uniformly distributed compared to the ones coming from the full simplicial complexes
embedding, this is probably due to the feature selection carried out via INDVAL scores

that allows the model to consider only a very small class-relevant subset of features
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whose relevance is smoothed due to the decreased dimensionality of the dataset. The

Model Metric Train Validation Test
ABA | 0.995+£0.004 0.869 +0.009 0.861 +0.008
v-SVM ACC 0.999 £0.001 0.951 £0.002 0.946 +0.003
F1 0.999 £ 0.001 0.950 £0.002 0.945 +£0.003
ABA | 0.990+0.004 0.899+0.008 0.893+0.012
(1-Lin-SVM | ACC 0.983 £0.006 0.948 £0.004 0.942 +0.006
F1 0.983 £0.006 0.949 +0.004 0.943 +0.005
ABA | 0.991 £0.006 0.894+0.010 0.888 +0.010
RF ACC 0.989 £0.006 0.951 £0.006 0.948 +0.006
F1 0.990 +0.006 0.952 +0.005 0.948 +0.006

Table 5.10: Performances on INDVAL Embedding for all Models — Task B

3-simplex ASP-ASP-HIS appears also here for both EC classes 1 and 2.
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Figure 5.9: Top 10 Most Relevant Simplices According to RF MDI on INDVAL Em-
bedding - Task B
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Figure 5.10: Most Relevant Simplices for each EC Class According to ¢;-Lin-SVM on
INDVAL Embedding - Task B

5.2.4 (Hyper)Graph Kernels

Table 5.11 shows v-SVM performances on both explored kernel methods in Task B. In
the multiclass setting of Task B, the kernel-based approaches remain competitive but

exhibit a reversed ranking with respect to Task A: the HCK attains ABA = 0.898 on
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the test set, surpassing the JK at ABA = (0.884. This pattern suggests that, when dis-
criminating among enzyme classes, cosine similarity over sparse symbolic histograms
may be more tolerant to inter-class sharing of substructures, whereas Jaccard’s over-
lap ratio can over-penalize such situations. As in Task A, these performances must
be weighed against the computational footprint and reduced interpretability of kernel

pipelines which remain practical considerations in large-scale proteome-level analyses.

Model | Kernel | Metric Train Validation Test
ABA | 0.995+0.008 0.905+0.007 0.898 +0.011
HCK | ACC 0.998 £0.002 0.967 £0.002 0.962 +0.004
-SVM F1 0.998 £0.002 0.967 £0.002 0.962 +0.004
ABA 1.000 £ 0.000 0.888 +0.005 0.884 +0.007
JK ACC 1.000 £ 0.000 0.967 £0.002 0.963 +0.003
F1 1.000 = 0.000 0.967 £0.002 0.963 +0.003

Table 5.11: Performances on Kernel Methods — Task B

5.2.5 Multiclass GNN

Table 5.12 presents GNN performances for Task B. The same training pattern presented
in Section 5.1.5 was used resulting in a different topology for each of the data splits. The
trends encountered for Task B are similar to the ones of Task A: 80% of the topologies
exploit OHE representation of amino acid labels and 60% of them chose GIN Convolu-
tion as MP strategy. Coherently with Task A 80% of the structures used max pooling
and all of them exploited batch normalization in MP layers. The biggest differences
with respect to the results of Task A in terms of GNN topologies are the increased num-
ber of hidden dimensions (80% of the topologies leveraged the maximal available value
of 256) and the ubiquitous presence of normalization layers after pooling. The sharp
increase in hidden dimensions suggests that the multiclassification setting of Task B
represents an inherently more complicated task, in this context more flexibility and ex-
pressive power (i.e. wider GNN structures) bring better performances without incurring
in overfitting and degraded validation and test performances. The reaching of the upper
limit of the search space for the hidden dimensions of the network could also indicate

that, given more generous search spaces and computing power, it could be possible to
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further refine the GNN approach to reach even better results.

In terms of performances GNN structures excel in Task B showing a test ABA of
0.921 surpassing the previous best model/embedding combination (¢;-Lin-SVM on full
simplicial complexes embedding) by a respectable 2.1%. Such performances establish
GNNss as the best performing ML approach for first-level EC number prediction among

the tested ones.

Model | Metric Train Validation Test

ABA | 0.981 £0.009 0.926+0.011 0.921 £0.011
GNN | ACC 0968 £0.012 0.945+0.013 0.942 +0.008
F1 0971 £0.011 0948 £0.011 0.946 £ 0.006

Table 5.12: GNN Architecture Performances - Task B

5.2.6 Summary of Task B

In Task B, multiclass enzyme classification benefits markedly from representations
grounded in higher-order structural motifs. As summarized in Table 5.13, spectral
density embeddings are consistently the weakest option across models, mirroring the
limitations observed in Task A and reflecting the detrimental impact of strong linear
collinearity on sparse linear methods. In contrast, both the simplicial complexes and
INDVAL embeddings achieve substantially higher ABA, with ¢;-Lin-SVM emerging
as the most effective classifier for explicit histogram representations. The superiority
of /1-Lin-SVM over v-SVM and RF in this setting corroborates the advantage of em-
bedded feature selection in very high-dimensional, sparse spaces: by shrinking most
coefficients to zero, the model isolates a compact set of class-discriminative simplices
and delivers optimal performances. Notably, the INDVAL embedding attains only a
marginal ABA reduction relative to the full simplicial dictionary while using less than
one tenth of the features, underscoring the strength of INDVAL scores as an inexpen-
sive, interpretable pre-filter that preserves discriminatory signals.

Kernel approaches provide a competitive alternative without explicit feature engi-
neering. However, the ranking between kernels reverses relative to Task A: the HCK

surpasses the JK in ABA terms both in validation and testing. This inversion suggests
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that, in the presence of inter-class sharing of local substructures cosine similarity offers
a more tolerant notion of relatedness than the set-overlap-based Jaccard measure, which
can over-penalize partial sharing.

Finally end-to-end graph neural networks trained on raw PCNs deliver the strongest
overall results in Task B. The optimized GNNs reach a test ABA of 0.921. The preva-
lence of wider hidden dimensions, post-pooling normalization and MP operators with
higher representational capacity (GIN Convolution) indicate that multiclass EC predic-
tion benefits from increased model expressivity without incurring overfitting. These
findings combined show that first-level EC assignment can be addressed effectively
by both classical ML and DL approaches; among explicit representations, simplices-
based histograms with ¢;-regularized linear classification offer an attractive accuracy-
efficiency-interpretability trade-off, while end-to-end GNN5 constitute the optimal choice

in terms of pure predictive performance with minimal feature engineering.

Representation Strategy v-SVM {1-Lin-SVM RF GNN
Spectral Density 0.733 £0.012 | 0.423 £ 0.009 | 0.686 + 0.005 -
Simplicial Complexes | 0.864 +=0.009 | 0.902 + 0.013 | 0.882 + 0.009 -
INDVAL 0.861 +0.008 | 0.893 £0.012 | 0.888 +0.010 -
Histogram Kernel 0.898 £0.011 - - -
Jaccard Kernel 0.884 £+ 0.007 - - -

Raw PCNs - - - 0.921 £ 0.011

Table 5.13: Test Set ABA for all Models and Representation Strategies - Task B

Table 5.14 shows the per-class average results of the best-performing model (GNN)
in Task B. The GNN achieves consistently high values across most evaluation metrics,
particularly for the well-represented classes EC 2 and EC 3, where both recall and preci-
sion remain above 0.95 on average. These outcomes indicate that the classifier is highly
effective at capturing the structural signatures of the dominant enzyme families. Con-
versely, the least represented classes (EC 5 and EC 6) exhibit lower stability, with EC
6 in particular showing reduced precision and F1-score, reflecting the greater difficulty
of learning from small sample sizes. Nonetheless, the model demonstrates remarkable
specificity across all classes, exceeding 0.97 in every case and reaching 0.998 for EC 4,
highlighting its robustness in avoiding false positives. Overall, the model not only gen-

eralizes well on abundant classes but also maintains strong discriminative power across
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the class spectrum despite substantial data imbalance.

EC Class Recall Precision F1-score Specificity | Support
EC1 0.951 £0.019 | 0.952 £0.013 | 0.952 £0.014 | 0.992 + 0.002 591
EC2 0.928 £ 0.010 | 0.973 £0.006 | 0.950 + 0.004 | 0.982 £ 0.004 1776
EC3 0.954 £ 0.009 | 0.956 £0.008 | 0.955 +0.007 | 0.978 £ 0.004 1437
EC4 0.975 £0.009 | 0.978 £0.008 | 0.977 £ 0.007 | 0.998 + 0.001 311
EC5 0.942 +0.013 | 0.892 £0.027 | 0.916 £ 0.013 | 0.996 + 0.001 132
EC6 0.854 £ 0.053 | 0.460 £0.059 | 0.594 £ 0.045 | 0.978 + 0.007 89

Table 5.14: Best Performer per-class Performance Metrics in Testing - Task B
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Chapter 6

Conclusions and Future Prospects

This thesis investigated whether protein structures represented as PCNs carry sufficient
topological signal to support accurate prediction of physiological roles. Two comple-
mentary classification settings were addressed on a curated subset of the human pro-
teome: a binary discrimination between enzymatic and non-enzymatic proteins (Task
A) and a multiclass assignment of first-level EC classes for enzymatic proteins (Task B).
The analysis involved 48, 019 proteins for Task A and 21, 679 enzymes for Task B, with
all experiments conducted under a stratified five-fold protocol using fixed splits across
methods to enable a systematic paired comparison between representation strategies
and learning algorithms.

Both explicit graph embeddings and end-to-end graph learning were considered for
the experiments. Within explicit representations, three families were explored: (i) spec-
tral density descriptors of the Normalized Laplacian associated with PCNs; (ii) sym-
bolic histograms derived from simplicial complexes evaluated on clique hypergraphs
of PCNss; and (iii) their INDVAL-filtered variants for model-agnostic feature reduction.
In parallel, two graph kernels over the complete simplicial complexes embedding (the
HCK and the JK) were employed to capture non-linear similarities without additional
feature engineering. Message-passing GNNs, on the other hand, were optimized to
learn directly from residue—residue contact graphs in an end-to-end fashion.

Three standard classifiers (kernel v-SVM, /¢ -Linear-SVM, and RF) were selected to

probe complementary learning strategies: maximum-margin learning with a non-linear
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kernel, embedded feature selection via lasso regularization, and non-parametric ensem-
bles sensitive to feature interactions. End-to-end GNNs on the other hand were tuned
over a plethora of architectural choices (MP operator, hidden dimensionality, pooling
strategy, and related design factors) to identify effective PCN encoders under feasible
computational constraints. Results were satisfactory for both tasks: in Task A, the top-
performing pipeline was v-SVM on JK with test ABA = 0.900, marginally ahead of the
GNN counterpart (ABA = 0.898). This phenomenon indicates that end-to-end learning
can almost match kernel baselines without additional hand-crafted features.

The results from Task B strengthen such considerations as end-to-end GNNs were
the best overall with test ABA = 0.921, while among explicit representations the ¢;-
Linear-SVM on the full simplicial histogram reached the best results with test ABA =
0.902. Per-class analysis of GNN results showed excellent precision and recall on well-
represented classes (EC classes 1-4) with slight instability on the sparser classes (EC
classes 5-6).

Feature importance analyses consistently highlighted recurring motifs across tasks
and models, with the 3-simplex ASP-ASP-HIS emerging as a salient discriminant for
every symbolic histogram based model. The INDVAL based feature selection proved
to be able to delete many non-discriminative substructures with minimal loss in ABA
confirming its role as an interpretable model-agnostic selector of signature motifs.

The evaluation benefited from fixed stratified folds and a methodological breadth
which together provided a balanced perspective on accuracy, efficiency, and interpretabil-
ity for both tasks. Nonetheless, several limitations should be acknowledged: (i) the
dataset excluded multifunctional and moonlighting proteins and restricted attention to
a single first-level EC label, enforcing mutually exclusive roles; and (ii) to balance
computational costs and scale, only standard GNNs with residue-identity features were
considered, leaving geometric encoders and sequence-informed models unexplored.

In follow-up studies it will be possible to extend end-to-end architectures to 3D-
aware, E(3)-equivariant GNNs and geometric vector perceptrons to better exploit fine-
grained geometric information as well as moving beyond mutually exclusive labels to

multi-label classification addressing directly multifunctional and moonlighting proteins
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to align the modeling objectives with biological reality. Furthermore, deep topologi-
cal learning strategies—such as message passing on simplicial or cell complexes with
specialized operators—could be incorporated to encode higher-order interactions and
global shape priors that remain inaccessible to purely pairwise GNN models.

Overall, the findings indicate that structural information encoded in PCNs is highly
predictive of protein physiological roles at scale. Topology-driven embeddings provide
accurate and interpretable baselines, while carefully tuned GNNs deliver the strongest
multiclass performance, opening a path toward higher order, geometry-aware, and ex-

plicitly multi-label structural analysis.

68



References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. Optuna: A next-generation hyperparameter optimization framework.
In Proceedings of the 25th ACM SIGKDD international conference on knowl-

edge discovery & data mining, pages 2623-2631, 2019.

Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts,
and Peter Walter. Protein function. In Molecular Biology of the Cell. 4th edition.
Garland Science, 2002.

Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J
Lipman. Basic local alignment search tool. Journal of molecular biology,

215(3):403-410, 1990.

Gébor Bacso, Sylvain Gravier, Andras Gyérfas, Myriam Preissmann, and Andrés
Sebo. Coloring the maximal cliques of graphs. SIAM Journal on Discrete Math-
ematics, 17(3):361-376, 2004.

Andrzej Bargiela and Witold Pedrycz. The roots of granular computing. In 2006
IEEE International Conference on Granular Computing, pages 806—-809, 2006.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Baldzs Kégl. Algorithms

for hyper-parameter optimization. Advances in neural information processing

systems, 24, 2011.

Helen M Berman, Buvaneswari Coimbatore Narayanan, Luigi Di Costanzo,

Shuchismita Dutta, Sutapa Ghosh, Brian P Hudson, Catherine L. Lawson, Ezra

69



[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Peisach, Andreas Prli¢, Peter W Rose, et al. Trendspotting in the protein data
bank. FEBS letters, 587(8):1036-1045, 2013.

B Bhargavi, K Swarupa Rani, and Arunjyoti Neog. Finding multidimensional
constraint reachable paths for attributed graphs. EAI Endorsed Trans. Scalable
Inf. Syst., 10(1):e8, 2022. doi: https://doi.org/10.4108/eetsis.
v9i4.2581.

Frimpong Boadu, Hongyuan Cao, and Jianlin Cheng. Combining protein se-
quences and structures with transformers and equivariant graph neural networks

to predict protein function. Bioinformatics, 39(Supplement_1):1318-i325, 2023.

Karsten M Borgwardt, Cheng Soon Ong, Stefan Schonauer, SVN Vishwanathan,
Alex J Smola, and Hans-Peter Kriegel. Protein function prediction via graph

kernels. Bioinformatics, 21(suppl_1):147-156, 2005.
Leo Breiman. Random forests. Machine learning, 45(1):5-32, 2001.

Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an undi-
rected graph. Communications of the ACM, 16(9):575-577, 1973.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-
dergheynst. Geometric deep learning: going beyond euclidean data. /IEEE Signal
Processing Magazine, 34(4):18-42, 2017.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spec-
tral networks and locally connected networks on graphs. arXiv preprint

arXiv:1312.6203, 2013.

Horst Bunke. Graph-based tools for data mining and machine learning. In Inter-
national workshop on machine learning and data mining in pattern recognition,

pages 7-19. Springer, 2003.

Christopher J.C. Burges. A tutorial on support vector machines for pattern
recognition. Data mining and knowledge discovery, 2(2):121-167, 1998. doi:
https://doi.org/10.1023/A:1009715923555.

70


https://doi.org/10.4108/eetsis.v9i4.2581
https://doi.org/10.4108/eetsis.v9i4.2581
https://doi.org/10.1023/A:1009715923555

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Steve Butler. Algebraic aspects of the normalized laplacian. In Recent Trends in

Combinatorics, pages 295-315. Springer, 2016.

Seth Chaiken and Daniel J Kleitman. Matrix tree theorems. Journal of combina-

torial theory, Series A, 24(3):377-381, 1978.

Chih-Chung Chang and Chih-Jen Lin. Training v-support vector classifiers: the-
ory and algorithms. Neural computation, 13(9):2119-2147, 2001.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector ma-
chines. ACM transactions on intelligent systems and technology (TIST), 2(3):1—
27,2011.

Peter JA Cock, Tiago Antao, Jeffrey T Chang, Brad A Chapman, Cymon J
Cox, Andrew Dalke, Iddo Friedberg, Thomas Hamelryck, Frank Kauff, Bartek
Wilczynski, et al. Biopython: freely available python tools for computational

molecular biology and bioinformatics. Bioinformatics, 25(11):1422, 2009.

Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty years
of graph matching in pattern recognition. International journal of pattern recog-

nition and artificial intelligence, 18(03):265-298, 2004.

Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A (sub)
graph isomorphism algorithm for matching large graphs. IEEE transactions on

pattern analysis and machine intelligence, 26(10):1367-1372, 2004.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learn-

ing, 20(3):273-297, 1995.

Thomas M Cover. Geometrical and statistical properties of systems of linear
inequalities with applications in pattern recognition. /EEFE transactions on elec-

tronic computers, EC-14(3):326-334, 1965.

Enrico De Santis, Alessio Martino, Antonello Rizzi, and Fabio Massimo Frattale

Mascioli. Dissimilarity space representations and automatic feature selection for

71



[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

protein function prediction. In 2018 International joint conference on neural

networks (IJCNN), pages 1-8. IEEE, 2018.

Luisa Di Paola, Micol De Ruvo, Paola Paci, Daniele Santoni, and Alessandro
Giuliani. Protein contact networks: an emerging paradigm in chemistry. Chemi-

cal reviews, 113(3):1598-1613, 2013.
Reinhard Diestel. Graph Theory. Springer, 5 edition, 2017.

Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-
enzymes without alignments. Journal of molecular biology, 330(4):771-783,
2003.

Paul D Dobson and Andrew J Doig. Predicting enzyme class from protein struc-

ture without alignments. Journal of molecular biology, 345(1):187-199, 2005.

Marc Dufréne and Pierre Legendre. Species assemblages and indicator species:
the need for a flexible asymmetrical approach. Ecological monographs,

67(3):345-366, 1997.

Ernesto Estrada and Juan A. Rodriguez-Veldzquez. Subgraph centrality and clus-
tering in complex hyper-networks. Physica A: Statistical Mechanics and its Ap-

plications, 364:581-594, 2006.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen
Lin. Liblinear: A library for large linear classification. the Journal of machine

Learning research, 9:1871-1874, 2008.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with py-

torch geometric. arXiv preprint arXiv:1903.02428, 2019.

Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak mathematical

Journal, 23(2):298-305, 1973.

Thomas MJ Fruchterman and Edward M Reingold. Graph drawing by force-
directed placement. Software: Practice and experience, 21(11):1129-1164,
1991.

72



[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Corrado Gini. Variabilita e mutabilita: contributo allo studio delle distribuzioni

e delle relazioni statistiche.[Fasc. I.]. Tipogr. di P. Cuppini, 1912.

Vladimir Gligorijevi¢, P Douglas Renfrew, Tomasz Kosciolek, Julia Koehler Le-
man, Daniel Berenberg, Tommi Vatanen, Chris Chandler, Bryn C Taylor, lan M
Fisk, Hera Vlamakis, et al. Structure-based protein function prediction using

graph convolutional networks. Nature communications, 12(1):3168, 2021.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learn-
ing in graph domains. In Proceedings. 2005 IEEE international joint conference

on neural networks, 2005., volume 2, pages 729-734. IEEE, 2005.

Palash Goyal and Emilio Ferrara. Graph embedding techniques, applications,

and performance: A survey. Knowledge-Based Systems, 151:78-94, 2018.

Qian-Ping Gu and Jiajian Leo Liang. Algorithms and computational study on a
transportation system integrating public transit and ridesharing of personal vehi-

cles. Computers & Operations Research, 164:106529, 2024.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learn-

ing on large graphs. Advances in neural information processing systems, 30,

2017.

Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on

graph-structured data. arXiv preprint arXiv:1506.05163, 2015.

Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S Sathiya Keerthi, and Sellaman-
ickam Sundararajan. A dual coordinate descent method for large-scale linear
svim. In Proceedings of the 25th international conference on Machine learning,

pages 408—415, 2008.

International Union of Biochemistry. Commission on Enzymes. Report of the

Commission on Enzymes. 1.U.B. Symposium Series, Vol. 20. Pergamon Press,

Oxford, 1961.

73



[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Kei (hvy) Ishikawa. “multivariate” tpe makes optuna even more powerful.

Medium (Optuna blog), October6 2020.

Sarika Jalan and Jayendra N Bandyopadhyay. Random matrix analysis of net-
work laplacians. Physica A: Statistical Mechanics and its Applications, 387(2-
3):667-674, 2008.

Constance J Jeffery. Moonlighting proteins. Trends in biochemical sciences,

24(1):8-11, 1999.

Constance J Jeffery. Multifunctional proteins: examples of gene sharing. Annals

of medicine, 35(1):28-35, 2003.

Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael JL. Townshend, and
Ron Dror. Learning from protein structure with geometric vector perceptrons.

arXiv preprint arXiv:2009.01411, 2020.

Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global op-
timization of expensive black-box functions. Journal of Global optimization,

13(4):455-492, 1998.

Jonas L Juul, Austin R Benson, and Jon Kleinberg. Hypergraph patterns and

collaboration structure. Frontiers in Physics, 11:1301994, 2024.

Henrik Kaessmann, Sebastian Zollner, Anton Nekrutenko, and Wen-Hsiung
Li. Signatures of domain shuffling in the human genome. Genome research,

12(11):1642-1650, 2002.

TN Kipf. Semi-supervised classification with graph convolutional networks.

arXiv preprint arXiv:1609.02907, 2016.

Risi Imre Kondor and John Lafferty. Diffusion kernels on graphs and other dis-
crete structures. In Proceedings of the 19th international conference on machine

learning, volume 2002, pages 315-322, 2002.

Theodore Lewis and William L. Stone. Biochemistry, Proteins Enzymes. Stat-

Pearls Publishing, Treasure Island, FL, Jan 2025.

74



[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli.
Graph matching networks for learning the similarity of graph structured objects.

In International conference on machine learning, pages 3835-3845. PMLR,

2019.

Andy Liaw and Matthew Wiener. Classification and regression by randomforest.

R news, 2(3):18-22, 2002.

Lorenzo Livi, Alessandro Giuliani, and Alireza Sadeghian. Characterization
of graphs for protein structure modeling and recognition of solubility. Current

Bioinformatics, 11(1):106-114, 2016.

Lorenzo Livi, Enrico Maiorino, Alessandro Giuliani, Antonello Rizzi, and
Alireza Sadeghian. A generative model for protein contact networks. Journal

of Biomolecular Structure and Dynamics, 34(7):1441-1454, 2016.

Enrico Maiorino, Antonello Rizzi, Alireza Sadeghian, and Alessandro Giuliani.
Spectral reconstruction of protein contact networks. Physica A: Statistical Me-

chanics and its Applications, 471:804-817, 2017.

Alessio Martino, Fabio Massimo Frattale Mascioli, and Antonello Rizzi. On the
optimization of embedding spaces via information granulation for pattern recog-
nition. In 2020 International Joint Conference on Neural Networks (IJCNN),
pages 1-8, 2020.

Alessio Martino, Alessandro Giuliani, and Antonello Rizzi. (hyper)graph em-

bedding and classification via simplicial complexes. Algorithms, 12(11), 2019.

Alessio Martino, Enrico Maiorino, Alessandro Giuliani, Mauro Giampieri, and
Antonello Rizzi. Supervised approaches for function prediction of proteins con-
tact networks from topological structure information. In Scandinavian Confer-

ence on Image Analysis, pages 285-296. Springer, 2017.

Alessio Martino and Antonello Rizzi. (hyper) graph kernels over simplicial com-

plexes. Entropy, 22(10):1155, 2020.

75



[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

Andrew G McDonald and Keith F Tipton. Enzyme nomenclature and classifi-
cation: the state of the art. The FEBS journal, 290(9):2214-2231, 2023. doi:
https://doi.org/10.1111/febs.16274.

Brendan D McKay and Adolfo Piperno. Practical graph isomorphism, ii. Journal
of symbolic computation, 60:94-112, 2014.

James Mercer. Xvi. functions of positive and negative type, and their connection
the theory of integral equations. Philosophical transactions of the royal society
of London. Series A, containing papers of a mathematical or physical character,

209(441-458):415-446, 1909.

Aziz Mithani, Gail M Preston, and Jotun Hein. Rahnuma: hypergraph-based
tool for metabolic pathway prediction and network comparison. Bioinformatics,

25(14):1831-1832, 2009.

Christopher Morris, Fabrizio Frasca, Nadav Dym, Haggai Maron, Ismail Ilkan
Ceylan, Ron Levie, Derek Lim, Michael Bronstein, Martin Grohe, and Stefanie
Jegelka. Future directions in the theory of graph machine learning. arXiv preprint

arXiv:2402.02287, 2024.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric
Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural:

Higher-order graph neural networks. In Proceedings of the AAAI conference on

artificial intelligence, volume 33, pages 4602-4609, 2019.

Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui
Chen, Yang Liu, and Shantanu Jaiswal. graph2vec: Learning distributed repre-

sentations of graphs. arXiv preprint arXiv:1707.05005, 2017.

Giannis Nikolentzos, Giannis Siglidis, and Michalis Vazirgiannis. Graph kernels:

A survey. Journal of Artificial Intelligence Research, 72:943-1027, 2021.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pager-
ank citation ranking: Bringing order to the web. Technical report, Stanford info-

lab, 1999.

76


https://doi.org/10.1111/febs.16274

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

Youngser Park, C Priebe, D Marchette, and Abdou Youssef. Anomaly detection
using scan statistics on time series hypergraphs. In Link analysis, counterterror-

ism and security (LACTS) conference, page 9. SIAM Pennsylvania, 2009.

Emanuel Parzen. On estimation of a probability density function and mode. The

annals of mathematical statistics, 33(3):1065-1076, 1962.

Alice Patania, Giovanni Petri, and Francesco Vaccarino. The shape of collabora-

tions. EPJ Data Science, 6(1):18, 2017.

Linus Pauling, Robert B Corey, and Herman R Branson. The structure of pro-
teins: two hydrogen-bonded helical configurations of the polypeptide chain. Pro-
ceedings of the National Academy of Sciences, 37(4):205-211, 1951.

William R Pearson and David J Lipman. Improved tools for biological sequence
comparison. Proceedings of the National Academy of Sciences, 85(8):2444—
2448, 1988.

Witold Pedrycz. Granular computing: an introduction. In Proceedings Joint 9th
IFSA World Congress and 20th NAFIPS International Conference, volume 3,
pages 1349-1354. IEEE, 2001.

Sebastian Raschka. Biopandas: Working with molecular structures in pandas

dataframes. The Journal of Open Source Software, 2(14), jun 2017.

RCSB Protein Data Bank. Primary sequences, 2025. Accessed on 12 August
2025.

T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey
on oversmoothing in graph neural networks. arXiv preprint arXiv:2303.10993,

2023.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEE transactions on

neural networks, 20(1):61-80, 2008.

77



[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

Michael T Schaub, Austin R Benson, Paul Horn, Gabor Lippner, and Ali Jad-
babaie. Random walks on simplicial complexes and the normalized hodge 1-

laplacian. SIAM Review, 62(2):353-391, 2020.

Bernhard Scholkopf, Alex J Smola, Robert C Williamson, and Peter L Bartlett.

New support vector algorithms. Neural computation, 12(5):1207-1245, 2000.

Bernhard Scholkopf and Alexander J. Smola. Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cam-
bridge, MA, 2002.

David W Scott. Multivariate density estimation: theory, practice, and visualiza-

tion. John Wiley & Sons, 2015.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Fre-
itas. Taking the human out of the loop: A review of bayesian optimization. Pro-

ceedings of the IEEE, 104(1):148-175, 2015.

Claude E Shannon. A mathematical theory of communication. The Bell system

technical journal, 27(3):379-423, 1948.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimiza-

tion of machine learning algorithms. Advances in neural information processing

systems, 25, 2012.

Vladimir Svetnik, Andy Liaw, Christopher Tong, J Christopher Culberson,
Robert P Sheridan, and Bradley P Feuston. Random forest: a classification and
regression tool for compound classification and gsar modeling. Journal of chem-

ical information and computer sciences, 43(6):1947-1958, 2003.

Mikko Taipale. Disruption of protein function by pathogenic mutations: common

and uncommon mechanisms. Biochemistry and Cell Biology, 97(1):46-57, 2019.

Robert L Thorndike. Who belongs in the family? Psychometrika, 18(4):267—
276, 1953.

78



[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

Keith Tipton. Translocases (EC 7): A new EC Class. Technical report, Nomen-
clature Committee of the International Union of Biochemistry and Molecular

Biology (IUBMB), August 2018.

Keith Tipton and Andrew McDonald. A Brief Guide to Enzyme Nomenclature
and Classification. Technical report, International Union of Biochemistry and

Molecular Biology (NC-IUBMB), 2018. Revision November 2018.

Kentaro Tomii, Yoshito Sawada, and Shinya Honda. Convergent evolution in
structural elements of proteins investigated using cross profile analysis. BMC

bioinformatics, 13(1):11, 2012.
Vladimir Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio. Graph attention networks. arXiv preprint

arXiv:1710.10903, 2017.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing,

17(4):395-416, 2007.

Junqgi Wang, Hailong Li, Gang Qu, Kim M Cecil, Jonathan R Dillman, Nehal A
Parikh, and Lili He. Dynamic weighted hypergraph convolutional network for

brain functional connectome analysis. Medical image analysis, 87:102828, 2023.

Edwin C. Webb. Enzyme nomenclature 1992. Recommendations of the Nomen-
clature Committee of the International Union of Biochemistry and Molecular
Biology on the Nomenclature and Classification of Enzymes. Academic Press, 6

edition, 1992.
David Whitford. Proteins: structure and function. John Wiley & Sons, 2013.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are

graph neural networks? arXiv preprint arXiv:1810.00826, 2018.

79



[105] Kai Siong Yow, Ningyi Liao, Sigiang Luo, Reynold Cheng, Chenhao Ma, and
Xiaolin Han. A survey on machine learning solutions for graph pattern extrac-

tion. arXiv preprint arXiv:2204.01057, 2022.

[106] Ji Zhu, Saharon Rosset, Robert Tibshirani, and Trevor Hastie. 1-norm support

vector machines. Advances in neural information processing systems, 16, 2003.

[107] Afra Zomorodian. Fast construction of the vietoris-rips complex. Computers &
Graphics, 34(3):263 — 271, 2010. Shape Modelling International (SMI) Confer-
ence 2010.

[108] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic
net. Journal of the Royal Statistical Society Series B: Statistical Methodology,
67(2):301-320, 2005.

80



	List of Figures
	List of Tables
	Introduction
	Biological Motivation
	Enzymatic Proteins and the EC Numbering System
	Graph-Based Representations of Protein Structures
	Research Objectives and Tasks
	Thesis Outline

	Literature Review
	Theoretical Background
	An Introduction to Graphs
	Graph Embeddings
	Simplicial Complexes
	Kernel Methods
	Graph Spectrum
	Graph Neural Networks

	Previous Work on Proteins' Physiological Role Prediction
	Problem Framing and Task Taxonomy
	Early Alignment-Free ML Approaches
	Proteins as PCNs for GML
	GNNs for EC number Prediction
	Datasets Choice


	Data Collection
	Methodologies
	Proteins as PCN-Graphs
	Graph Embedding via Simplicial Complexes
	INDVAL Scores

	(Hyper)Graph Kernels
	Histogram Cosine Kernel
	Jaccard Kernel

	Spectral Density
	Summary of Representation Techniques
	Standard Classifiers
	1-Linear-SVM
	Kernel -SVM
	Random Forest

	Summary of Standard Classification Algorithms
	GNNs
	Performance Metrics
	Hyperparameter Optimization Strategy
	TPE and Bayesian Optimization

	Data Resampling and Splitting Strategy

	Results
	Task A
	Spectral Density Embedding
	Simplicial Complexes Embedding
	INDVAL Embedding
	(Hyper)Graph Kernels
	Binary GNN
	Summary of Task A

	Task B
	Spectral Density Embedding
	Simplicial Complexes Embedding
	INDVAL Embedding
	(Hyper)Graph Kernels
	Multiclass GNN
	Summary of Task B


	Conclusions and Future Prospects
	References

