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Abstract
Proteins are arguably one of the most interesting families of macromolecules as they

are the base building block for most living organisms, involved in virtually all biologi-

cal processes. Protein structures can be modeled as three-dimensional graphs based on

their residue contact networks, making them well-suited for Graph Machine Learning

approaches. This thesis conducts a large-scale analysis on the entire human proteome

aimed at classifying proteins based on their physiological roles. The work includes dif-

ferent approaches for pattern recognition defined on graph structures based on feature

engineering, kernel methods and Graph Neural Networks. Two main feature engineer-

ing techniques are employed: the first one is based on the spectral densities of protein

graphs, while the second approach is based on the fundamental concept of algebraic

topology known as simplicial complexes. Another approach to protein classification

was based on Graph Neural Networks with an extensive exploration of recent message

passing techniques and possible network architectures. The aforementioned techniques

were evaluated on two main tasks: (i) binary classification of protein structures based

on whether they perform enzymatic functions, and (ii) multiclass classification of en-

zymatic proteins according to their enzyme class. Performances have been validated

on the entire human proteome by means of repeated stratified splitting to correctly and

robustly assess the performance of the analyzed approaches. The final results highlight

the Jaccard-based kernel as best performer for the binary task with a balanced accuracy

of 0.90 while in the multiclass scenario the GNN architecture displayed the highest dis-

criminative capabilities with a balanced accuracy of 0.92. These results indicate that the

multiclass EC class assignment is more complex compared to binary enzymatic classifi-

cation with the more flexible GNN structure being able to outperform all other methods

without significant overfitting. Such results demonstrate that graph-based representa-

tions of protein structure enable competitive functional prediction with classical kernel

methods and modern message-passing architectures providing comparable strengths.
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Chapter 1

Introduction

1.1 Biological Motivation

Proteins are the most indispensable type of macromolecules for cellular and organic

physiology. Proteins are in charge of many biological processes, the most relevant

being: catalyzing metabolic reactions, transducing and integrating biological signals,

transporting ions and metabolites, providing mechanical scaffolding and regulating

gene expression [2, 103]. Enzymes, in particular, accelerate chemical transformations

by stabilizing transition states and lowering activation barriers, thereby enabling re-

action rates compatible with life. Perturbations in protein function underlie diverse

pathologies [93], from metabolic errors to cancer, so accurate functional annotation is

a prerequisite for biological understanding and therapeutic discovery.

Despite decades of progress in biochemistry and structural biology, comprehensive

functional characterization has not kept pace with the rapid accumulation of sequences

and structures. Moreover, inferring function from sequence alone is complicated by

factors like domain shuffling [53], convergent evolution [97], and the presence of multi-

functional [49] proteins. Three-dimensional approaches on the other hand impose strict

physicochemical constraints on activity: the geometry of active sites and the organiza-

tion of co-factors collectively shape specificity and catalytic role. These considerations

motivate the appearance of computational intelligence strategies that exploit structural

information to propose functional hypotheses and guide experiments.
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Within this context, inferring a protein’s physiological role from its structure is both

timely and relevant. Structure-based learning approaches offer a scalable complement

to experimental annotation by leveraging patterns that recur across families and folds

—such as common structural motifs and global architectural features— to distinguish

enzymatic from non-enzymatic proteins and to assign functional classes. By using

structural signals in predictive models, such methods aim to bridge the annotation gap

and accelerate biological insight across large proteomes.

1.2 Enzymatic Proteins and the EC Numbering System

Proteins can be divided into two macro-categories: enzymatic and non-enzymatic. As

previously mentioned enzymatic proteins (i.e., enzymes) facilitate chemical reactions

often decreasing the amount of energy required for the reaction to speed it up. To carry

out their function, enzymes bind substrates at key locations called active sites and are

very specific, binding only specific substrates for specific reactions [56]. Each enzyme

is associated with an Enzyme Commission (EC) Number [102], assigned by the Nomen-

clature Committee of the International Union of Biochemistry and Molecular Biology

(IUBMB). The EC numbering system presents the hierarchical structure highlighted in

Table 1.1.

Level Description
EC x Main class (e.g., Oxidoreductases, Transferases, etc.)

EC x.x Subclass – type of compound or group involved
EC x.x.x Sub-subclass – specific type of reaction

EC x.x.x.x Serial number of the enzyme in this sub-subclass

Table 1.1: Hierarchy of the EC Numbering System — Source: Adapted from [96]

The IUBMB defined a total of seven distinct main classes of enzymes which are

briefly described in Table 1.2. Classes 1 to 6 were defined in the first Report of the

Commission on Enzymes in 1961 [45] while class 7 was defined later in 2018 because

the pre-existent classes were not capable of representing properly the role of proteins

specialized in moving molecules and ions across membranes [95].
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EC Class Name Function
EC 1 Oxidoreductases Catalyze oxidation–reduction (redox) reactions

by transferring electrons between substrates.
EC 2 Transferases Transfer functional groups (e.g., methyl, glyco-

syl) from one molecule (donor) to another (ac-
ceptor).

EC 3 Hydrolases Catalyze hydrolytic cleavage of bonds by addi-
tion of water (e.g., ester, glycosidic bonds).

EC 4 Lyases Cleave bonds by means other than hydrolysis or
oxidation, often forming double bonds or rings.

EC 5 Isomerases Catalyze intramolecular rearrangements, con-
verting a molecule into one of its isomers.

EC 6 Ligases Join two molecules by forming new bonds, typ-
ically coupled to ATP hydrolysis.

EC 7 Translocases Catalyze the movement of ions or molecules
across membranes or their separation within
membranes.

Table 1.2: Main EC Classes, Names, and Functions — Source: Adapted from [66]

1.3 Graph-Based Representations of Protein Structures

A powerful way to abstract the three-dimensional organization of proteins is to repre-

sent them as graphs. In this formulation, amino acid residues are mapped to nodes,

while edges encode spatial proximity or chemical interactions between residues. The

most common definition relies on a distance threshold applied to Cα atoms resulting in

a Protein Contact Network (PCN) [27]. This abstraction preserves essential information

about the protein’s fold and intramolecular connectivity enabling systematic computa-

tional analysis.

Representing proteins as PCNs provides a natural substrate for exploring Graph

Machine Learning (GML) methods, which are specifically designed to exploit rela-

tional and topological information of graph structures. Unlike conventional vector-

based encodings, graph representations capture both local patterns and global architec-

tural features. These properties make PCNs particularly suitable for function prediction

tasks, where subtle structural characteristics often govern specificity and catalytic ac-

tivity. Furthermore, graph abstractions are highly flexible: additional information such

as residue type, chemical descriptors, or edge weights based on inter-residue distances
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can be seamlessly incorporated to enrich the representation.

By leveraging PCNs, modern learning algorithms can uncover structural signals

fundamental for the analysis of complex topological structures like proteins. In this way,

graph-based representations act as a bridge between raw structural data and predictive

models, offering a scalable framework for linking protein structure to physiological

function.

1.4 Research Objectives and Tasks

This thesis investigates the capabilities of a diverse set of GML techniques, includ-

ing embedding strategies inspired by the granular computing information processing

paradigm [5, 80], graph kernels, and Graph Neural Networks (GNNs), to recognize

structural patterns for accurate protein classification. The focal objective is to classify

proteins in the human proteome according to their physiological functions, formulated

as two complementary tasks: (i) a binary discrimination between enzymatic and non-

enzymatic proteins (hereinafter Task A) and (ii) a multiclass assignment of enzymatic

proteins to their first-level EC classes (hereinafter Task B). The study explores advanced

graph representations based on spectral densities and algebraic topology, subsequently

evaluating the efficacy of both classical and deep learning classifiers on said tasks.

A distinctive contribution lies in the direct, uniform benchmarking of spectral- and

algebraic-topology-based descriptors against modern GNNs, an empirical comparison

that appears not to have been systematically executed under shared experimental con-

ditions in prior literature. The evaluation protocol is intentionally rigorous: strati-

fied hold-out validation with fixed splits across all models, systematic hyperparame-

ter optimization, and class-imbalance-aware performance measurements are employed

to reflect real-world data characteristics. This design enables paired comparisons and

strengthens the reliability of the conclusions. The analysis is conducted at proteome

scale on approximately 50, 000 unique human protein structures and spans 12 distinct

combinations of learning algorithms and PCN representation techniques, ensuring a

comprehensive and fair assessment of methodological strengths and limitations across

topological embeddings and deep learning architectures.
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These elements combined establish the work as a baseline reference for future stud-

ies, offering reproducible results and methodological guidelines to inform the design

and evaluation of graph-based approaches for proteome-scale EC class annotation.

1.5 Thesis Outline

The work is organized according to the following structure: Chapter 2 reports a pre-

sentation of the main theoretical background of the explored ML and GML approaches

and an analysis of the previous scientific works with similar grounds; Chapter 3 presents

the technical details on how the data was retrieved and filtered for the analysis; Chap-

ter 4 includes the theoretical and technical description of all methods exploited in the

thesis, from modelling to final performances evaluation; Chapter 5 highlights the em-

pirical results deriving from the experimentation carried out and the main data-driven

findings; finally Chapter 6 presents a brief recap of the work and the final conclusions

together with considerations regarding strengths, limitations and possibilities for future

developments of the work.
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Chapter 2

Literature Review

This chapter will be split in two separate parts: Section 2.1 will introduce the foun-

dational literature regarding the ML and GML techniques exploited in the thesis, Sec-

tion 2.2 on the other hand will present a brief taxonomy of the present research and a

compendium of scientific literature regarding GML approaches for physiological role

prediction in proteins.

2.1 Theoretical Background

2.1.1 An Introduction to Graphs

A graph can be defined as a pair of sets G = (V , E) where V represents a finite set of

nodes and E ⊆ V×V is the finite set of edges [28]. A graph is said to be undirected if its

edges represent symmetric relations between nodes, formally the existence of an edge

(u, v) ∈ E with u, v ∈ V guarantees the existence of (v, u) ∈ E which is equivalent to

(u, v). Directed graphs on the other hand have edges representing directed relations so

the existence of (u, v) does not guarantee the existence of (v, u) and the two edges do

not carry the same meaning. Graphs in their simple formulation do not account for self-

loops (i.e., edges of the type (u, u)) and multi-edges (i.e., multiple edges connecting the

same two nodes). Most commonly in graph notation n = |V| and m = |E|.

One of the most well-known ways to represent a graph is the so-called adjacency

matrix: a square matrix of shape n× n that can be defined as

6



Ai,j =

1 if (vi, vj) ∈ E ,

0 otherwise.
(2.1)

which for simple undirected graphs takes the form a symmetric binary matrix with

zero diagonal [28].

Starting from A it is possible to define the function D(vi) =
∑n

j=1Ai,j , laying the

foundation for another fundamental graph-related definition: the degree matrix D. D is

a diagonal matrix of shape n× n that can be defined as

Di,j =

D(vi) if i = j,

0 otherwise.
(2.2)

Furthermore it is possible to assign an arbitrary number of features to the elements

of a graph, effectively creating an attributed graph which can be defined as Ga =

(V , E ,Va, Ea) where Va and Ea are two sets of attributes for nodes and edges respectively

[8].

Thanks to such properties, graphs are optimally fitted to describe complex topologi-

cal scenarios in which atomic elements (i.e., nodes) have non trivial binary interactions

among each other. A prime example of this representation capabilities are indeed pro-

tein structures which can be represented as labelled (attributed) graphs also known as

PCNs (further details can be found in Section 4.1).

2.1.2 Graph Embeddings

In order to solve classification problems inside the graph domain directly graph match-

ing techniques have been developed with the aim of evaluating the similarity of different

graph structures. The most relevant techniques under the graph matching umbrella are:

isomorphism tests [67], partial graph matching [105] and inexact graph matching [22],

all which are however very limited in the context of graph classification. Especially

when it involves large graph structures or a large quantity of graphs, such limitations

derive more often than not from prohibitive computational costs (e.g., subgraph isomor-

7



phism is NP-complete) [15, 23].

A common alternative is to map graphs into an embedding space where standard

classifiers operate efficiently. An embedding procedure transforms complex structured

inputs into vectors in a simpler Euclidean metric space. This process effectively creates

a compact fingerprint of each input structure enabling scalable learning [40, 72] while

on the other hand, an effective embedding space should be able to preserve as much

information as possible from the original graph structure [62].

2.1.3 Simplicial Complexes

Simplicial complexes are a concept from algebraic topology which has been widely

explored in the domain of graph analysis [65, 77, 85]. They are in essence groups of

elements (i.e., simplices) glued together along their faces. A simplex of order k (k-

simplex) is effectively a convex hull of (k + 1) points: a point is a 0-simplex, a line a

1-simplex, a triangle a 2-simplex and so on. Every non-empty subset of a simplex is a

face of said simplex which is itself a simplex of lower order. Following this reasoning a

simplicial complex (S) can be defined as a group of simplices (s) having the following

two properties:

1. if s ∈ S, every face in s is also included in S

2. if s1, s2 ∈ S, then s1 ∩ s2 is a face of both s1 and s2

Starting from a generic simplicial complex it is possible to define the so-called k-

skeleton, representing a simplicial complex whose forming simplices are all at most

of order k. It is easy to see how a simple unweighted graph can be seen exactly as

a 1-skeleton where graph nodes represent points in the skeleton and each edge is a

1-simplex.

Simplicial complexes are a powerful tool for graph analysis especially in the case of

labeled graphs: if each node has its own distinctive label it is possible to create a finite

alphabet of all different simplices of node-labels composing the structure which can be

exploited to create a symbolic histogram of the graph [63]. Simplicial complexes are

also suited to model interactions of any order which makes them versatile enough to
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be adapted to networks with complex local substructures (e.g., PCNs), more on this in

Section 4.2

2.1.4 Kernel Methods

Kernel methods enable learning non-linear patterns by mapping data into a (possibly

infinite-dimensional) feature space, where linear models such as Support Vector Ma-

chines (SVMs) operate efficiently [16]. The fundamental building block for kernel

methods are kernel functions, which are used to implicitly embed the data towards

a possibly infinite-dimensional Hilbert space H in which linear classification of data

points is more likely [25]. Considering an input space of any kind X , a kernel function

can be defined as a continuous function K : X ×X → R. Furthermore K(·, ·) is said to

be a positive semi-definite kernel if and only if it respects the following two properties:

K(xi, xj) = K(xj, xi) ∀xi, xj ∈ X (2.3)

n∑
i=1

n∑
j=1

cicjK(xi, xj) ≥ 0 ∀ ci, cj ∈ R,∀xi, xj ∈ X (2.4)

Considering an instance matrix X ∈ n×m where n is the number of observations

and m the number of features per observation, any positive semi-definite kernel applied

to observations of X yields a so-called positive semi-definite Gram Matrix (of shape

n × n). This Gram matrix, under Mercer’s Theorem [68] (which requires X to be

compact and K to be continuous), admits a feature map ϕ into a (possibly infinite-

dimensional) Hilbert space H. This phenomenon justifies the so-called kernel trick [87],

described by the following equation:

K(x, y) = ⟨ϕ(x), ϕ(y)⟩H (2.5)

Equation (2.5) highlights how, instead of performing explicit mapping with the

function ϕ(·) followed by the dot product among vectors in H, it is possible to use

a positive semi-definite kernel function K(·, ·) that satisfies Mercer’s condition which

implicitly performs both operations. A prime example of positive definite kernel is
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the Radial Basis Function (RBF) kernel which takes the form of K(x, y) = e−γ||x−y||2

which can be intuitively read as an exponentially decaying similarity of squared dis-

tance, points very close together act as almost identical while influence falls off rapidly

as they move apart depending on the magnitude of γ.

Kernel methods have been widely applied in the domain of graphs since the early

2000s with the appearance of the first graph kernels [55]. Graph kernels can be defined

(with a similar logic as the one presented previously) as a positive semi-definite function

K in the space of graphs G for which there is a map ϕ : G → H such that K(Gi, Gj) =

⟨ϕ(Gi), ϕ(Gj)⟩ for any Gi, Gj ∈ G [73].

2.1.5 Graph Spectrum

Starting from the graph matrix representations presented in Section 2.1.1 it is possi-

ble to define two other important matrices for graph analysis. The first one being the

Laplacian Matrix L defined as

L = D−A (2.6)

The matrix L encodes topological information about the network. Many structural

insights can be extracted from its spectrum: from the number of connected components

[100], to the algebraic connectivity [35], and the total number of spanning trees [18].

Starting from L it is possible to define another real symmetric matrix: the Normal-

ized Laplacian Matrix L as

L = D−1/2LD−1/2 (2.7)

L conveys similar structural information as L but has various additional properties,

the most important being that all of its eigenvalues (i.e., its spectrum) lie in the range

[0, 2] independently of the characteristics of the underlying graph [17]. Given such

property it is possible to consider the spectral decomposition of L as

L = PDLPT (2.8)
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where DL = diag
{
λL
1 , ..., λ

L
n

}
is a diagonal matrix containing the n eigenvalues of

L where n is equal to the number of nodes in the original graph. The eigenvalues con-

tained in DL can be interpreted as a sort of signature of the underlying graph, they are

however difficult to compare given their variable dimensionality (equal to the number

of nodes in the graph), Section 4.4 will present a method to circumvent this issue.

2.1.6 Graph Neural Networks

Deep learning began with architectures designed for data living on regular Euclidean

domains. Multilayer perceptrons (MLPs) learn generic non-linear functions on vector

inputs; convolutional neural networks (CNNs) leverage locality and weight sharing on

grids for images and audio; recurrent neural networks (RNNs) share parameters along

sequences. Graph-structured data break these assumptions: there is no canonical or-

dering of nodes, sizes vary, and neighborhoods are irregular. Graph neural networks

(GNNs) arose to bring the same inductive biases (e.g., locality and parameter sharing)

to graphs [13, 39, 84]. The earliest GNN formulations extended recursive neural net-

works to arbitrary graphs and introduced contractive propagation to guarantee conver-

gence [39, 84]. These models already contained the core idea of repeatedly exchanging

information along edges and updating node states.

Two complementary message passing (MP) methodologies crystallized how to “con-

volve” on graphs: (i) spectral view which defines convolution via the graph Laplacian

eigenbasis and learn filters in the spectral domain [14,43] and (ii) spatial view which op-

erates directly on neighborhoods with permutation-invariant aggregations [42,99,104].

A key discovery on GNNs relates their discriminative power to the Weisfeiler–Leman

(WL) graph isomorphism test: message-passing GNNs are more often than not as pow-

erful as the 1-WL test [70].

Figure 2.1 presents the standard structure of a GNN for graph classification: some

initial pre-processing is applied to graph structures to prepare them to pass through

convolutional layers in which MP is applied. After a variable number of MP rounds the

resulting node level representations get pooled into a unique vector corresponding to a

graph level representation which gets subsequently fed to a classification head (typically
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a MLP structure) which is devoted to making the final graph level predictions.
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Message Passing
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x  N

Node Level
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Graph Level
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CLASSIFICATION
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Graph Level
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Edge Features
(Optional)

PREPROCESSING

Figure 2.1: Standard GNN structure

2.2 Previous Work on Proteins’ Physiological Role Pre-

diction

2.2.1 Problem Framing and Task Taxonomy

In this thesis, physiological role prediction is operationalized as two supervised tasks

on protein structures. The first is a binary classification that distinguishes enzymes vs.

non-enzymes; the second is a multiclass assignment of the first level EC number. The

EC hierarchy and class definitions established by IUBMB (Tables 1.1 - 1.2) are adopted.

Methodologically, a two-stage formulation popularized in early structure-based work

[10, 29, 30] is adopted: a binary classification between enzymatic and non-enzymatic

proteins (Task A) followed by first level EC number classification on the enzymatic

subset (Task B). The thesis mirrors pipelines that model proteins as PCNs whose nodes

are residues (or secondary-structure elements) and edges encode spatial proximity, en-

abling graph-based learning downstream.

2.2.2 Early Alignment-Free ML Approaches

Plenty of studies in literature deal with the classification of proteins according to their

physiological role. One very early example is Dobson & Doig (2003) [29], who aimed

to distinguish enzymatic from non-enzymatic proteins without using sequence or struc-

tural alignments which were very popular at the time (e.g., BLAST [3], FASTA [79],

etc.). They described proteins using both simple sequence-derived features (e.g., amino

12



acid composition, etc.) and structure-derived features (e.g., secondary structure con-

tent, largest pocket size, etc.). These feature vectors were classified using SVMs with

adaptive feature selection yielding a simplified model that achieved around 80% ac-

curacy. A natural evolution of this study is Dobson & Doig (2005) [30] where the

authors expand the classification problem to predict also the first level EC number of

the analyzed proteins maintaining similar input features in a One-vs-One (OvO) set-

ting. The performances of this later study are stained by strong class imbalance with

accuracy scores ranging from around 80%, for well balanced classes, to around 50%

for highly imbalanced situations. Together, these studies established the feasibility of

alignment-free, feature-based ML for physiological-role prediction while highlighting

two themes that recur in later work: (i) structure-derived descriptors can add value be-

yond sequence-only baselines; and (ii) evaluation must account for class imbalance and

protocol design (see Section 4.9).

2.2.3 Proteins as PCNs for GML

Protein contact networks —also called residue interaction/contact networks— abstract

a protein’s 3D structure as a graph whose nodes are residues (typically Cα atoms) and

whose edges encode spatial proximity; common design choices include an 8 Å cutoff

(or a 4–8 Å window to suppress trivial backbone neighbors) and, in some variants,

weighted edges based on inverse distances [27].

Early work by Borgwardt et al. (2005) [10] modeled proteins at the level of secondary-

structure elements (SSEs), connecting SSEs via sequential and structural edges, and

trained SVMs with random-walk graph kernels in a two-stage pipeline (usual enzyme

vs. non-enzyme followed by first-level EC class) on balanced EC subsets. Adding struc-

tural edges and specific global attributes improved performance over sequential-only or

attribute-free baselines [10].

Martino et al. (2017) [64] work with Cα contact networks adding edges when

residues are in the range [4-8] Å and summarize them via topology- and spectrum-based

descriptors (e.g., normalized-Laplacian spectral densities, centralities, etc.) to feed ker-

nel methods and SVM variants. With this approach the residue–residue contacts define
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the learning substrate for the applied ML algorithm. This study is also focused on the

first level EC number prediction for a subset of the proteome of E. coli.

De Santis et al. (2018) [26] embed heterogeneous PCN and sequence descriptors

(spectral density, centralities, protein size, Betti numbers, primary sequence) into a

dissimilarity-space and test three strategies: (i) features selected via genetic algorithms

with PARC/ν-SVM, (ii) an isometric embedding with standard classifiers, and (iii) a

cluster-based one-class model that learns feature weight. They achieve an F1-score of

∼ 0.70 with ν-SVM and up to 0.75 with the one-class system on 1, 224 E. coli proteins

(703 enzymes, 521 non-enzymes).

Various other studies exploited PCNs for a plethora of computational intelligence

tasks, from standard classification to more advanced generative tasks [59–61]. Given

their versatility and intuitiveness PCNs have been deemed the perfect technique for pro-

tein analysis and have been used as basis for all ML experiments presented in Chapter

4.

2.2.4 GNNs for EC number Prediction

Structure-aware GNNs are able to operate directly on PCNs, in this setting, node at-

tributes usually include residue identity and/or physicochemical descriptors (and op-

tionally secondary structure/solvent accessibility), while edges carry geometric fea-

tures such as inter-residue distances or orientation; a message-passing encoder with

graph pooling yields a graph-level representation that feeds one or more classification

heads (see Section 2.1.6). Many pipelines implement a two-stage protocol in which

a dedicated binary head filters enzymes before EC classification, whereas others fold

non-enzymes into a unified multiclass objective by adding a “non-enzyme” label or

thresholding EC logits and others operate on two distinct datasets directly one for the

enzyme vs. non-enzyme classification and another for EC number prediction (the latter

being the chosen method for this thesis as anticipated in Section 2.2.1).

Representative PCN-based approaches include works such as Graph Convolutional

Networks (GCN) by Kipf & Welling (2016) [54] that combine residue features with

proximity edges to predict EC labels often alongside Gene Ontology terms [38]. More
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recent equivariant GNNs inject 3D geometry directly into message passing either by

coupling sequence transformers with E(3)-equivariant layers over residue graphs de-

rived from experimental or AlphaFold2 structures [9], or by using geometric vector

perceptrons that jointly propagate scalar and directional features on PCNs [50]. Across

studies, using PCNs as the learning substrate consistently improves over sequence-only

baselines, with the largest gains in remote-homology regimes. When reliable coordi-

nates are available, equivariant architectures tend to outperform plain GNN models on

both enzyme detection and top-level EC classification.

Most recent architectures require significant computing capabilities and in order

to mediate between the effectiveness of most recent approaches and acceptable model

training times this thesis includes only standard GNN models (as in Figure 2.1) whose

structures have been optimized for the two tasks of interest. Various MP strategies and

different topologies are explored in order to find the best possible architecture with rea-

sonable training times on the available machines (for additional details refer to Section

4.8).

2.2.5 Datasets Choice

Previous studies constructed their dataset starting from either selected balanced subsets

of proteins [10], which facilitated modelling but was poorly representative of the real

biological distribution of proteins in living organisms, or from subsets of proteomes of

simple organisms such as E. coli [26,64]. More recent studies regarding Deep Learning

architectures built more comprehensive datasets composed hundreds of thousands pro-

teins, with some reaching more than 500, 000 structures [9]. This thesis takes a hybrid

approach, the starting dataset represents the entirety of the human proteome composed

of approximately 70, 000 distinct structures, said dataset was filtered to select proteins

with a single first-level EC number and good enough resolution to be candidates for

PCN construction. After the data cleaning procedure the resulting dataset included

more than 48, 000 proteins with approximately 21, 000 enzymatic structures, all the

details can be found in Chapter 3. Task A exploited the entirety of the dataset while

Task B leveraged only the enzymatic proteins. This process allowed the realization of a
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large-scale analysis of protein structures with specific focus on the human proteome.
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Chapter 3

Data Collection

The initial dataset for the analysis consisted of 69, 979 distinct protein structures repre-

senting the entirety of the human proteome. The original files were mass downloaded

from Protein Data Bank (PDB) on March the 1st 2025 and subsequently parsed via spe-

cialized Python packages such as BioPython [21] and BioPandas [81] in order to extract

the following relevant characteristics for each protein:

• Coordinates of all Cα atoms belonging to standard amino acids, essential for the

construction of PCNs (In the case of alternate locations1 the average coordinates

were considered)

• Residue names related to each Cα atom

• Resolution of the experiment used to determine the positions of atoms in the

structure

• First Level EC Number(s)

The resulting protein structures were then filtered, specifically, proteins belonging

to the following categories were discarded:

1. Any protein showing an evidently degenerate structure (e.g., one single residue,

very far residues, etc.)

1For additional details refer to Proteopedia, Alternate Locations in PDB Files
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2. Any protein which exhibits multifunctional [49] or moonlighting [48] properties

(i.e., presenting more than one first level EC Number)

3. Any protein with missing resolution or with a resolution exceeding 3Å. This

threshold was chosen because, given the residue interaction range of [4–8]Å, only

highly detailed structures are informative for the analysis.

After filtering, the dataset was composed of 48, 019 proteins divided in 26, 312 non

enzymatic structures and 21, 707 enzymatic ones. The enzymatic ones were further

distributed as presented in Table 3.1, notably classes 5 (Isomerases), 6 (Ligases) and

7 (Translocases) are substantially underrepresented in the dataset compared to other

EC Classes and will probably prove to be hard to correctly classify. EC Class 7 in

particular is represented by only 28 structures across the entire dataset, this phenomenon

is probably due to it being the newest EC class, introduced only in 2018 [95]. Given

this extreme scarcity in the dataset Translocases were ignored in the context of Task B.

Given the two layer experimental procedure of this work two distinct datasets were

created: (i) a dataset of all 48, 019 structures divided in Non-Enzymatic and Enzymatic

(i.e., belonging to any EC Class) for Task A and (ii) a dataset of 21, 679 enzymatic

structures (after the removal of Translocases), each with its own first level EC Number

for Task B. This two datasets were used in parallel for all of the experimental steps of

this work.

EC Count Percentage
1 2959 13.63%
2 8878 40.90%
3 7181 33.08%
4 1557 7.17%
5 660 3.04%
6 444 2.05%
7 28 0.13%

Table 3.1: EC Number Distribution for Enzymatic Proteins
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Chapter 4

Methodologies

This section will include the technical and theoretical specifications of all methods used

in the experimental framework of the thesis.

4.1 Proteins as PCN-Graphs

As anticipated in Section 2.2.3 protein structures downloaded from PDB were processed

by creating PCNs following the same approach found in [26, 27, 64]. Starting from the

3D coordinates of atoms in the proteins (often retrieved by means of X-Ray Crystallog-

raphy [7]) only atoms belonging to the 20 standard amino acids were considered (see

Table 4.1), specifically their Cα atoms were used as nodes in the resulting PCNs. Cα

atoms were connected if the Euclidean distance among them was in the range [4-8]Å,

the lower bound was set in order to discard trivial first-neighbor interactions along the

chain of a protein while the upper bound is set to 8Å which corresponds approximately

to two van der Waals radii of Cα atoms [78]. Outside such range residues are assumed

to have no relevant interaction. The final PCNs are graphs whose nodes are labeled with

the name of the residue corresponding to each Cα atom. Edges were deliberately kept

attribute-free to foster learning directly from the interactions of residues. Following the

same rationale the resulting graphs have no notion of the original 3D space, they only

retain information about the connectivity structure of the amino acids.

Figure 4.1 presents the structure of human serum albumin (1AO6 on PDB) both in
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Amino acid PDB 3-letter code Amino acid PDB 3-letter code
Alanine ALA Leucine LEU
Arginine ARG Lysine LYS
Asparagine ASN Methionine MET
Aspartic acid ASP Phenylalanine PHE
Cysteine CYS Proline PRO
Glutamine GLN Serine SER
Glutamic acid GLU Threonine THR
Glycine GLY Tryptophan TRP
Histidine HIS Tyrosine TYR
Isoleucine ILE Valine VAL

Table 4.1: The 20 Standard Amino Acids and Their Abbreviated Residue Names in
PDB – Source: Adapted from [82]

its original form directly from PDB 3D structure visualization (Figure 4.1a) and in its

PCN representation (Figure 4.1b) where each node is colored according to the origi-

nal residue of the relative Cα atom. Nodes of the PCN were placed in the correct 3D

location for visualization purposes only, the exact same structure appears as in Fig-

ure 4.2 when drawn according to Fruchterman-Reingold force-directed algorithm [36].

This highlights how the performances of the models will depend uniquely on feature

engineering techniques and residue interactions.

(a) Protein Model on PDB (b) PCN from Cα atoms

Figure 4.1: Representations for Human Serum Albumin (1AO6)
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Figure 4.2: Human Serum Albumin Force-Directed Representation

4.2 Graph Embedding via Simplicial Complexes

Starting from PCNs as described in the previous Section together with the notion of

Simplicial Complexes anticipated in Section 2.1.3 it is possible to conceptualize a graph

embedding technique based on Simplicial Complexes. Simplices of node-labels (i.e.,

amino acid names) can be used to create a symbolic histogram of the protein structure

by counting how many times each simplex appears in the protein. Each graph structure

can be effectively embedded in the Euclidean Space with a multi-set of its simplices.

This process however lacks representation capabilities when applied to out-of-the-box

PCNs which are able to describe only pairwise relationships (PCNs are by definition

simple, unweighted graphs). Considering 20 different amino acids there could be only(
20+2−1

2

)
= 210 possible combinations of length two which would probably harm the

expressive power of the embedding.

In order to circumvent this issue the edges of PCNs were aggregated creating clique

hypergraphs. An hypergraph is a graph generalization in which edges (commonly

known as hyper-edges) can connect an arbitrary number of nodes at the same time, for-

mally an hypergraph can be defined similarly to a graph as H = (V , Eh) in which V is

a finite set of nodes (same as plain graphs) while Eh ∈ Vn is a set of hyper-edges which

can connect any number of nodes of V simultaneously. Hypergraphs have been ex-

plored in literature to represent a great variety of complex systems (e.g., co-authorship

networks, metabolic networks, brain functional networks, etc.) due to their flexibility

and expressive power [32, 41, 52, 69, 75, 101]. A clique hypergraph in particular is an
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hypergraph generated starting from a plain graph in which maximal cliques were sub-

stituted with hyper-edges of the same order [4, 107]: a simple example of this process

would be a triangle in the graph G described by edges {(A,B), (B,C), (A,C)} which

gets projected in the hypergraph H as a single hyper-edge {(A,B,C)}. The same pro-

cedure is carried out for cliques of all orders. In order to find all maximal cliques to

merge into hyper-edges an iterative version of Bron-Kerbosch algorithm was used [12].

The complete dictionary of possible hyper-edges could in theory be enormous. Con-

sidering maximal cliques of all sizes up to R and treating each as a combination of the

20 amino acids (order irrelevant, repetitions allowed), the number of possible composi-

tions is

R∑
r=1

(
r + 20− 1

r

)
=

R∑
r=1

(
r + 19

19

)
=

(
R + 20

20

)
− 1 = Θ

(
R20
)

(4.1)

where R is the size of the largest maximal clique in the dataset. In practice however

the number of distinct hyper-edges in the dataset is much smaller (∼ 16, 000).

The instance matrix X(S) resulting from such embedding via simplicial complexes

has shape n×|d| where n is the number of proteins in the dataset and d is the dictionary

of distinct simplices in the dataset. Considering c(Hi, dj) a function that counts how

many times the simplex dj appears in the clique hypergraph Hi the instance matrix X(S)

can be defined as

X
(S)
i,j = c(Hi, dj) (4.2)

Given the two-step experimental framework described in Section 2.2.1, two distinct

instance matrices were constructed: (i) X(S)
A including a dictionary dA of all simplices

from both enzymatic and non-enzymatic proteins (∼ 16, 000 in total) for Task A; and

(ii) X(S)
B including a dictionary dB of only simplices coming from enzymatic proteins

(∼ 13, 000 in total) for Task B.
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4.2.1 INDVAL Scores

The dimensionality of the graph embedding via simplicial complexes presented in the

previous section is far from the worst possible case (Equation (4.1)) however consid-

ering the fact that the datasets involved in the analysis consist of tens of thousands of

distinct proteins it was relevant to investigate whether it was possible to perform some

degree of feature selection while maintaining stable classification performances during

the modelling phase.

In order to carry out this procedure with a model-agnostic rationale the INDVAL

score was considered. The INDVAL score is a sensitivity and specificity integrated

evaluation originally proposed to individuate the most characteristic species of a given

environment [31]. According to the INDVAL criterion, a species s is a good represen-

tative for an environment E if

1. s is present only (or almost only) in environment E — proxy for specificity

2. s is present in all (or almost all) of environments E — proxy for sensitivity

The same exact rationale can be used for individuating signature substructures for

a specific type of proteins. In order to adapt the INDVAL scores to the experimen-

tal framework of this thesis it is possible to draw a parallel where each simplex of

node-labels in the aforementioned dictionary d is considered a species and each class is

considered an environment. With this approach it was possible to construct a restricted

version of the embedding presented in section 4.2 where only the sub-structures with

the best INDVAL scores are considered.

Considering j a specific class and i a specific simplex the unified INDVAL score

can be defined starting from the following scores:

Ai,j =
# structures in class j having simplex i

# patterns having simplex i
(4.3)

Bi,j =
# structures in class j having simplex i

# patterns belonging to class j
(4.4)
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where Ai,j is a measure of specificity, maximized when simplex i appears only in

class j, and Bi,j is a measure of sensitivity, maximized when all structures of class j

have the simplex i. By combining Ai,j and Bi,j the final INDVAL score Ii,j reads as:

Ii,j = Ai,j · Bi,j · 100 (4.5)

Given the fact that Ai,j ∈ [0, 1] and Bi,j ∈ [0, 1] it follows that Ii,j ∈ [0, 100] with the

following interpretation: an INDVAL Score Ii,j of 100 is assigned to the perfect simplex

(i.e., substructure) from a classification point of view. In practical terms, simplex i

would appear in all observations of class j and never in observations belonging to any

other class (i.e., it would exactly mimic the class label).

Given a classification task where the symbolic histogram technique was used to

embed the input data it is possible to define its INDVAL matrix I of shape |C| × |d|

where d is the dictionary of all the symbols in the dataset and C is the set of unique

classes. Each value in I corresponds to the INDVAL score of simplex dj for class Ci

After the creation of I it is possible to select sub-structures (features) which had at

least one of their INDVAL scores above a certain user-defined threshold τ . The choice

of τ is not straightforward and strongly depends on the specific dataset as there is no

guarantee of the existence of the so-called perfect symbol: INDVAL scores could be

upper bounded at a value far lower than 100 in a specific dataset. It is however possible

to pick τ with a data driven approach thanks to some intuitive heuristics.

Considering the experimental framework of the thesis two distinct INDVAL matri-

ces were defined: IA with shape |CA| × |dA| for Task A and IB with shape |CB| × |dB|

for Task B. Figures 4.3 and 4.4 present the number of features included in each dataset

(Task A and B) for every possible τ . It is apparent how there is no perfect symbol in any

of the two datasets, in particular the maximal INDVAL scores were 43.03 and 73.52 in

Task A and Task B respectively. Notably most of the scores are near 0 as highlighted by

the abrupt decrease in number of included features as the threshold increases. The two

vertical lines in the figures represent the two chosen thresholds τA = 6 and τB = 10

(for Task A and B respectively). Such thresholds were chosen in order to let the final

INDVAL embedding retain ∼ 10% of the original feature set while mostly respecting
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the elbow rule heuristic [94]. This sharp feature selection will put to test the effective-

ness of INDVAL scores in selecting the most relevant sub-structures for classification

problems.
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Figure 4.3: Number of Features at Various Threshold Levels for Task A

The INDVAL feature selection procedure generated two instance matrices: X(INDVAL)
A

with ∼ 1, 600 features for Task A and XINDVAL
B with ∼ 1, 300 features for Task B.

As a final remark both XINDVAL
A and XINDVAL

B were obtained by removing features of

X
(S)
A and X

(S)
B by comparing entries in IA and IB with τA and τB respectively.

4.3 (Hyper)Graph Kernels

As anticipated in Section 2.1.4 graph kernels are among the most widely used tech-

niques for machine learning tasks on graph structures [74]. The methods presented in

this section will take as inputs the embedding created by leveraging the clique hyper-

graph expansion of PCNs combined by the notions on simplicial complexes presented in

Section 4.2. The two following (hyper)graph kernel methods are adapted from Martino

& Rizzi (2020) [65] and can be constructed directly starting from X
(S)
A and X

(S)
B .
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Figure 4.4: Number of Features at Various Threshold Levels for Task B

4.3.1 Histogram Cosine Kernel

The Histogram Cosine Kernel (HCK) between any two PCNs can be computed as the

cosine similarity between their respective symbolic histogram representations (rows in

X(S)). Considering xi = X
(S)
i,· the HCK between any two PCNs i and j can be defined

as

KHC(xi,xj) =
⟨xi,xj⟩

||xi|| ||xj||
∈ [0, 1] (4.6)

4.3.2 Jaccard Kernel

The Jaccard Kernel (JK) starts from the exact same symbolic histogram as the HCK but

is computed as the ratio between the intersection and the union of the two multisets.

Considering again d as the dictionary of all simplices represented in the histograms and

xi = X
(S)
i,· the JK between any two PCNs i and j can be defined as
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KWJ(xi,xj) =

d∑
k=1

min{xik, xjk}

d∑
k=1

max{xik, xjk}
∈ [0, 1] (4.7)

4.4 Spectral Density

As anticipated in Section 2.1.5 the spectrum of the Normalized Laplacian Matrix L

of a graph (hereinafter referred to as graph spectrum) can be interpreted as a sort of

fingerprint regarding the connectivity properties of the graph itself. The most popular

example of such properties being the multiplicity of the eigenvalue 0 corresponding

exactly to the number of connected components in the graph.

While the set of eigenvalues of L is highly informative for characterizing global

connectivity, its cardinality equals the number of nodes n in the graph, which prevents

a direct, size-agnostic use across graphs of different orders which is key in supervised

learning pipelines as the one presented in this work.

In order to circumvent this issue it is worth recalling that all eigenvalues of L are

real non-negative numbers and specifically lie in the range [0, 2], for these reasons it is

possible to approximate the spectral density of a graph thanks to kernel density estima-

tion (KDE) [61] with a Gaussian Kernel [76]. In order to do so, L is treated as random

matrix with known spectral density p(x) [47, 64] that can be defined as:

p(x) =
1

n

n∑
i=1

1√
2πσ2

e

(
− (x−λi)

2

2σ2

)
(4.8)

where σ represents the bandwidth of the kernel which, in order to scale it automat-

ically with graph-sizes, was decided in accordance with Scott’s rule [88]. Considering

n the number of nodes and σ̂ the sample standard deviation (relative to eigenvalues), σ

was defined as

σ =
σ̂

n1/5
(4.9)

To move from the continuous density to a fixed-length feature vector, B = 200 uni-
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formly spaced points in [0, 2] were sampled, producing a spectral embedding s ∈ R200

for each PCN. This process yields comparable, size-agnostic descriptors that integrate

seamlessly into the classification pipeline. Figure 4.5 shows the estimated spectral den-

sity for Human Serum Albumin (1AO6); the corresponding embedding is given by the

sequence of KDE evaluations at the 200 grid points.
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Figure 4.5: Spectral Density KDE Estimation for Human Serum Albumin (1AO6)

Applying the above KDE-based spectral embedding to each PCN yields two in-

stance matrices, X(SPECTRAL)
A and X

(SPECTRAL)
B , corresponding to Task A and Task B,

respectively. In both matrices, rows index proteins and columns store the B = 200

evaluations of their spectral density on the uniform grid over [0, 2]. Hence both datasets

have identical feature dimensionality (B = 200).

4.5 Summary of Representation Techniques

In summary, the experimental framework of the thesis relies on three complementary

representations derived from protein contact networks (Section 4.1).
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First, the simplicial complex embedding (Section 4.2) augments PCNs via clique

hypergraphs to capture higher-order, residue-labeled interactions; the resulting sym-

bolic histograms offer direct compatibility with both standard ML algorithms and kernel

methods emphasizing label-aware local structures. The main limitations of said method

are the combinatorial growth of the dictionary (see Equation (4.1)) and its high sparsity.

Two non parametric hypergraph kernel approaches have been explored on the simplicial

complex embedding (Section 4.3) as they allow the convenient insertion of non-linear

similarity metrics among graph structures. As anticipated in Section 2.1.4 kernels do

not produce explicit embeddings of the input data but complete Gram matrices which

encode similarity among input objects. Such matrices need specialized attention during

the modelling phase as they are not suited for the majority of ML models.

Second, INDVAL-based feature selection (Section 4.2.1) retains substructures that

are simultaneously specific to and prevalent within classes, yielding compact dictionar-

ies (i.e., ∼ 10% of the original features considering thresholds τA and τB) with a model-

agnostic rationale. Threshold choice remains however data-dependent and could filter

out individually weak but jointly informative patterns.

Third, the spectral density representation (Section 4.4) maps each PCN to a fixed-

length vector by estimating the Normalized Laplacian eigenvalue density on [0, 2], pro-

viding a size-agnostic summary of global connectivity that is robust to graph size; its

weaknesses include loss of residue labels and local motif identity and potential cospec-

tral graphs.

Taken together, the simplicial/INDVAL path prioritizes labeled, higher-order local

structure with controlled dimensionality, whereas spectral density contributes a com-

pact, global fingerprint; these views are complementary within the supervised frame-

work of Section 2.2.1.

Table 4.2 presents a schematic summary of the dimensions of each embedding

methodology explored.

2Dimensionality varies slightly across splits of the data, refer to Section 4.11
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Dimensionality
Representation Task A Task B

Simplicial Complexes ∼ 16, 0002 ∼ 13, 0002

INDVAL ∼ 1, 6002 ∼ 1, 3002

Spectral Density 200 200

Table 4.2: Dimensionality of Embedding Strategies

4.6 Standard Classifiers

The embedding techniques presented in the previous sections have afterwards been

compared using a variety of well-known ML algorithms for classification. Early ex-

periments explored most of the families of classification models (e.g., linear models,

tree-based models, SVMs, K-NN, logistic regression with splines, etc.). After some

early pruning the choice of optimal candidates for the study was: (i) ℓ1-Linear-SVM

for its speed and feature selection capabilities, (ii) Kernel ν-SVM for its ability to work

also with pre-computed kernels and great flexibility and (iii) Random Forest for its all-

around good performances on a great variety of tasks.

4.6.1 ℓ1-Linear-SVM

The ℓ1-norm linear SVM model learns a maximum-margin hyperplane by minimiz-

ing the empirical squared hinge loss under regularization [24]. Using an ℓ1-penalty on

the weight vector w promotes sparsity and leads to embedded feature selection [106].

The ℓ1 regularizer drives many coefficients exactly to zero, improving interpretabil-

ity and reducing variance: such properties make ℓ1-penalty particularly desirable for

high-dimensional, sparse representations such as symbolic histograms [33]. The opti-

mization problem remains convex and can be handled efficiently: ℓ1 solutions however

may be less stable under strong feature collinearity than their ℓ2-regularized counter-

parts [108]. ℓ1-norm linear SVMs can also handle multiclass classification problems

thanks to the One-vs-Rest (OvR) strategy [98]. Mathematically speaking, ℓ1-norm lin-

ear SVM solves the following optimization problem [33]:

min
w

∥w∥1 + C

n∑
i=1

(
max{0, 1− yi w

⊤xi}
)2

(4.10)
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where xi represents the feature vector for observation i, yi its associated class label

(encoded as {−1, 1}) and C is the so-called regularization parameter. C governs the

balance between the two terms of the objective function and is defined as strictly pos-

itive. Its value is inversely related to the strength of the regularization: small values of

C enforce stronger penalization on the coefficients, while larger values of C reduce the

relative impact of the penalty. Intuitively, as C increases, the contribution of the empir-

ical squared hinge loss becomes predominant with respect to the ℓ1-norm term, leading

the model to prioritize a closer fit to the training data. In this sense, the parameter C

effectively controls the trade-off between model complexity and generalization abil-

ity, determining whether the resulting hyperplane adheres more tightly to the training

samples or emphasizes sparsity in the weight vector.

Notably, there is no upper bound for the hyper-parameter C, which can make the

search for the optimal values quite cumbersome depending on the specific dataset.

4.6.2 Kernel ν-SVM

ν-SVM is a variation of the standard C-SVM (whose linear version was presented in

the previous section, although with ℓ1 regularization) first introduced by Scholkopf et

al. (2000) [86]. The parameter ν replaces C as the primary regularizer and provides

interpretable control over model complexity: it is an upper bound on the fraction of

training errors and a lower bound on the fraction of support vectors [20]. By definition,

ν ∈ (0, 1].

While the linear version of ν-SVM can be expressed in primal form (similar to

Equation (4.10)), extending it to non-linear decision boundaries requires kernelization.

Since explicitly mapping data into a high-dimensional feature space ϕ(x) is generally

infeasible, the dual ν-SVM formulation is preferred as it allows the data to appear only

in the form of inner products [44]. Replacing feature vectors with kernel evaluations

K(xi,xj) = ⟨ϕ(xi), ϕ(xj)⟩ allows the model to operate implicitly in a kernel Hilbert

space H without explicitly computing ϕ(x) (see Section 2.1.4). This kernel trick en-

ables efficient non-linear classification while preserving the convexity of the optimiza-

tion problem.
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The dual problem for kernel ν-SVM is formulated as follows [20]

min
α

1
2
α⊤Qα

s.t. 0 ≤ αi ≤ 1
l
, i = 1, . . . , l,

e⊤α ≥ ν,

y⊤α = 0,

(4.11)

where Qij = yiyjK(xi,xj), e is the vector of all ones, l denotes the number of

training samples, and αi are the Lagrange multipliers associated with the constraints.

The corresponding decision function for a new input x is expressed in terms of the

support vectors:

f(x) = sign

(
l∑

i=1

αiyiK(xi,x) + b

)
. (4.12)

It is important to note that not all values of ν ∈ (0, 1] are viable for every classifi-

cation problem, Chang & Lin (2001) [19] demonstrated that Equation (4.11) is feasible

only if

ν ≤ 2min(#yi = 1,#yi = −1)

l
≤ 1 (4.13)

This phenomenon restricts heavily the possible values for ν especially in highly

imbalanced classification scenarios

In summary, Kernel ν-SVM generalizes the linear case to non-linear feature spaces

while retaining the interpretability of the ν parameter. Its bounded range often simplifies

hyperparameter tuning compared to C-SVM, although the practical choice of ν remains

dataset- and kernel-dependent. As with other SVM variants, multiclass classification

can be addressed through the OvR strategy [98].

4.6.3 Random Forest

Random Forest (RF) is an ensemble method introduced by Breiman (2001) [11] that

extends decision trees through randomized bagging and feature subspacing to reduce

variance and improve generalization. Each tree is trained on a bootstrap sample of
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the training set (sampling n instances with replacement) and, at every internal node,

the split is chosen by maximizing the impurity decrease considering a random subset

of features of size mtry [11]. This dual source of randomness (resampling rows and

subspacing columns) decorrelates individual trees, so that their aggregation via majority

vote (for classification tasks) generates a relatively low-variance estimator. Formally,

for a forest with B trees {hb}Bb=1, the RF classifier predicts

ŷ(x) = mode{hb(x) }Bb=1, (4.14)

and class-posterior estimates are obtained by averaging per-tree posteriors:

P̂ (Y = c | x) = 1

B

B∑
b=1

P̂b(Y = c | x). (4.15)

Individual trees are typically grown to near purity without pruning using impurity

criteria such as the Gini index [37] or Entropy [90].

RF models are naturally able to compute the importance of each input feature quan-

tified in mean decrease in impurity (MDI). In practice RFs are robust to high-dimensional

and mixed-type inputs, require few hyper-parameters, and accommodate class imbal-

ance via class weights or stratified sampling. These properties make RF a natural base-

line for both the symbolic-histogram and the spectral-density embeddings employed in

this work [58, 92].

4.7 Summary of Standard Classification Algorithms

Each of the classification algorithms presented in the previous section was used on all

of the embedding methods described in Sections 4.2, 4.2.1 and 4.4. In order to explore

the representation capabilities of the kernel methods described in Section 4.3 only the

ν-SVM model was explored as it naturally supports pre-computed kernels thanks to the

dual formulation of the SVM problem presented in Equation (4.11). Table 4.3 presents

a synthetic summary of which classification model was used in combination with each

representation strategy.
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ℓ1-SVM ν-SVM RF
Simplicial Complexes Embedding ✓ ✓ ✓

INDVAL Embedding ✓ ✓ ✓
Spectral Density Embedding ✓ ✓ ✓

Histogram Cosine Kernel ✘ ✓ ✘

Weighted Jaccard Kernel ✘ ✓ ✘

Table 4.3: Summary of Representation Methods and Related Classification Algorithms

4.8 GNNs

As anticipated in Section 2.1.6 GNN architectures have been demonstrated to be ex-

tremely capable for graph classification often reaching state-of-the-art results. Despite

GNNs often respecting the conceptual topology of Figure 2.1 there exist a plethora of

different MP strategies and a virtually infinite number of different architectures to test,

many of which would have prohibitive training times. In order to accommodate for the

limited computing power available and to prevent known issues related to MP such as

over-smoothing (i.e., most node collapsing to near-identical representations after nu-

merous MP steps [83]), the tested GNN architectures were limited to relatively shallow

structures. Specifically all of the tested topologies had at most 5 MP steps, 5 classi-

fication head layers and latent dimensions (for each node representation) of at most

256.

GNNs take as input PCN structures directly without the need for further processing

or explicit embeddings. Recall that in this specific applicative case each node has one

categorical feature (i.e., its amino acid name), such label was represented either via

One-Hot-Encoding (OHE) with a binary vector in {0, 1}21 (20 dimensions for standard

amino acids plus 1 for possibly unknown ones) or via dense learnable embeddings with

a maximum of 128 elements.

After the initial data input and node features embedding graph nodes pass through

MP layers. In terms of MP strategies the exploration revolved around some of the most

relevant MP paradigms in literature included in the PyTorch Geometric (PyG) python

package [34]:

1. Graph Convolution: first presented in Morris et al. (2019) [71] it implements

a first-order, Weisfeiler–Leman–style message passing in which each node up-
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dates its representation by combining a transformation of its own features with

an aggregated transformation of its neighbors. For a node i with features xi and

(optional) scalar edge weights ej,i, the layer computes

x′
i = W1 xi + W2

∑
j∈N (i)

ej,i xj, (4.16)

where W1,W2 are learnable weight matrices and the neighborhood aggrega-

tion is permutation-invariant (e.g., sum/mean/max with sum being the common

choice). This operator respects graph isomorphism symmetries and in theory

matches the expressive power of the 1-WL test that characterizes many GNN

architectures.

2. Sage Convolution: first presented in Hamilton et al. (2017) [42] it performs

inductive message passing by combining a node’s own representation with a

permutation-invariant aggregation of its neighbors. For a node i with features

xi it computes

x′
i = W1 xi + W2 ·meanj∈N (i)xj (4.17)

where W1,W2 are learnable weights and the neighborhood aggregation is typi-

cally the mean. Optionally, an input projection can be applied before aggregation.

3. GCN Convolution: first presented in Kipf et al. (2016) [54] it implements a

renormalized, symmetrically normalized neighborhood aggregation. Using an

adjacency matrix with self-loops Â = A + I and degree matrix D̂ with D̂ii =∑
j Âij , the layer computes

X′ = D̂−1
2 Â D̂−1

2 XW (4.18)

equivalently, at node level,

x′
i = WT

∑
j∈N (i)∪{i}

1√
d̂i d̂j

xj (4.19)

where W is learnable and d̂i, d̂j correspond to D̂ii and D̂jj respectively. This

35



propagation enforces permutation invariance and stabilizes training via degree

normalization.

4. GIN Convolution: first presented by Xu et al. (2019) [104] it realizes an ex-

pressive permutation-invariant aggregation by summing neighbor features with a

scaled self-feature and then applying a multi-layer perceptron. The scaling coef-

ficient ϵ can be fixed or learned, controlling the relative contribution of the central

node. The canonical update is

x′
i = hΘ

(1 + ϵ)xi +
∑

j∈N (i)

xj

 , (4.20)

where hΘ denotes an MLP. This sum-based design matches the discriminative

power of the 1-WL test under suitable conditions.

5. GAT Convolution: first presented by Veličković et al. (2017) [99] it imple-

ments data-dependent, permutation-invariant message passing by learning atten-

tion weights over edges. For each attention head k = 1, . . . , K, attention logits

are computed as

e
(k)
ij = LeakyReLU

(
a(k)⊤[W(k)xi ∥W(k)xj

])
(4.21)

normalized across the incoming neighborhood N of i,

α
(k)
ij = softmaxj∈N (i)∪{i}

(
e
(k)
ij

)
(4.22)

and used to aggregate neighbor features,

z
(k)
i =

∑
j∈N (i)∪{i}

α
(k)
ij W(k)xj (4.23)

The layer output is obtained by combining the K heads either by concatenation
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or averaging,

x′
i =


∥∥K
k=1

z
(k)
i (concatenation)

1
K

∑K
k=1 z

(k)
i (average)

(4.24)

optionally with dropout on features and attention coefficients. The PyG imple-

mentation follows this formulation and typically includes self-loops in the graphs

so that the central node performs self-attention during MP.

Notably each GNN topology exploits only one of the aforementioned strategies at

a time with no change in the dimensions of node representations after any MP layer

besides the first which projects node representations up to the chosen hidden dimensions

of the network.

After MP the next important step of a GNN for graph classification is graph pooling

which aggregates the node representations into a single vector corresponding to a graph

latent representation.

In the context of this work pooling was carried out either via permutation invariant

aggregations (max/mean/sum) or via Attentional Aggregation. Attentional Aggregation

is a pooling method presented by Li et al. (2019) [57] which performs soft attention over

nodes, computing a convex combination of transformed features with data-dependent

weights. Given elements {xn}Ni
n=1 belonging to group i, the aggregation is

ri =

Ni∑
n=1

softmax
(
hgate(xn)

)
· hΘ(xn) (4.25)

where hgate : RF → R (F being the dimensionality of the node representations)

produces un-normalized attention scores that are then normalized across the elements

in group i, and hΘ is a learnable transformation (typically a MLP) applied to each

element before weighting. The softmax ensures permutation invariance and normalizes

the sum to one within each group. In this particular application the entirety of the nodes

in the graph was considered a single group to be aggregated

The last step after pooling is the actual classification step carried out thanks to a

typical MLP structure.

Table 4.4 shows a summary of the all of the parameters that were used to define
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candidate GNN structures, notably parameters presenting a † after their name are con-

ditional parameters that were defined only if other parameters presented specific values

(e.g., # GAT Heads was defined only for topologies using GAT Convolution). The pre-

sented topologies were explored efficiently thanks to the bayesian optimization strategy

presented in Section 4.10.

Parameter Name Type Values Notes
Data Embedding Type Cat OHE,

dense
Type of Embedding for
Amino Acids

Embedding Dimensions † Int [8, 128] Size of Dense Embeddings

Activation Type Cat ReLU,
LeakyReLU

Non Linear Activation Func-
tion for the GNN

Negative Slope † Float [0.01, 0.3] Slope for Negative Inputs in
LeakyReLU

MP Strategy Cat Graph,
Sage,
GCN, GIN,
GAT

# MP Layers Int [1,5] Upper Bound Reduced to 3
for GAT MP 2

Normalization Type Cat Graph,
GraphSize,
Batch,
Layer,
None

Type of Normalization in MP
Layers

Hidden Dimensions Int [64, 256] Upper Bound Reduced to 128
for GAT MP 2

Pooling Type Cat Mean,
Sum, Max,
Attention

Type of Graph Pooling

After Pooling Norm. Cat Batch,
Layer,
None

Normalization Used After
Pooling

# MLP Layers Int [0, 5]

MLP Dropout float [0, 0.5] Dropout for the Classification
Head

# GAT Heads † Int {2, 4, 8} Defined only for GAT MP

# GIN MLP Layers † Int [1,3] Defined only for GIN MP

Table 4.4: Summary of Parameters for Candidate GNN Topologies

2Upper-bounds for parameters were modified to handle computational needs of GAT Convolution
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4.9 Performance Metrics

A core aspect of any ML application are performance metrics which are essential to un-

derstand the real capabilities of a specific model and consequently to compare different

approaches.

Considering the fact that the experimental framework of this work is based on clas-

sification tasks the most complete and informative performance metric is by definition

the confusion matrix (CM). The CM of a binary classifier can be defined as in Table 4.5

Pred. Positive Pred. Negative
Actual Positive TP FN
Actual Negative FP TN

Table 4.5: Binary Confusion Matrix

whose entries are:

TP: Observations correctly predicted as positive cases (True Positives)

FN: Positive cases incorrectly predicted as negative (False Negatives)

FP: Negative cases incorrectly predicted as positive (False Positives)

TN: Observations correctly predicted as negative cases (True Negatives)

In a multiclass setting the CM can be easily generalized by creating a matrix with

dimensions equal to the number of distinct classes in which the diagonal presents cor-

rectly classified observations and other values represent misclassified observations. The

most relevant limit of the CM is that it is difficult to numerically evaluate a model from

its CM directly.

Starting from the entries of a CM it is possible to define most of the standard per-

formance metrics used for classification tasks, the most relevant ones being:

Accuracy: defined as TP+TN
TP+TN+FP+FN

∈ [0, 1]. It represents the fraction of observations cor-

rectly classified by the model

Precision: defined as TP
TP+FP

∈ [0, 1]. It represents the fraction of actually positive instances

among the predicted positive instances. (Also known as Positive Predictive Value)
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Recall: defined as TP
TP+FN

∈ [0, 1]. It represents the fraction of actually positive values

correctly predicted by the model. (Also known as Sensitivity)

F1-Score: defined as 2 precision·recall
precision+recall ∈ [0, 1]. It is the harmonic mean of precision and recall

and is often capable of conveying more information about model performance

despite being harder to interpret.

Bal. Accuracy: considering C the number of classes in the dataset Balanced Accuracy is defined

as 1
C

∑C
i=1

TPi

TPi+FNi
∈ [0, 1]. It represents the macro average of Recall across

all classes in the dataset. It avoids inflated performances in the case of imbal-

anced datasets which makes it often preferable to standard Accuracy. Balanced

Accuracy can be adjusted for chance and is reformulated as

1
C

∑C
i=1

TPi

TPi+FNi
− 1

C

1− 1
C

∈ [1/(1− C), 1] (4.26)

The presented performance measures can be easily extended to multiclass scenarios

by averaging their binary version over all available classes. Adjusted Balanced Ac-

curacy (ABA), specifically the formulation of Equation (4.26), is naturally suited for

multiclass scenarios and also avoids performance inflation on imbalanced datasets. For

these reasons it was used as main performance metric throughout this work, specifically

validation ABA was used as objective function value for the selection of the best set of

hyper-parameters for all tested models (more details in Section 4.10).

4.10 Hyperparameter Optimization Strategy

Hyper-parameter selection in this work was formalized as the global optimization (min-

imization was used for presentation purposes in this section) of a black-box objective

f : X → R over a mixed (continuous, integer, categorical) search space X . The optimal

set of parameters x⋆ can be defined as:

x⋆ ∈ argmin
x∈X

f(x) (4.27)
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where each evaluation of f corresponds to training and validating a model under a

specific hyper-parameter configuration. The adopted approach belongs to the Bayesian

Optimization (BO) paradigm, a class of sequential design strategies that fit a probabilis-

tic surrogate M to the history Dn = {(xi, yi)}ni=1 (with yi = f(xi)) and select the next

candidate by maximizing an acquisition function α(x;Dn,M) balancing exploration

and exploitation [89]. Classical BO instantiates M as a Gaussian Process (GP) and

often uses the Expected Improvement (EI) acquisition [51]. Under a GP posterior with

mean µ(x), standard deviation σ(x) and letting y⋆ = mini≤n yi (in the minimization

case), EI takes the form

EI(x) = (y⋆ − µ(x))Φ (z(x)) + σ(x)ϕ (z(x)) (4.28)

where z(x) = y⋆−µ(x)
σ(x)

, Φ is the standard normal Cumulative Distribution Function

(CDF) and ϕ the related Probability Density Function (PDF) [91]. Intuitively standard

BO tries to model p(y|x) from the history of past trials.

In this work BO was implemented via multivariate Tree-Structured Parzen Estima-

tors (TPE): a sequential model-based optimizer that replaces the usual p(y|x) mod-

elling with a more convenient density estimation of p(x|y), yielding a sampling rule

closely related to EI while being naturally compatible with mixed and conditional

search spaces [1, 6]. Its multivariate variant further models joint dependencies among

hyper-parameters, improving search efficiency when strong interactions are present

[46].

4.10.1 TPE and Bayesian Optimization

Standard BO selects xn+1 by maximizing EI using an explicit surrogate of p(y|x) (e.g.

the GP) [89]. TPE inverts this perspective and directly models the conditional densities

of configurations given performance. Fix a quantile level γ ∈ (0, 1) and the correspond-

ing performance threshold y⋆ such that P (y ≤ y⋆) = γ. Partition the observations into

the good and bad sets as follows:

Dgood = {xi : yi ≤ y∗}, Dbad = {xi : yi > y∗}
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TPE then builds two kernel density estimates (KDEs),

ℓ(x) ≈ p(x | y ≤ y∗) =
1

|Dgood|
∑

xi∈Dgood

Kh(x− xi), (4.29)

g(x) ≈ p(x | y > y∗) =
1

|Dbad|
∑

xi∈Dbad

Kh(x− xi), (4.30)

with kernels Kh(·) adapted to each parameter type (Gaussian for continuous, Aitchi-

son–Aitken or categorical histograms for discrete) [6]. Using Bayes’ rule, the EI objec-

tive:

EI(x) =

∫ y⋆

−∞
(y⋆ − y) p(y |x)dy (4.31)

can be rewritten (details in [6]) as:

EI(x) ∝
(
γ + (1− γ)

g(x)

ℓ(x)

)−1

(4.32)

Maximizing Equation (4.32) is equivalent to minimizing g(x)/ℓ(x). Consequently,

TPE proposes candidates by sampling from ℓ(x) and selecting those with the smallest

ratio g(x)/ℓ(x).

An advantage of TPE is its compatibility with tree-structured search spaces, where

some hyper-parameters are active only when certain categorical choices are made (as

in Table 4.4). The densities in Equations (4.29) and (4.30) are built along the active

branches, avoiding the need to impute values for inactive variables.

The original TPE assumes independence across dimensions by factorizing the KDE

as a product of univariate kernels, this can underperform when the hyper-parameters

exhibit strong interactions among each other. The multivariate TPE variant replaces the

factorized model with a joint KDE over the active subspace of parameters described as:

ℓ(x) =
1

ng

ng∑
i=1

KH(x− xi), KH(u) = |H|−1/2K
(
H−1/2u

)
(4.33)

(and analogously for g(x)), where H is a bandwidth (covariance) matrix and K a mul-

tivariate base kernel. Joint KDEs capture cross-parameter correlations directly, improv-

ing the fidelity of the ratio in (4.32) and thus the quality of the acquisition.
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In summary the optimization pipeline of this work consisted of a TPE-based BO

loop (as in Eqs. 4.31–4.32) exploiting a multivariate TPE process implemented in the

Optuna Python package [1]. This choice provides (i) intelligent exploration of the

possibly very large parameter spaces limiting the number of necessary trials, (ii) native

support for mixed and conditional hyper-parameters and (iii) improved performances in

the presence of hyperparameter interactions thanks to joint KDE modelling.

4.11 Data Resampling and Splitting Strategy

In both experimental settings—Task A (enzyme vs. non-enzyme) and Task B (first-level

EC-class classification)—the corresponding dataset was partitioned into five, mutually

exclusive, stratified folds to preserve label proportions within each split. A five-run

protocol was then executed per task and per model. In each run, a different fold acted

as the hold-out test set, one of the remaining four folds served as the validation set

for hyperparameter selection and the remaining three folds constituted the training set.

Consequently, each instance in the dataset appeared exactly once in the test set and up to

four times in the union of training and validation sets, yielding a nominal 60%/20%/20%

train/validation/test partition per run.

Hyperparameter optimization, as described in Section 4.10, was performed inde-

pendently for every run using only the training folds and the corresponding validation

fold of each run. The selected configuration was then assessed on the run’s test fold,

which remained untouched during model selection. This design eliminates information

leakage from test data into model tuning and ensures that performance estimates reflect

true generalization.

The same five fold indices were fixed across all representation strategies and learn-

ing algorithms to enable paired, like-for-like comparisons. The procedure provides five

independent test scores per model and per task; considering the mean and standard

deviation over these scores offers a more robust and variance-aware summary of per-

formance than a single split, while allowing a fair evaluation of both the representation

strategies and the models at the best of their capabilities.

Note that in the case of the representation strategies involving simplicial complexes,
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a distinct dictionary of simplices d was generated for each data split. The dictionary was

defined as the union of simplices appearing in the training and validation folds and the

resulting symbolic histograms were calculated according to such dictionary also for the

test fold.

44



Chapter 5

Results

This section reports the performances of the tested methods together with the main

outcomes of the analysis. The two experimental tasks, Task A and Task B, are presented

separately in Sections 5.1 and 5.2, respectively.

All tables in this section will present performance metrics averaged over the 5 dis-

tinct data splits (see Section 4.11) in the form avg ± std unless differently specified.

5.1 Task A

Recall that Task A consists of a binary classification problem aimed at distinguish-

ing enzymatic from non-enzymatic proteins. The dataset for this task includes the en-

tirety of the curated human proteome, comprising 48,019 protein structures divided into

26,312 non-enzymatic and 21,707 enzymatic ones.

5.1.1 Spectral Density Embedding

Table 5.1 shows the performances for all models working with the spectral density em-

bedding of PCNs in Task A. The RF model has the best training performances however

it exhibits serious overfitting making ν-SVM the best performer in both Validation and

Testing.

The ℓ1-Lin-SVM classifier exhibits substantially weaker performance compared to

the other models. This behavior can be largely attributed to the characteristics of the
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Model Metric Train Validation Test

ν-SVM
ABA 0.942 ± 0.021 0.749 ± 0.004 0.745 ± 0.006
ACC 0.970 ± 0.010 0.876 ± 0.002 0.874 ± 0.003
F1 0.967 ± 0.011 0.863 ± 0.002 0.861 ± 0.003

ℓ1-Lin-SVM
ABA 0.356 ± 0.005 0.351 ± 0.010 0.356 ± 0.009
ACC 0.678 ± 0.003 0.675 ± 0.005 0.677 ± 0.004
F1 0.658 ± 0.003 0.655 ± 0.004 0.657 ± 0.004

RF
ABA 0.975 ± 0.008 0.715 ± 0.007 0.721 ± 0.009
ACC 0.986 ± 0.004 0.857 ± 0.004 0.859 ± 0.004
F1 0.985 ± 0.005 0.845 ± 0.003 0.848 ± 0.005

Table 5.1: Performances on Spectral Embedding for all Models - Task A

spectral density embedding. Since all graph spectra are supported in the range [0, 2],

the KDE procedure samples exactly the same 200 evaluation points for every protein.

This design ensures comparability across spectra but also introduces strong limitations.

A prime example would be the Gaussian kernel smoothing enforcing continuity so, as

a consequence, most estimated densities share very similar global shapes.

Under these conditions, KDE evaluations at two close points x1, x2 ∈ [0, 2] will

yield nearly identical values. Hence, adjacent columns of the instance matrix are ex-

pected to be highly linearly correlated. Figure 5.1 confirms this phenomenon by show-

ing the correlation structure of X(SPECTRAL)
A : not only consecutive columns, but also

columns near the spectral boundaries display high pairwise correlation.

Because ℓ1-Lin-SVM is by definition a linear classifier, the presence of strong linear

collinearity in the input features degrades its ability to identify sparse and discrimina-

tive subsets of variables. This explains the markedly inferior performance observed in

comparison to the non-linear ν-SVM and the tree-based RF model.

5.1.2 Simplicial Complexes Embedding

Table 5.2 highlights the performances for all models working with the Simplicial Com-

plexes symbolic histogram embedding of PCNs in Task A. ν-SVM appears again as the

most powerful model among the tested ones however in this setting all classifiers per-

form quite similarly with ν-SVM taking the lead by a very small margin. ℓ1-Lin-SVM

works especially well in this setting with a very large number of features as its implicit
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Figure 5.1: Pearson Correlation of Spectral Features - Task A

feature selection allows for the sparsification of the solution shortening running times

and making predictions less noisy. Despite being a purely linear model ℓ1-Lin-SVM

performs only 0.7% worse than ν-SVM and takes a fraction of the training time while

simultaneously ignoring on average 78% of the input features in the process.

Model Metric Train Validation Test

ν-SVM
ABA 0.982 ± 0.006 0.875 ± 0.004 0.874 ± 0.003
ACC 0.991 ± 0.003 0.938 ± 0.002 0.937 ± 0.002
F1 0.991 ± 0.003 0.932 ± 0.002 0.931 ± 0.002

ℓ1-Lin-SVM
ABA 0.959 ± 0.008 0.869 ± 0.002 0.868 ± 0.002
ACC 0.980 ± 0.004 0.935 ± 0.001 0.934 ± 0.001
F1 0.978 ± 0.004 0.928 ± 0.001 0.928 ± 0.001

RF
ABA 0.954 ± 0.008 0.877 ± 0.005 0.873 ± 0.006
ACC 0.978 ± 0.004 0.942 ± 0.002 0.940 ± 0.003
F1 0.976 ± 0.004 0.934 ± 0.003 0.931 ± 0.003

Table 5.2: Performances on Simplicial Complexes Embedding for all Models - Task A

As discussed in Section 4.6, RF models are inherently able to evaluate the impor-

tance of input features with the MDI method. ℓ1-Lin-SVM, on the other hand, are

capable of deleting the least relevant features from the input data. These capabilities,

combined with the fact that each feature in the simplicial complexes embedding rep-

resents the number of times a specific local sub-structure appears in a PCN, make it
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possible to analyze which sub-structures are more relevant when trying to separate En-

zymatic and Non-Enzymatic proteins.

Figure 5.2 presents the top 10 most relevant features according to RF models. RF

feature importance scores were averaged across all 5 runs and normalized to 1. Figure

5.3 shows a similar plot on the hyperplane coefficients coming from ℓ1-Lin-SVM: only

features which were never removed in any of the five splits were considered, the abso-

lute value of their coefficients was afterwards averaged and normalized to 1. With this

approach it is possible to get a plot similar to Figure 5.2 giving insights on the relevance

of features for the ℓ1-Lin-SVM model.

It is interesting to note how, despite RF and ℓ1-Lin-SVM being two very different

models with nothing in common among their formulations, the same simplex ASP-

ASP-HIS appears among the most relevant ones for both the models. The independent

identification of said sub-structure by both classifiers suggests that this configuration

might reflect a biologically meaningful structural or functional signature.
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Figure 5.2: Top 10 Most Relevant Simplices According to RF MDI on Simplicial Com-
plexes Embedding - Task A
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Figure 5.3: Top 10 Most Relevant Simplices According to ℓ1-Lin-SVM Coefficients on
Simplicial Complexes Embedding - Task A

5.1.3 INDVAL Embedding

Table 5.3 shows the performances for all models when paired with the INDVAL embed-

ding in Task A. In this setting the RF model is the best performer with a test ABA 1.7%

higher on average compared to ν-SVM. ℓ1-Lin-SVM underperforms slightly compared

to the other methods, this is probably due to the feature vector being much smaller

(∼ 10% of the Simplicial Complexes Embedding) and already pre-filtered according

to the INDVAL Score. The conditions combined with ℓ1-Lin-SVM algorithm pushing

coefficients to zero in this context was probably sub-optimal and resulted in the removal

of potentially relevant variables.

Since features in the INDVAL Embedding are a filtered sample of features in the

Simplicial Complexes embedding it is possible to conduct the same exact procedure as

in the previous section when it comes to feature importance scores.

Figures 5.4 and 5.5 present the top 10 most relevant features for both RF and ℓ1-Lin-

SVM. In this case there are no common simplices among the two models however it is
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Model Metric Train Validation Test

ν-SVM
ABA 0.986 ± 0.003 0.875 ± 0.004 0.871 ± 0.002
ACC 0.993 ± 0.002 0.937 ± 0.002 0.935 ± 0.001
F1 0.992 ± 0.002 0.931 ± 0.002 0.929 ± 0.001

ℓ1-Lin-SVM
ABA 0.850 ± 0.006 0.806 ± 0.002 0.803 ± 0.005
ACC 0.925 ± 0.003 0.904 ± 0.001 0.902 ± 0.002
F1 0.918 ± 0.003 0.894 ± 0.001 0.892 ± 0.003

RF
ABA 0.979 ± 0.006 0.889 ± 0.004 0.886 ± 0.003
ACC 0.990 ± 0.003 0.947 ± 0.002 0.945 ± 0.002
F1 0.989 ± 0.003 0.940 ± 0.002 0.938 ± 0.002

Table 5.3: Performances on INDVAL Embedding for all Models - Task A

interesting how the most important sub-structure according to RF is always ASP-ASP-

HIS even after INDVAL feature selection. This phenomenon shows how such 3-simplex

is relevant both in terms of INDVAL Score (as it surpasses the imposed threshold) and

from a discriminative point of view (as it is consistently relevant across models)
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Figure 5.4: Top 10 Most Relevant Simplices According to RF MDI on INDVAL Em-
bedding - Task A
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Figure 5.5: Top 10 Most Relevant Simplices According to ℓ1-Lin-SVM Coefficients on
INDVAL Embedding - Task A

5.1.4 (Hyper)Graph Kernels

Table 5.4 shows ν-SVM performances on both explored kernel methods in Task A. No

other classification model was tested for kernel representations as ν-SVM was the only

one that supported pre-computed kernels as inputs (see Section 4.6.2). Both kernels

perform remarkably well, the JK especially exhibits the best results reaching ABA of

0.900 on the test set.

Model Kernel Metric Train Validation Test

ν-SVM

HCK
ABA 0.954 ± 0.007 0.882 ± 0.003 0.879 ± 0.003
ACC 0.977 ± 0.003 0.941 ± 0.002 0.939 ± 0.002
F1 0.975 ± 0.004 0.935 ± 0.002 0.933 ± 0.002

JK
ABA 0.994 ± 0.005 0.902 ± 0.003 0.900 ± 0.002
ACC 0.997 ± 0.003 0.952 ± 0.002 0.951 ± 0.001
F1 0.996 ± 0.003 0.946 ± 0.002 0.945 ± 0.001

Table 5.4: Performances on Kernel Methods — Task A

The kernel-based approaches confirm the effectiveness of non-linear similarity mea-
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sures between symbolic histograms. In particular, the Jaccard Kernel consistently out-

performed the Histogram Cosine Kernel across validation and test sets suggesting that

Jaccard-style similarity is better suited for PCN-based simplicial histograms. It is im-

portant to acknowledge that, compared to explicit embeddings, the computational lim-

itations of kernel methods are relevant. For example the construction of full Gram

matrices scales quadratically with the number of proteins and their interpretability is

reduced compared to explicit embeddings where feature importances can be directly

inspected.

5.1.5 Binary GNN

Table 5.5 presents GNN performances for Task A. A different GNN topology has been

optimized for each split of the dataset considering hyper-parameter candidates pre-

sented in Table 4.4. From these 5 separate optimization some clear trends have emerged

in the optimal structures. 80% of the optimal topologies leveraged one-hot encoding for

node labels and graph convolution for MP while all of them leveraged max pooling and

batch normalization in MP layer. None of the optimal models leverages after pooling

normalization and MLP heads have at most 3 layers. The hidden dimensions were close

to the upper bound of the relative search space, 60% of the topologies selected 224 as

optimal values while the others selected 192.

Model Metric Train Validation Test

GNN
ABA 0.963 ± 0.004 0.902 ± 0.005 0.898 ± 0.005
ACC 0.981 ± 0.002 0.951 ± 0.002 0.949 ± 0.003
F1 0.979 ± 0.002 0.946 ± 0.002 0.944 ± 0.003

Table 5.5: GNN Architecture Performances - Task A

5.1.6 Summary of Task A

Table 5.6 synthesizes the comparative results for the binary enzyme vs. non-enzyme

classification task and three main conclusions emerge. First, spectral density embed-

dings under-perform across models (most markedly for ℓ1-Lin-SVM) due to the strong
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collinearity induced by KDE sampling similar distributions on a fixed grid, which un-

dermines sparse linear discrimination. Second, representations based on symbolic his-

tograms of simplicial complexes, with or without INDVAL selection, are consistently

strong and stable across models: RF and ν-SVM achieve competitive performance, and

the linear ℓ1-Lin-SVM becomes viable in this high-dimensional, sparse regime thanks

to its embedded feature selection. Third, non-linear similarity functions on the sym-

bolic histograms yield the highest accuracies among all pipelines: the JK attains the top

average test performance (testing ABA of 0.900), slightly surpassing the HCK, albeit at

the cost of quadratic Gram-matrix construction and reduced interpretability compared

to explicit embeddings.

End-to-end deep learning on raw PCNs via GNNs performs almost on par with the

best kernel approach (testing ABA of 0.898), offering a compelling alternative that for-

goes handcrafted features while preserving competitive generalization. Overall, Task

A can be addressed effectively by both classical ML and DL approaches. When bal-

ancing accuracy and interpretability, simplicial-complex embeddings combined with

tree-based or margin-based classifiers offer an excellent trade-off; when maximizing

absolute accuracy with fixed training sizes, the JK is marginally superior while when

prioritizing end-to-end learning and feature minimalism, GNNs provide a scalable so-

lution with comparable performances.

Representation Strategy ν-SVM ℓ1-Lin-SVM RF GNN
Spectral Density 0.745 ± 0.006 0.356 ± 0.009 0.721 ± 0.009 -
Simplicial Complexes 0.874 ± 0.003 0.868 ± 0.002 0.873 ± 0.006 -
INDVAL 0.871 ± 0.002 0.803 ± 0.005 0.886 ± 0.003 -
Histogram Kernel 0.879 ± 0.003 - - -
Jaccard Kernel 0.900 ± 0.002 - - -
Raw PCNs - - - 0.898 ± 0.005

Table 5.6: Test Set ABA for all Models and Representation Strategies - Task A

Table 5.7 presents the test set confusion matrix of the ν-SVM model on JK as a final

intuitive visualization of the maximal performances attained in Task A
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Predicted
Non-Enzyme Enzyme

True Non-Enzyme 5046 216
Enzyme 246 4095

Table 5.7: Best Performer Confusion Matrix - Task A

5.2 Task B

Task B consists of a multiclass classification problem focused on assigning the correct

first-level EC number to enzymatic proteins. The dataset for this task includes 21,679

enzymatic protein structures (after filtering out Translocases due to their scarcity), each

annotated with a single first-level EC class.

5.2.1 Spectral Density Embedding

Table 5.8 presents the multiclass performances for all models combined with Spectral

Embedding in Task B. Compared to the Task A scenario the ν-SVM model evidently

outperforms the other two candidates and confirms itself as the best model for enzyme

classification based on spectral density also in a multiclass setting.

Model Metric Train Validation Test

ν-SVM
ABA 0.992 ± 0.015 0.747 ± 0.012 0.733 ± 0.012
ACC 0.998 ± 0.003 0.862 ± 0.004 0.859 ± 0.003
F1 0.998 ± 0.003 0.861 ± 0.004 0.858 ± 0.004

ℓ1-Lin-SVM
ABA 0.426 ± 0.003 0.433 ± 0.012 0.423 ± 0.009
ACC 0.570 ± 0.004 0.572 ± 0.009 0.567 ± 0.004
F1 0.566 ± 0.004 0.567 ± 0.009 0.563 ± 0.004

RF
ABA 0.955 ± 0.018 0.701 ± 0.011 0.686 ± 0.005
ACC 0.931 ± 0.026 0.814 ± 0.011 0.809 ± 0.015
F1 0.932 ± 0.026 0.816 ± 0.010 0.811 ± 0.014

Table 5.8: Performances on Spectral Embedding for all Models – Task B

The ℓ1-Lin-SVM model performances are stained by high linear correlation in the

input dataset also in the multiclass scenario, Figure 5.6 shows the Pearson correla-

tion matrix for dataset X(SPECTRAL)
B which is extremely similar to the correlation ma-

trix presented in Figure 5.1 for X(SPECTRAL)
A . This phenomenon is to be expected as

X
(SPECTRAL)
B is effectively a filtered version of X

(SPECTRAL)
A where rows regarding

54



Non-Enzymatic proteins and Translocases were removed.
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Figure 5.6: Pearson Correlation of Spectral Features - Task B

5.2.2 Simplicial Complexes Embedding

Table 5.9 shows the performances of all models working with the simplicial complexes

embedding in Task B. Such results highlight the effectiveness of linear models in high-

dimensional and sparse feature spaces. Despite its simplicity, the ℓ1-Lin-SVM consis-

tently emerges as the best performing classifier, surpassing both non-linear approaches

such as ν-SVM and more flexible ensemble methods like Random Forests. This out-

come shows off how the implicit feature selection mechanism induced by the ℓ1 regular-

ization is highly effective when dealing with symbolic histograms derived from clique

hypergraphs. By enforcing sparsity in the weight vector, the model discards a large

fraction of non-informative simplices while retaining the most discriminative substruc-

tures, which translates into superior generalization capabilities. The number of sim-

plices deemed as irrelevant by ℓ1-Lin-SVM averages to ∼ 10, 600 out of the ∼ 13, 000

in the dataset which means that approximately 81% of the features were ignored for

classification purposes.

From a feature importance perspective, the same methodology adopted for Task A
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Model Metric Train Validation Test

ν-SVM
ABA 0.998 ± 0.002 0.876 ± 0.011 0.864 ± 0.009
ACC 0.999 ± 0.000 0.954 ± 0.002 0.949 ± 0.003
F1 0.999 ± 0.000 0.954 ± 0.002 0.948 ± 0.003

ℓ1-Lin-SVM
ABA 0.995 ± 0.003 0.905 ± 0.012 0.902 ± 0.013
ACC 0.992 ± 0.004 0.956 ± 0.006 0.953 ± 0.006
F1 0.992 ± 0.004 0.956 ± 0.005 0.954 ± 0.006

RF
ABA 0.992 ± 0.006 0.891 ± 0.009 0.882 ± 0.009
ACC 0.989 ± 0.007 0.950 ± 0.006 0.946 ± 0.005
F1 0.990 ± 0.006 0.950 ± 0.006 0.946 ± 0.005

Table 5.9: Performances on Simplicial Complexes Embedding for all Models – Task B

can be applied also for Task B to identify the most relevant substructures within the

simplicial complexes embedding. Figure 5.7 presents the 10 most relevant simplices in

the dataset according to the RF model, it is interesting to see how the 3-simplex ASP-

ASP-HIS consistently emerges as the most influential feature across both classification

scenarios, reinforcing its role as a potentially critical structural motif for enzymatic

function recognition. In addition the identification of common motifs in both binary and

multiclass settings underlines the interpretability advantage of representation strategies

directly based on structural patterns.

When it comes to ℓ1-Lin-SVM the feature importance analysis for a multiclass sce-

nario becomes less intuitive: in accordance with the OvR strategy a different classifier

is built for each class in the dataset and each of the classifiers is a completely indepen-

dent model. At inference time all the models make their predictions and the one having

the strongest prediction is the one effectively assigning the label.

Figure 5.8 shows feature importance plots similar to Figure 5.3 for each of the 6

distinct EC Classes in the dataset for Task B. These per-class coefficients must be inter-

preted within the OvR setting: each panel reflects a classifier trained against all remain-

ing classes, hence coefficients encode class-specific discriminants and are not directly

comparable across classes nor to RF MDI scores. In practice, the ℓ1 penalty enforces

marked sparsity and the vast majority of simplices receive zero weight so only a small

class-relevant subset carries discriminative power. The patterns highlighted by ℓ1-Lin-

SVM complement those highlighted by RF indicating both shared and class-dependent

structural signals captured by models with different classification strategies. Since each
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Figure 5.7: Top 10 Most Relevant Simplices According to RF MDI on Simplicial Com-
plexes Embedding - Task B

OvR classifier is fit independently, raw coefficient magnitudes reflect its own regular-

ization path and are best read as within-class rankings rather than absolute importances.

Finally, given the construction of the histogram dictionary, families of closely related

simplices may be correlated, given these conditions ℓ1 solutions tend to select a single

representative feature and can exhibit modest instability, for this reason minor variations

in the top lists across classes are hard to correctly interpret.

Despite such limitations it is worth noting that the 3-simplex ASP-ASP-HIS appears

of great importance for both Oxidoreductases (EC Class 1) and Transferases (EC Class

2) as well as the notable differences in the distributions of the top 10 coefficients: for

classes 2 to 5 the relevance distribution appears fairly evenly distributed (i.e., many

of the best simplices have relatively close importance scores). Classes 1 and 6 on the

other hand exhibit the opposite pattern, only the best 2 simplices have relatively similar

importances while others display a great drop in relevance.

A final consideration on ℓ1-Lin-SVM implicit feature selection is that there is no
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simplex that has been selected as relevant for all classes, this signals that different en-

zymatic classes are effectively differentiated by diverse structural motifs which further

strengthens the grounds for PCN representation via simplicial complexes.
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(c) EC Class 3
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(d) EC Class 4
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(e) EC Class 5
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(f) EC Class 6

Figure 5.8: Most Relevant Simplices for each EC Class According to ℓ1-Lin-SVM on
Simplicial Complexes Embedding - Task B
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5.2.3 INDVAL Embedding

Table 5.10 presents the performances of all models working with the INDVAL embed-

ding in Task B. Also in this case the best performing model is ℓ1-Lin-SVM which,

despite having the lowest training ABA attains the best value in testing. This does not

hold for standard accuracy results where it is the worst among the models also in testing.

It is worth recalling that standard accuracy measures the proportion of correctly classi-

fied samples across the entire dataset, it is therefore strongly biased towards the most

represented classes. ABA on the other hand computes per-class recalls first and then

averages them, the same weight is assigned to each class regardless of its frequency. As

a consequence, a higher ABA accompanied by a lower accuracy indicates that the clas-

sifier is able to capture informative patterns also in minority classes even if this comes

at the cost of slightly reduced performance on majority ones. In practice, such behavior

suggests that the model is better balanced across the class spectrum and performs better

on under-represented EC classes.

The strong ℓ1 penalty allows for a highly regularized model which on the INDVAL

dataset excludes on average ∼ 592 features from the classification, approximately 46%

of the dataset. As expected the feature selection is less harsh compared to the previous

section due to features being already pre-selected according to the INDVAL criterion. It

is also important to note how, compared the results in Table 5.9 the INDVAL embedding

achieves an average testing ABA only 1% lower than the full simplicial complexes

embedding while being less than 10% the size. With this in mind the INDVAL scores

appears to be exceptional in selecting the most relevant sub-structures for classification.

Figure 5.9 shows the feature importance plot for the RF model which again indi-

cates as most important feature the 3-simplex ASP-ASP-HIS confirming even further

the relevance of such substructure.

Figure 5.10 on the other hand presents the same visualization as in Figure 5.8 but

for the INDVAL embedding. It is easy to see how the Feature Importances are more

uniformly distributed compared to the ones coming from the full simplicial complexes

embedding, this is probably due to the feature selection carried out via INDVAL scores

that allows the model to consider only a very small class-relevant subset of features
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Model Metric Train Validation Test

ν-SVM
ABA 0.995 ± 0.004 0.869 ± 0.009 0.861 ± 0.008
ACC 0.999 ± 0.001 0.951 ± 0.002 0.946 ± 0.003
F1 0.999 ± 0.001 0.950 ± 0.002 0.945 ± 0.003

ℓ1-Lin-SVM
ABA 0.990 ± 0.004 0.899 ± 0.008 0.893 ± 0.012
ACC 0.983 ± 0.006 0.948 ± 0.004 0.942 ± 0.006
F1 0.983 ± 0.006 0.949 ± 0.004 0.943 ± 0.005

RF
ABA 0.991 ± 0.006 0.894 ± 0.010 0.888 ± 0.010
ACC 0.989 ± 0.006 0.951 ± 0.006 0.948 ± 0.006
F1 0.990 ± 0.006 0.952 ± 0.005 0.948 ± 0.006

Table 5.10: Performances on INDVAL Embedding for all Models – Task B

whose relevance is smoothed due to the decreased dimensionality of the dataset. The

3-simplex ASP-ASP-HIS appears also here for both EC classes 1 and 2.
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Figure 5.9: Top 10 Most Relevant Simplices According to RF MDI on INDVAL Em-
bedding - Task B
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Figure 5.10: Most Relevant Simplices for each EC Class According to ℓ1-Lin-SVM on
INDVAL Embedding - Task B

5.2.4 (Hyper)Graph Kernels

Table 5.11 shows ν-SVM performances on both explored kernel methods in Task B. In

the multiclass setting of Task B, the kernel-based approaches remain competitive but

exhibit a reversed ranking with respect to Task A: the HCK attains ABA = 0.898 on

61



the test set, surpassing the JK at ABA = 0.884. This pattern suggests that, when dis-

criminating among enzyme classes, cosine similarity over sparse symbolic histograms

may be more tolerant to inter-class sharing of substructures, whereas Jaccard’s over-

lap ratio can over-penalize such situations. As in Task A, these performances must

be weighed against the computational footprint and reduced interpretability of kernel

pipelines which remain practical considerations in large-scale proteome-level analyses.

Model Kernel Metric Train Validation Test

ν-SVM

HCK
ABA 0.995 ± 0.008 0.905 ± 0.007 0.898 ± 0.011
ACC 0.998 ± 0.002 0.967 ± 0.002 0.962 ± 0.004
F1 0.998 ± 0.002 0.967 ± 0.002 0.962 ± 0.004

JK
ABA 1.000 ± 0.000 0.888 ± 0.005 0.884 ± 0.007
ACC 1.000 ± 0.000 0.967 ± 0.002 0.963 ± 0.003
F1 1.000 ± 0.000 0.967 ± 0.002 0.963 ± 0.003

Table 5.11: Performances on Kernel Methods — Task B

5.2.5 Multiclass GNN

Table 5.12 presents GNN performances for Task B. The same training pattern presented

in Section 5.1.5 was used resulting in a different topology for each of the data splits. The

trends encountered for Task B are similar to the ones of Task A: 80% of the topologies

exploit OHE representation of amino acid labels and 60% of them chose GIN Convolu-

tion as MP strategy. Coherently with Task A 80% of the structures used max pooling

and all of them exploited batch normalization in MP layers. The biggest differences

with respect to the results of Task A in terms of GNN topologies are the increased num-

ber of hidden dimensions (80% of the topologies leveraged the maximal available value

of 256) and the ubiquitous presence of normalization layers after pooling. The sharp

increase in hidden dimensions suggests that the multiclassification setting of Task B

represents an inherently more complicated task, in this context more flexibility and ex-

pressive power (i.e. wider GNN structures) bring better performances without incurring

in overfitting and degraded validation and test performances. The reaching of the upper

limit of the search space for the hidden dimensions of the network could also indicate

that, given more generous search spaces and computing power, it could be possible to
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further refine the GNN approach to reach even better results.

In terms of performances GNN structures excel in Task B showing a test ABA of

0.921 surpassing the previous best model/embedding combination (ℓ1-Lin-SVM on full

simplicial complexes embedding) by a respectable 2.1%. Such performances establish

GNNs as the best performing ML approach for first-level EC number prediction among

the tested ones.

Model Metric Train Validation Test

GNN
ABA 0.981 ± 0.009 0.926 ± 0.011 0.921 ± 0.011
ACC 0.968 ± 0.012 0.945 ± 0.013 0.942 ± 0.008
F1 0.971 ± 0.011 0.948 ± 0.011 0.946 ± 0.006

Table 5.12: GNN Architecture Performances - Task B

5.2.6 Summary of Task B

In Task B, multiclass enzyme classification benefits markedly from representations

grounded in higher-order structural motifs. As summarized in Table 5.13, spectral

density embeddings are consistently the weakest option across models, mirroring the

limitations observed in Task A and reflecting the detrimental impact of strong linear

collinearity on sparse linear methods. In contrast, both the simplicial complexes and

INDVAL embeddings achieve substantially higher ABA, with ℓ1-Lin-SVM emerging

as the most effective classifier for explicit histogram representations. The superiority

of ℓ1-Lin-SVM over ν-SVM and RF in this setting corroborates the advantage of em-

bedded feature selection in very high-dimensional, sparse spaces: by shrinking most

coefficients to zero, the model isolates a compact set of class-discriminative simplices

and delivers optimal performances. Notably, the INDVAL embedding attains only a

marginal ABA reduction relative to the full simplicial dictionary while using less than

one tenth of the features, underscoring the strength of INDVAL scores as an inexpen-

sive, interpretable pre-filter that preserves discriminatory signals.

Kernel approaches provide a competitive alternative without explicit feature engi-

neering. However, the ranking between kernels reverses relative to Task A: the HCK

surpasses the JK in ABA terms both in validation and testing. This inversion suggests
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that, in the presence of inter-class sharing of local substructures cosine similarity offers

a more tolerant notion of relatedness than the set-overlap-based Jaccard measure, which

can over-penalize partial sharing.

Finally end-to-end graph neural networks trained on raw PCNs deliver the strongest

overall results in Task B. The optimized GNNs reach a test ABA of 0.921. The preva-

lence of wider hidden dimensions, post-pooling normalization and MP operators with

higher representational capacity (GIN Convolution) indicate that multiclass EC predic-

tion benefits from increased model expressivity without incurring overfitting. These

findings combined show that first-level EC assignment can be addressed effectively

by both classical ML and DL approaches; among explicit representations, simplices-

based histograms with ℓ1-regularized linear classification offer an attractive accuracy-

efficiency-interpretability trade-off, while end-to-end GNNs constitute the optimal choice

in terms of pure predictive performance with minimal feature engineering.

Representation Strategy ν-SVM ℓ1-Lin-SVM RF GNN
Spectral Density 0.733 ± 0.012 0.423 ± 0.009 0.686 ± 0.005 -
Simplicial Complexes 0.864 ± 0.009 0.902 ± 0.013 0.882 ± 0.009 -
INDVAL 0.861 ± 0.008 0.893 ± 0.012 0.888 ± 0.010 -
Histogram Kernel 0.898 ± 0.011 - - -
Jaccard Kernel 0.884 ± 0.007 - - -
Raw PCNs - - - 0.921 ± 0.011

Table 5.13: Test Set ABA for all Models and Representation Strategies - Task B

Table 5.14 shows the per-class average results of the best-performing model (GNN)

in Task B. The GNN achieves consistently high values across most evaluation metrics,

particularly for the well-represented classes EC 2 and EC 3, where both recall and preci-

sion remain above 0.95 on average. These outcomes indicate that the classifier is highly

effective at capturing the structural signatures of the dominant enzyme families. Con-

versely, the least represented classes (EC 5 and EC 6) exhibit lower stability, with EC

6 in particular showing reduced precision and F1-score, reflecting the greater difficulty

of learning from small sample sizes. Nonetheless, the model demonstrates remarkable

specificity across all classes, exceeding 0.97 in every case and reaching 0.998 for EC 4,

highlighting its robustness in avoiding false positives. Overall, the model not only gen-

eralizes well on abundant classes but also maintains strong discriminative power across
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the class spectrum despite substantial data imbalance.

EC Class Recall Precision F1-score Specificity Support
EC 1 0.951 ± 0.019 0.952 ± 0.013 0.952 ± 0.014 0.992 ± 0.002 591
EC 2 0.928 ± 0.010 0.973 ± 0.006 0.950 ± 0.004 0.982 ± 0.004 1776
EC 3 0.954 ± 0.009 0.956 ± 0.008 0.955 ± 0.007 0.978 ± 0.004 1437
EC 4 0.975 ± 0.009 0.978 ± 0.008 0.977 ± 0.007 0.998 ± 0.001 311
EC 5 0.942 ± 0.013 0.892 ± 0.027 0.916 ± 0.013 0.996 ± 0.001 132
EC 6 0.854 ± 0.053 0.460 ± 0.059 0.594 ± 0.045 0.978 ± 0.007 89

Table 5.14: Best Performer per-class Performance Metrics in Testing - Task B
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Chapter 6

Conclusions and Future Prospects

This thesis investigated whether protein structures represented as PCNs carry sufficient

topological signal to support accurate prediction of physiological roles. Two comple-

mentary classification settings were addressed on a curated subset of the human pro-

teome: a binary discrimination between enzymatic and non-enzymatic proteins (Task

A) and a multiclass assignment of first-level EC classes for enzymatic proteins (Task B).

The analysis involved 48, 019 proteins for Task A and 21, 679 enzymes for Task B, with

all experiments conducted under a stratified five-fold protocol using fixed splits across

methods to enable a systematic paired comparison between representation strategies

and learning algorithms.

Both explicit graph embeddings and end-to-end graph learning were considered for

the experiments. Within explicit representations, three families were explored: (i) spec-

tral density descriptors of the Normalized Laplacian associated with PCNs; (ii) sym-

bolic histograms derived from simplicial complexes evaluated on clique hypergraphs

of PCNs; and (iii) their INDVAL-filtered variants for model-agnostic feature reduction.

In parallel, two graph kernels over the complete simplicial complexes embedding (the

HCK and the JK) were employed to capture non-linear similarities without additional

feature engineering. Message-passing GNNs, on the other hand, were optimized to

learn directly from residue–residue contact graphs in an end-to-end fashion.

Three standard classifiers (kernel ν-SVM, ℓ1-Linear-SVM, and RF) were selected to

probe complementary learning strategies: maximum-margin learning with a non-linear
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kernel, embedded feature selection via lasso regularization, and non-parametric ensem-

bles sensitive to feature interactions. End-to-end GNNs on the other hand were tuned

over a plethora of architectural choices (MP operator, hidden dimensionality, pooling

strategy, and related design factors) to identify effective PCN encoders under feasible

computational constraints. Results were satisfactory for both tasks: in Task A, the top-

performing pipeline was ν-SVM on JK with test ABA = 0.900, marginally ahead of the

GNN counterpart (ABA = 0.898). This phenomenon indicates that end-to-end learning

can almost match kernel baselines without additional hand-crafted features.

The results from Task B strengthen such considerations as end-to-end GNNs were

the best overall with test ABA = 0.921, while among explicit representations the ℓ1-

Linear-SVM on the full simplicial histogram reached the best results with test ABA =

0.902. Per-class analysis of GNN results showed excellent precision and recall on well-

represented classes (EC classes 1–4) with slight instability on the sparser classes (EC

classes 5–6).

Feature importance analyses consistently highlighted recurring motifs across tasks

and models, with the 3-simplex ASP–ASP–HIS emerging as a salient discriminant for

every symbolic histogram based model. The INDVAL based feature selection proved

to be able to delete many non-discriminative substructures with minimal loss in ABA

confirming its role as an interpretable model-agnostic selector of signature motifs.

The evaluation benefited from fixed stratified folds and a methodological breadth

which together provided a balanced perspective on accuracy, efficiency, and interpretabil-

ity for both tasks. Nonetheless, several limitations should be acknowledged: (i) the

dataset excluded multifunctional and moonlighting proteins and restricted attention to

a single first-level EC label, enforcing mutually exclusive roles; and (ii) to balance

computational costs and scale, only standard GNNs with residue-identity features were

considered, leaving geometric encoders and sequence-informed models unexplored.

In follow-up studies it will be possible to extend end-to-end architectures to 3D-

aware, E(3)-equivariant GNNs and geometric vector perceptrons to better exploit fine-

grained geometric information as well as moving beyond mutually exclusive labels to

multi-label classification addressing directly multifunctional and moonlighting proteins
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to align the modeling objectives with biological reality. Furthermore, deep topologi-

cal learning strategies—such as message passing on simplicial or cell complexes with

specialized operators—could be incorporated to encode higher-order interactions and

global shape priors that remain inaccessible to purely pairwise GNN models.

Overall, the findings indicate that structural information encoded in PCNs is highly

predictive of protein physiological roles at scale. Topology-driven embeddings provide

accurate and interpretable baselines, while carefully tuned GNNs deliver the strongest

multiclass performance, opening a path toward higher order, geometry-aware, and ex-

plicitly multi-label structural analysis.
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