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Abstract

Il presente elaborato si propone di effettuare una rassegna critica e comparativa dei più no-
ti modelli di option pricing, che nel corso degli ultimi cinquant’anni hanno rappresentato
i maggiori contributi alla teoria delle opzioni. Nella prima sezione si analizzano nel detta-
glio tecnico le specificità sia delle strutture classiche, Black-Scholes, Cox-Ross-Rubinstein
e Monte Carlo, che dei più avanzati modelli a volatilità stocastica della famiglia Heston.
Per ciascuno di essi si è voluta implementare un’approfondita trattazione sulle ipotesi
sottostanti, la costruzione della misura neutrale al rischio e i risultati di convergenza e
replicazione utili al pricing e all’hedging dinamico. A partire dal capitolo 3, che apre la
seconda sezione del lavoro, i modelli descritti vengono testati su chain reali, in modo da
effettuare un’accurata valutazione sulla stabilità dei parametri e la capacità di riprodurre
gli smile di volatilità. Assume particolare rilevanza in questo frangente il problema della
calibrazione del modello di Heston con termini di salto proposto, ed è pertanto stato rite-
nuto rilevante fornire un’informativa completa ed interamente open-source sulla strategia
sottostante l’intera procedura. Sulla base delle evidenze riscontrate nella fase precedente
e già note in letteratura, viene introdotto un nuovo modello della famiglia Heston nel
quale, la dinamica della varianza, mean-reverting di tipo CIR, incorpora un termine di
retroazione (feedback) dipendente dal sottostante, in un quadro affine jump-diffusion con
controllo della positività e possibili estensioni non affini. Seguendo la scia del recente
filone di ricerca, la calibrazione del modello è impostata come problema variazionale con
regolarizzazione entropica Sinkhorn e densità tiltata sotto la misura di rischio neutro,
soggetta a vincolo di martingala, scelta che consente di integrare le informazioni deduci-
bili dalle volatilità implicite con restrizioni strutturali sulla risk-neutral density in modo
computazionalmente efficiente.
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Ai costruttori della conoscenza, poiché nobile è la causa di chi vota la

propria vita al progresso del genere umano.
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1 Le Opzioni

1.1 Definizioni e tipologie

Le opzioni costituiscono una categoria di derivati finanziari, strumenti il cui valore è le-
gato ad un’attività sottostante, come azioni, obbligazioni, valute o materie prime. Più
nel dettaglio, queste sono dei contratti che danno il diritto al possessore (detto holder
o beneficiario) di comprare o vendere una data quantità di sottostante ad un prezzo di
esercizio (o strike price) prestabilito. La controparte del titolare, ossia il conceden-
te (o writer), concede al primo l’opzione in cambio della corresponsione di un premio
(rappresentato dal prezzo dell’opzione stessa).

Tali strumenti finanziari possono essere classificati sulla base di vari criteri, sebbene la
distinzione più adottata si basi sul diritto conferito al possessore. Su queste basi possiamo
distinguere tra opzioni call, che attribuiscono all’acquirente il diritto, ma non l’obbligo, di
acquistare il sottostante ad un prezzo specifico entro una determinata scadenza, e opzioni
put, le quali fanno ricadere in capo all’holder il diritto di vendere l’attività sottostante
entro una data prefissata.

Ad ogni modo, è possibile ricorrere anche ad altre discriminanti per classificare le opzioni,
quali la tipologia di sottostante e lo stile di esercizio. Volendo approfondire tale ultimo
criterio, individuiamo le opzioni europee, il cui diritto può essere esercitato solo alla
scadenza, e le opzioni americane, il cui esercizio è possibile in qualsiasi momento fino a
tale data.

Infine, risulta utile distinguere le opzioni senza caratteristiche aggiuntive (cosiddette plain
vanilla) dalle opzioni esotiche, che presentano particolari condizioni relative alla loro
struttura o alle modalità di esercizio del diritto in esse incorporato. Come avremo oc-
casione di approfondire alla fine di questo capitolo, è ampio il ricorso a varianti quali le
opzioni barriera, che si attivano (o disattivano) solo se il prezzo del sottostante raggiunge
un certo prezzo predeterminato (c.d. barriera), le opzioni asiatiche, il cui payoff è de-
terminato dal prezzo medio del sottostante in un determinato periodo di tempo (questo
tipo di opzione si presta per sottostanti caratterizzati da marcata volatilità) o le opzioni
basket, che differiscono dalle precedenti in quanto aventi ad oggetto un paniere di attività
sottostanti, e il cui payoff sarà legato all’andamento complessivo delle stesse.

• At the money: se il prezzo di esercizio è pari al prezzo del sottostante.

• In the money: se l’immediato esercizio del diritto incorporato sarebbe profittevole.
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• Out of the money: se non sussiste profitto dall’esercizio immediato dell’opzione.

Prendiamo ora in analisi alcune tipologie di operazioni che possono essere effettuate sulle
opzioni call e put.

1.1.1 Posizioni su opzioni call

Tutte le tipologie di opzioni sono soggette ad operazioni di acquisto e vendita, il cui payoff
(e il conseguente profilo di profit/loss) è facilmente determinabile.

Una posizione di acquisto di un’opzione call, nota come long call, è tipica di un operatore
rialzista, che voglia sfruttare l’eventuale capital gain derivante dall’aumento di valore del
sottostante, o che quantomeno voglia coprirsi dal rialzo dello stesso, garantendosi il diritto
di acquistarlo ad un prezzo inferiore.

A livello matematico, possiamo esprimere il payoff di un’opzione call europea come:

max[0, S(t)−K] = [S(t)−K]+ (1.1)

dove S(t) indica il prezzo del sottostante alla scadenza e K il prezzo di esercizio.

Figura 1: Payoff di una long call

Possiamo dunque facilmente comprendere come una long call presenti la possibilità di
conseguire un profitto virtualmente illimitato, considerando la crescita del sottostante
all’infinito.
Al contrario, la controparte di una long call, ossia una short call, può essere identificato
in un operatore ribassista, che vuole lucrare sul capital loss del sottostante.
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Figura 2: Payoff di una short call

Specularmente, l’holder di una short call cosiddetta naked (che non detiene il posses-
so del titolo, ed è quindi definibile come un ribassista puro) è esposto ad una perdita
potenzialmente illimitata.

Ad ogni modo, la relazione per determinare il payoff non varia a seconda che si tratti di
una posizione long o short, ma sulle premesse opposte delle due controparti dobbiamo
attuare una distinzione nel calcolo del profit/loss.

Nel caso di una long call, come già detto, l’holder paga il premio alla controparte per assi-
curarsi la facoltà di acquistare il sottostante al prezzo di esercizio, e pertanto l’operazione
varrà

−c+ max[0, S(t)−K] (1.2)

Pertanto l’operatore non incorrerà in una perdita solamente se il prezzo del sottostante
crescerà in misura pari o superiore al valore del premio corrisposto. Di converso, il deten-
tore della short call riceve il premio, ma potrà essere esercitato dalla controparte qualora
la sua aspettativa non sia confermata; definiamo quindi il profilo di P&L come:

c−max[0, S(t)−K] (1.3)

1.1.2 Posizioni su opzioni put

Anche con riferimento alle opzioni put, è possibile effettuare operazioni di acquisto e
vendita, assumendo una posizione rispettivamente long e short. Tuttavia, la relazione
matematica per la determinazione del payoff risulta differente rispetto al caso prima ana-
lizzato.
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Più precisamente, il valore intrinseco di un’opzione put è dato da:

max[0, K − S(t)] (1.4)

Applicando la stessa logica adottata per le opzioni call, il profilo di profit/loss di una put
può essere individuato come:

−p+ max[0, K − S(t)] (1.5)

per una long put (ossia l’acquisto di un’opzione che assicura il diritto di vendita a scadenza
del sottostante al prezzo di esercizio) e

p−max[0, K − S(t)] (1.6)

per una short put.
Volendo supportare l’analisi con una visualizzazione grafica, possiamo vedere come nella
long put la perdita massima per l’holder è rappresentata dal premio in caso di mancato
esercizio dell’opzione (una situazione nella quale il beneficiario operatore ribassista po-
trebbe incorrere in caso di rialzo del prezzo del sottostante, dal momento che sarebbe per
lui più vantaggioso vendere lo stesso sul mercato).

Figura 3: Payoff di una long put

Con riferimento ad una short put, detenuta da un operatore rialzista per scopi speculativi
o di copertura (hedging), specularmente, il massimo profitto ottenibile dall’holder sarebbe
pari al premio, nell’eventualità in cui la sua controparte non eserciti il diritto di vendita.
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Figura 4: Payoff di una short put

1.2 Opzioni europee, opzioni americane, opzioni esotiche

Finora, abbiamo distinto le opzioni solo sulla base del diritto da esse incorporato, assu-
mendo che questo potesse essere esercitato esclusivamente alla scadenza.
Tuttavia, questa logica, che pure si pone alla base di molti dei modelli che saranno presi
in analisi in questo documento, viene meno nelle opzioni americane e in alcune tipologie
di opzioni esotiche.
Infatti, nelle prime, a differenza delle opzioni europee, l’holder ha la possibilità di esercita-
re il diritto incorporato in qualsiasi momento prima della scadenza, dando vita ad uno
strumento caratterizzato da maggiore flessibilità, sebbene risulti più complesso calcolarne
il prezzo (aspetto oggetto di ulteriore approfondimento nel corso dei successivi capitoli 2
e 4).

Le opzioni esotiche invece si distinguono dalle europee e americane (c.d. plain vanilla)
non in termini strettamente legati all’intervallo di esercizio, ma perché, in senso più am-
pio, presentano una o più caratteristiche non convenzionali. Pertanto, sono strumenti
altamente personalizzabili e generalmente negoziati sui mercati OTC.
La seguente tabella illustra alcune delle tipologie di opzioni esotiche più utilizzate e le
caratteristiche del loro payoff.

Numerose tipologie di opzioni esotiche tra quelle sopra proposte saranno richiamate nei
capitoli successivi, di conseguenza, può essere utile definirne più dettagliatamente le
proprietà alla base.

Opzioni con barriera: Come detto in precedenza, questa è un’opzione in cui l’importo
del payoff dipende dal fatto che il sottostante raggiunga o meno un livello determinato,
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Opzione esotica Caratteristica del Payoff

Con Barriera
L’entità del payoff è subordinata al raggiungimento del
prezzo del sottostante di un livello predeterminato (bar-
riera).

Asiatiche Il payoff è calcolato sulla base del prezzo medio del sot-
tostante durante un periodo specifico.

Lookback Il payoff è determinato dal prezzo più favorevole del sot-
tostante durante la vita dell’opzione.

Binarie Offrono un payoff fisso se il prezzo del sottostante rag-
giunge un certo livello.

Composte Il sottostante è un’altra opzione, pertanto il payoff è
legato alla presenza di due strike prices.

Bermudiane L’opzione può essere esercitata solo in date specifiche
predeterminate, oltre che alla data di scadenza.

Basket
Il payoff dipende dall’andamento di un paniere di at-
tività sottostanti, come azioni, valute, materie prime o
merci.

Path Dependent
Il payoff dipende dal percorso seguito dal prezzo del sot-
tostante durante la vita dell’opzione (e non da un singolo
valore in un periodo specifico).

Cliquet Garantiscono un rendimento minimo in cambio di un
tetto massimo.

Tabella 1: Caratteristiche delle Opzioni Esotiche

detto barriera. Le opzioni in questione possono essere sia put che call, e si dividono
principalmente nelle due categorie knock-in e knock-out.
Risulta molto facile comprendere che tra le due vi sia una differenza sostanziale, poiché
mentre le prime si attivano solo se il prezzo dell’attività sottostante raggiunge, supera
o scende sotto un livello di barriera specifica durante la vita dell’opzione, le seconde si
disattivano al verificarsi della medesima condizione.
Sulla base di tale premessa, all’interno delle knock-in possiamo individuare le opzioni
Down-and-In, che diventano attive solo se il prezzo del sottostante scende al di sotto
della barriera, e Up-and-In, che si attivano solo se il valore del sottostante diventa
superiore alla barriera, mentre nel novero delle knock-out distinguiamo tra opzioni Down-
and-Out, le quali si annullano se il sottostante scende sotto la barriera e opzioni Up-
and-Out, il cui payoff sarà nullo nel caso opposto.

Le opzioni con barriera (come tutte le altre opzioni esotiche) mostrano un profilo di rischio
differente rispetto alle plain vanilla, e risultano adatte sia ad operatori altamente propensi
che fortemente avversi al rischio, sia per finalità speculative che di copertura.
In particolare, un’opzione knock-in è adatta ad un operatore (rialzista e risk-lover) che
ritiene che il prezzo del sottostante raggiungerà la barriera prima della scadenza, o che
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voglia coprirsi da un eventuale rialzo dello stesso, ed in questo caso, attratto dal minor
costo della copertura, opterà per un’opzione esotica della tipologia in analisi, piuttosto
che per una long call vanilla.

D’altra parte, un investitore ribassista avverso al rischio (o un hedger rialzista) potrebbe
trovare conveniente il ricorso ad un’opzione con barriera.
Le tabelle di seguito forniscono un riquadro di sintesi sulle condizioni alla base di ciascuna
tipologia di barrier option e sulle modalità di calcolo del rispettivo payoff.

Tipo di Opzione Condizione di Attivazione Payoff
Down-and-In Call St ≤ B max(ST −K, 0)
Up-and-In Call St ≥ B max(ST −K, 0)
Down-and-In Put St ≤ B max(K − ST , 0)
Up-and-In Put St ≥ B max(K − ST , 0)

Tabella 2: Condizioni e payoff delle Opzioni Knock-In

Tipo di Opzione Condizione di Annullamento Payoff
Down-and-Out Call St > B max(ST −K, 0)
Up-and-Out Call St < B max(ST −K, 0)
Down-and-Out Put St > B max(K − ST , 0)
Up-and-Out Put St < B max(K − ST , 0)

Tabella 3: Condizioni e payoff delle Opzioni Knock-Out

Opzioni Asiatiche: In questa tipologia di opzioni esotiche, il payoff dipende dal prezzo
medio del sottostante durante un determinato periodo di tempo, piuttosto che dal valore
a scadenza; pertanto, il ricorso ad un’opzione asiatica potrebbe essere consigliabile in
presenza di sottostanti caratterizzati da forte volatilità, quali prodotti petroliferi, metalli
preziosi o valute.

Un ulteriore aspetto da tenere in considerazione riguarda la frequenza con cui si osserva
il prezzo del sottostante durante la vita dell’opzione, che può essere:

• Regolare, in cui il periodo tra una data di osservazione e la successiva non varia.

• Crescente, dove l’intervallo temporale tra due osservazioni si riduce progressiva-
mente al crescere della vita dell’opzione.

• Decrescente, in cui il periodo tra due osservazioni cresce durante la vita dell’op-
zione.

In rapporto al calcolo dei payoff, distinguiamo in prima analisi tra opzioni di tipo ave-
rage price, che corrispondono in pieno alla definizione precedentemente fornita (ossia
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un’opzione il cui payoff dipende dalla media dei prezzi del sottostante durante il periodo
di osservazione) e opzioni average strike, nelle quali il payoff è legato alla differenza
tra il prezzo spot del sottostante alla scadenza e la media dei prezzi osservati durante il
periodo di osservazione.
In secondo luogo, sono meritevoli di approfondimento le modalità di calcolo della media,
in quanto è possibile ricorrere anche alla media geometrica in sostituzione della più co-
mune media aritmetica.
Il ricorso alla prima è consigliabile in mercati caratterizzati da alta volatilità e per sotto-
stanti che tendono a variare in modo esponenziale, poiché è meno influenzata dai valori
estremamente alti o bassi (outliers) rispetto alla media aritmetica.

E pertanto, partendo dalle opzioni asiatiche con media aritmetica, calcoliamo i payoff
delle average price options, rispettivamente call e put, come

max
(

1
n

n∑
i=1

Si −K, 0
)

(1.7)

max
(
K − 1

n

n∑
i=1

Si, 0
)

(1.8)

È facile applicare la stessa logica alle opzioni di tipo average strike, delle quali i payoff si
calcolano considerando

max
(
ST −

1
n

n∑
i=1

Si, 0
)

(1.9)

max
(

1
n

n∑
i=1

Si − ST , 0
)

(1.10)

per call e put.

Qualora, per le ragioni sopra esposte, si preferisse ricorrere all’utilizzo della media geo-
metrica, allora la relazione in analisi (sarà presentato ora solo il caso delle average pri-
ce, poiché si tratta di una semplice variante dei concetti appena presi in analisi, la cui
estensione al secondo caso è triviale) dovrà essere espressa attraverso la forma

max
( n∏

i=1
Si

) 1
n

−K, 0
 (1.11)

max
K − ( n∏

i=1
Si

) 1
n

, 0
 (1.12)

sempre, rispettivamente, qualora si considerino opzioni call e put.

Opzioni Lookback: Come nel caso precedente, questo tipo di opzione si può rivelare
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particolarmente utile in mercati volatili, dal momento che il suo valore intrinseco è legato
al prezzo minimo o massimo raggiunto dal sottostante durante la vita dell’opzione.
Anche per le lookback, è possibile distinguere tra opzioni europee, esercitabili solo alla
scadenza, e americana, esercitabili in qualsiasi momento entro tale data. Poste queste
premesse, possiamo affermare che, secondo una logica non troppo dissimile dalle opzioni
vanilla, il payoff di una lookback call europea è determinato da

max(ST − Smin, 0) (1.13)

dove Smin indica il prezzo minimo assunto dal sottostante.
Il payoff di una lookback put europea è determinato come

max(Smax − ST , 0) (1.14)

dove Smax è il prezzo massimo del sottostante.
Non diversamente da quanto detto per le plain vanilla, le opzioni americane si distinguono
per il fatto che avremo un certo t < T nel quale è possibile esercitare il diritto incorporato
nell’opzione.

La complessità della tipologia di opzione esotica qui analizzata non risiede nel calcolo del
suo valore intrinseco, bensì nella sua valutazione (o, in altri termini, nel calcolo del suo
premio), la cui formula analitica si basa sul modello di Black-Scholes (che sarà oggetto
di analisi approfondita a partire dal paragrafo 2.3), esteso per includere i prezzi estremi
del sottostante.
Nello specifico, il premio di un’opzione lookback call europea è calcolato attraverso:

ct = Ste
−q(T −t)N(a1)− Smine

−r(T −t)N(a2) (1.15)

dove:

• ST è il prezzo del sottostante alla scadenza,

• Smin è il prezzo minimo raggiunto dal sottostante durante la vita dell’opzione,

• q è il tasso di dividendo,

• r è il tasso di interesse,

• N(a1) e N(a2) sono le funzioni di distribuzione cumulativa normale,

• a1 =
ln( ST

Smin
)+(r−q+ 1

2 σ2)(T −t)
σ

√
T −t

, a2 = a1 − σ
√
T − t.
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Alternativamente, è possibile ricorrere ad una simulazione Monte Carlo per effettuare
una valutazione con campionamento discreto.
Per le opzioni lookback americane, può inoltre risultare utile il modello ad albero
binomiale, anch’esso oggetto di analisi nel capitolo successivo.

Opzioni Binarie: Questa è probabilmente la tipologia di opzione più semplice che verrà
trattata in questo elaborato. Spesso utilizzate dagli speculatori più aggressivi, le opzioni
binarie offrono solo due possibili esiti, quali un guadagno fisso o una perdita totale del-
l’investimento iniziale.
E dunque, qualora la previsione dell’holder, sia essa rialzista o ribassista, dovesse essere
corretta, questi si vedrebbe attribuito un rendimento fisso, solitamente compreso tra il
70% e il 90% del premio, mentre, in caso contrario, perderebbe l’intero premio (possia-
mo pertanto convenire che in tal ultimo caso, il profilo di profit/loss dell’investitore non
sarebbe tanto diverso dal mancato esercizio di un’opzione vanilla Out-of-the-money).

Una seconda peculiarità di queste opzioni esotiche rientra nell’elevata brevità delle
scadenza, che generalmente variano da 30 secondi a 3 ore, risultando per tale motivo
uno strumento così attraente per le operazioni di trading a breve termine.

Oltre alle tradizionali call e put, le opzioni binarie possono distinguersi in one touch
e range, in cui l’investitore ritiene che il sottostante possa raggiungere un certo livello
almeno una volta prima della scadenza, o che rimanga fino a tale data all’interno di un
intervallo specificato.
Per ciascuna di queste tipologie, il payoff è rispettivamente determinabile come;

Payoff (call) =


P se ST > K

0 se ST ≤ K
(1.16)

in cui, riprendendo la notazione precedente:

• P è il pagamento fisso (profitto) se l’opzione termina in-the-money,

• ST è il prezzo dell’asset sottostante alla scadenza,

• K è il prezzo di esercizio.

Payoff (put) =


P se ST < K

0 se ST ≥ K
(1.17)
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Payoff (one touch) =


P se ∃t ≤ T | St ≥ L

0 se ∀t ≤ T ⇒ St < L
(1.18)

dove:

• St è il prezzo dell’asset sottostante in qualsiasi momento t,

• L è il livello di prezzo specificato,

• T è la scadenza dell’opzione.

Payoff (range) =


P se L1 ≤ ST ≤ L2

0 se ST < L1 ∨ ST > L2

(1.19)

con:

• L1 e L2 limiti inferiori e superiori dell’intervallo di prezzo.

Opzioni Composte: Rappresentano una sofisticata tipologia di opzioni esotiche il cui
sottostante non è un’attività finanziaria tradizionale (quale un’azione, una valuta o una
materia prima), bensì un altro contratto di opzione. È possibile in quest’ambito distin-
guere le quattro combinazioni originabili da questo strumento; Call on Call, Call on
Put, Put on Call e Put on Put, che permettono all’investitore di acquisire posizioni
di acquisto o vendita sulle due tipologie di opzioni.

Può essere interessante prendere in analisi le cosiddette opzioni chooser, le quali consento-
no all’acquirente di scegliere, entro una certa data, se trasformare il contratto sottostante
in una call o una put, mantenendo invariati strike e scadenza. Il vantaggio che un simile
tipo di opzione può offrire è piuttosto evidente in contesti di elevata volatilità o in mercati
con direzionalità incerta.

Il payoff delle opzioni composte si determina in modo sequenziale, dal momento che deve
essere effettuata la valutazione sia dell’opzione sottostante che dell’opzione composta (in
cui sarà considerato come sottostante ST il valore intrinseco appena calcolato della prima
opzione).
In altri termini, esso può essere espresso come la somma algebrica dei payoff delle singole
opzioni che la compongono, dati i prezzi di esercizio e le scadenze di ciascuna. Pertan-
to, considerando una call on call avente strike K1 per l’opzione composta e K2 per la
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sottostante, alla scadenza T il payoff sarà pari a:

max (max (ST −K2, 0)−K1, 0) (1.20)

Il calcolo del premio risulta maggiormente complesso rispetto alle opzioni vanilla, per il
semplice fatto che incorpora al suo interno la valutazione del valore atteso dell’opzione
sottostante, il cui computo, può essere a sua volta di per sé complesso.
Il pricing di una call on call è effettuabile mediante la formula di Geske (Geske, 1979)1,
derivante da un’estensione del modello di Black-Scholes. La principale criticità, legata
all’esistenza di due date di scadenza distinte, e dunque alla determinazione del valore
atteso di una variabile aleatoria condizionata ad un’altra variabile aleatoria correlata,
viene superata riducendo il problema al calcolo di probabilità congiunte delle variabili
gaussiane correlate, tramite la funzione di distribuzione normale bivariata, ottenendo così
un prezzo analitico (chiuso) per l’opzione (nel caso in esame call on call europea) senza la
necessità di ricorrere a metodi numerici o simulazioni Monte Carlo 2. Dal punto di vista
tecnico, siamo dunque di fronte ad una formula che nasce dalla necessità di calcolare il
valore atteso di un payoff dipendente da due variabili aleatorie correlate, ovvero i logaritmi
dei prezzi del sottostante a due scadenze diverse, dove la standardizzazione tramite di e
bi consente d mappare il problema nel dominio della probabilità gaussiana, mentre la
funzione normale bivariata consente di integrare la dipendenza tra le due variabili.

In particolare, volendo definire St come il prezzo del sottostante finanziario che segue
un moto browniano geometrico (concetto che sarà largamente ripreso nel corso dei
capitoli successivi) sotto la misura di rischio neutrale:

dSt = rSt dt+ σSt dWt (1.21)

è dimostrato che il prezzo Ccc dell’opzione composta al tempo zero è pari a:

Ccc = S0 N2(d1, b1; ρ)−K2e
−rT2 N2(d2, b2; ρ)−K1e

−rT1 N(d3)3 (1.22)
1Sebbene Geske sia stato il primo a proporre una relazione per il prezzaggio delle opzioni composte,

si annovera il metodo alternativo proposto da Buraschi e Dumas (2001), particolarmente efficiente anche
per la valutazione di opzioni americane su azioni che pagano dividendi, nonché l’approccio innovativo
proposto da Hess (2022), basato sul calcolo di Malliavin e sulle trasformate di Fourier per la valutazione
di opzioni composte in contesti di volatilità stocastica e processi non standard.

2Ciononostante, il ricorso a tali tecniche risulta comunque inevitabile in una vasta pluralità di
circostanze, comprendenti volatilità stocastica, presenza di dividendi o flussi di cassa intermedi e
path-dependence.

3Analizzando la struttura della relazione notiamo come questa si componga del valore atteso scontato
del sottostante, ponderato dalla probabilità congiunta che entrambe le variabili siano sopra le soglie d1 e
b1, S0N2(d1, b1; ρ), dello strike della call sottostante, anch’esso ponderato per la probabilità congiunta
associata, K2e−rT2 N2(d2, b2; ρ) e dello strike dell’opzione composta, ponderato dalla probabilità che
l’opzione sottostante abbia, al tempo T1, valore superiore a K1, K1e−rT1 N(d3).
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dove:

• N(·) è la funzione di distribuzione cumulativa della normale standard univariata,

• N2(·, ·; ρ) è la funzione di distribuzione cumulativa della normale bivariata standard
con correlazione ρ.

mentre i parametri bi e di sono definiti come:


d1 =
ln
(
S0

K1

)
+
(
r + σ2

2

)
T1

σ
√
T1

d2 = d1 − σ
√
T1

b1 =
ln
(
S0

K2

)
+
(
r + σ2

2

)
T2

σ
√
T2

b2 = b1 − σ
√
T2

d3 =
ln
(
S0

K1

)
+
(
r − σ2

2

)
T1

σ
√
T1

(1.23)

La correlazione tra le due variabili normali risulta:

ρ =
√
T1

T2
(1.24)

Infine, per completezza definiamo la funzione di distribuzione cumulativa della normale
bivariata standard, la quale assume la forma:

N2(x, y; ρ) = 1
2π
√

1− ρ2

∫ x

−∞

∫ y

−∞
exp

(
− 1

2(1− ρ2)(u2 − 2ρuv + v2)
)
du dv (1.25)

Opzioni Bermudiane: rappresentano un’interessante categoria intermedia tra le opzioni
americane ed europee, caratterizzata dall’esistenza di diverse date di esercizio, fissate
contrattualmente ex-ante.
È dunque possibile affermare che siano provviste di un grado di flessibilità intermedio4, che
le rende molto diffuse nei mercati obbligazionari, in veste di clausole di rimborso anticipato
nei callable bonds, e nei derivati su tassi di interesse (come testimonia l’ampia diffusione

4che si traduce in un premio generalmente inferiore a quello di un’opzione americana ma superiore a
quello di un’opzione europea con identiche caratteristiche in termini di sottostante, strike e scadenza
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delle c.d. swaptions bermudiane), con le date di esercizio generalmente coincidenti con
quelle dei pagamenti delle cedole.

Definiamo il payoff come il massimo tra il valore dell’esercizio immediato nelle date con-
sentite e il valore atteso di mantenimento dell’opzione fino alla data di esercizio successiva,
e dunque, considerando un insieme ordinato di date di esercizio {t1, t2, . . . , tn} con tn = T ,
il payoff al tempo ti risulta:

V (ti, Sti
) = max

(
h(Sti

), EQ
[
e−r(ti+1−ti)V (ti+1, Sti+1)

∣∣∣Fti

])
(1.26)

in cui si precisa che:

• h(Sti
) corrisponde al payoff dell’esercizio immediato, ad esempio per una call: max(Sti

−
K, 0);

• EQ[| Fti
] è l’aspettativa condizionata sotto la misura di rischio neutrale.

Il confronto tra il payoff dell’esercizio immediato e il valore atteso scontato del manteni-
mento in vita dell’opzione genera un problema di ottimizzazione dinamica e di valutazione
condizionata su un processo stocastico, che si traduce in una struttura a più stadi (o ri-
corsiva) in cui il valore dell’opzione è funzione del valore futuro atteso e delle decisioni
ottimali di esercizio, e proprio in luce di tale ricorsività non è ammissibile una soluzione
chiusa per questa tipologia di opzioni esotiche, in quanto il valore di ogni nodo dipende
da un’aspettativa condizionata sul valore dei nodi futuri, a sua volta legata ad ulteriori
aspettative condizionate, ed inoltre, il processo stocastico del sottostante, spesso modella-
to come un moto browniano geometrico, rende impossibile integrare analiticamente tutte
le variabili coinvolte in questa struttura dinamica.
La determinazione del premio di un’opzione bermudiana richiede in definitiva l’utilizzo di
modelli binomiali o trinomiali, i quali permettono la discretizzazione del processo e valu-
tano iterativamente il valore dell’opzione tramite backward induction, o alternativamente
di simulazioni Monte Carlo con regressione, o LSM (Longstaff e Schwartz, 2001).5

Opzioni Basket: Si fa riferimento ad una classe di derivati esotici il cui payoff dipende
da attività sottostanti, tipicamente costituiti da azioni, indici o valute. A differenza delle
opzioni vanilla, le basket options si basano su un valore aggregato calcolato come combi-
nazione lineare dei prezzi dei singoli componenti del paniere, pesati secondo un vettore di
pesi prestabilito. Formalmente, dati un vettore di prezzi St =

(
S

(1)
t , S

(2)
t , . . . , S

(n)
t

)
e un

5Tale valutazione può essere effettuata anche mediante il ricorso all’EDP di Black-Scholes estesa, con
condizioni al contorno e condizioni aggiuntive interne al dominio temporale, che riflettono l’opportunità
di esercizio discreto.
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vettore di pesi w = (w1, w2, . . . , wn), il valore del basket al tempo t è definito come:

Bt =
n∑

i=1
wiS

(i)
t (1.27)

Pertanto, si ha un payoff pari a:

max[BT −K, 0] (1.28)

per una basket call europea e
max[K −BT , 0] (1.29)

per una put.

La complessità intrinseca delle opzioni basket risiede nella natura multidimensionale del
sottostante e nella necessità di modellare la dinamica congiunta dei prezzi dei singoli asset,
tenendo conto delle loro volatilità individuali, e soprattutto, delle correlazioni incro-
ciate. Assume rilevanza primaria per il pricing la matrice di correlazione tra i rendimenti
delle attività componenti il basket, poiché la volatilità complessiva dello stesso non è sem-
plicemente una media delle volatilità individuali, ma una funzione che incorpora le corre-
lazioni tra i componenti, con l’effetto che una correlazione elevata tra i sottostanti tende
ad aumentare la volatilità aggregata del basket, incrementando il premio dell’opzione, e
viceversa.

Il modello più diffuso per descrivere la dinamica dei prezzi sottostanti è il modello mul-
tivariato di Black-Scholes, in cui ciascun asset segue un GBM6 con volatilità σi e i
moti browniani sono correlati secondo una matrice ρ, tale che:

dS
(i)
t = rS

(i)
t dt+ σiS

(i)
t dW

(i)
t , i = 1, . . . , n (1.30)

dove W
(i)
t sono moti browniani standard sotto la misura di rischio neutro Q, e sono

correlati tra loro secondo ρij.

Opzioni Cliquet: Ci riferiamo in questo caso a strumenti derivati che offrono un ren-
dimento minimo garantito annuale in cambio di un tetto massimo durante la vita del
contratto. È certamente vero che anche questa tipologia di opzione esotica si presti a
mercati volatili, ma a differenza delle opzioni asiatiche o lookback in senso stretto, si
prevede che il prezzo del sottostante sia soggetto ad una variabilità più contenuta, o
quantomeno non si prevede un rialzo al di sopra del cap.
Le opzioni cliquet possono essere considerate come una forma di opzioni lookback, che

6Processo di moto browniano geometrico.
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fissano il miglior prezzo dell’asset sottostante su una serie di date predefinite durante la
vita dell’opzione.

Queste opzioni sono spesso utilizzate in prodotti strutturati, in primis obbligazioni equity
linked e investimenti garantiti da capitale, poiché permettono di bloccare i rendimenti a
intervalli regolari, proteggendo il capitale dai cali di mercato7, ma anche perché, in forza
del loro meccanismo di reset permette di ricalcolare il prezzo di esercizio sulla base delle
fluttuazioni del sottostante, e di attuare una gestione del rischio più efficace, catturando
i momenti favorevoli del mercato mentre si limita l’esposizione ai rischi di ribasso.

Più nello specifico, le opzioni cliquet sono caratterizzate da una serie di intervalli di re-
set periodici, durante i quali il prezzo di esercizio dell’opzione viene ricalcolato in base
al valore corrente dell’asset sottostante, permettendo così di fissare i guadagni ottenuti
fino a quel momento, proteggendo l’investitore dai ribassi futuri.
Pertanto, il primo passo per il calcolo del payoff consiste nell’identificare le suddette date
di reset periodiche, siano esse, mensili, trimestrali, annuali, o ad una cadenza diversa e
procedere all’aggiornamento dello strike in accordo alle rilevazioni effettuate.
Dopodiché, è necessario calcolare il rendimento del sottostante, che dovrà essere confron-
tato con il floor ; qualora il primo fosse positivo, allora verrebbe registrato come profitto
per quel periodo, altrimenti, a seconda delle specifiche contrattuali, sarà valutato come
zero o perdita. Dopo aver applicato limiti di rendimento massimo e minimo (tenendo
in tal modo conto degli eventuali effetti modificativi degli stessi sull’importo del payoff),
alla fine della vita dell’opzione, i payoff di tutti i periodi vengono sommati per ottenere il
valore intrinseco dell’opzione.
Possiamo dunque constatare che il payoff finale dell’opzione cliquet è la somma dei rendi-
menti aggregati, tenuto conto di eventuali cap e floor applicati o, in termini matematici;

Payoff =
n∑

i=1
max(min(Ri,Cap),Floor), (1.31)

con Ri che rappresenta il rendimento periodale del sottostante.

7Notiamo anche in questo caso che l’investitore acquista un’opzione cliquet per assicurarsi un rendi-
mento minimo, ma non si aspetta, al contrario, che il sottostante conosca una significativa crescita di
valore, ed è pertanto disposto ad accettare un tetto.
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2 I modelli di option pricing

Questo capitolo si propone di prendere in rassegna i più diffusi modelli di option pricing,
di analizzarne i fondamenti matematici e valutarne l’efficienza, mostrandone le capacità
applicative su un vasto campionario di opzioni, sia vanilla che esotiche.

2.1 Introduzione ai modelli utilizzati nell’analisi

Il primo approccio preso in analisi è il modello binomiale di Cox-Ross-Rubinstein,
il quale, discretizzando il processo di diffusione geometrica browniana in un albero bino-
miale ricombinante consente una flessibilità computazionale utile non solo al prezzaggio
delle opzioni plain vanilla, ma ne permette anche l’estensione alle opzioni path-dependent.
In secondo luogo viene descritto il modello di Black-Scholes-Merton (BSM), basato
su ipotesi di mercato perfetto e volatilità costante 8 e ampiamente adottato nel pricing
delle opzioni europee, poiché fornisce una soluzione analitica particolarmente elegante.
Trova in seguito spazio il modello di Datar-Mathews, di ispirazione real options, in
cui si introduce un framework decisionale basato su simulazioni Monte Carlo, partico-
larmente adatto a contesti in cui l’incertezza è multidimensionale e il valore dell’opzione
dipende da scenari discreti. Infine, viene trattato il modello di Heston, il quale per-
mette di incorporare una dinamica stocastica per la volatilità catturando fenomeni
empirici come il volatility smile e l’asimmetria dei rendimenti.

2.2 Il modello di Cox-Ross-Rubinstein

Il modello CRR, introdotto da Cox, Ross e Rubinstein nel 1979 come discretizzazione
multiperiodale del modello continuo di Black-Scholes, si basa su una struttura ad albero
binomiale, in cui il prezzo del sottostante può evolvere, ad ogni intervallo temporale ∆t =
T
N

, secondo due possibili movimenti, quali un incremento di fattore u o un decremento di
fattore d, generando una dinamica di processo stocastico moltiplicativo.

La costruzione dell’albero binomiale prevede che, in corrispondenza di ciascun nodo, il
prezzo del sottostante Sn possa assumere valori pari a Snu o Snd, dove i parametri u e d
sono determinati in funzione della volatilità σ nella misura di:

u = eσ
√

∆t (2.1)
8Ragion per cui si rendono necessarie sostanziali modifiche al modello per trattare strutture esotiche.
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d = e−σ
√

∆t (2.2)

considerando la relazione u = 1
d

che lega i fattori di incremento e decremento e la ricom-
binabilità della struttura, nella quale i cammini che prevedono una sequenza up seguita
da una down (o viceversa) portano ad un valore pari a quello del sottostante9.

Figura 5: Albero binomiale a tre periodi

Il pricing nel modello CRR viene effettuato mediante il ricorso alla backward induction,
partendo dai nodi terminali, dove il payoff è noto, e si risale ricorsivamente l’albero cal-
colando, a ciascun nodo, il valore atteso scontato dei possibili valori futuri secondo la
probabilità neutrale al rischio q10, definita nel caso discreto come:

q = u− (1 + r)
u− d

(2.3)

Il valore dell’opzione (nel seguente caso una call) in ogni nodo è quindi pari a:

Cn = 1
1 + r

[
(1− q)C(u)

n+1 + qC
(d)
n+1

]
11 (2.4)

Quello proposto da Cox, Ross e Rubinstein è un modello altamente replicabile, nel quale
ogni nodo rappresenta una possibile evoluzione del prezzo del sottostante, e la strategia

9Con il risultato di ridurre drasticamente il numero dei nodi e rendere il modello computazionalmente
molto più efficiente.

10Può inoltre essere definita come la probabilità (neutrale al rischio) che il sottostante conosca un
decremento nel prossimo periodo, quindi q := P

[
S(t + 1) = dS(t)

]
.

11La presente formula di ricorsione trova applicazione in tempo discreto. Nel caso continuo, la formula
tiene conto della variazione della capitalizzazione del tasso di interesse, e può essere scritta come Cn =
e−r∆t

[
(1− q)C(u)

n+1 + qC
(d)
n+1

]
.
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di hedging può essere costruita esplicitamente tramite portafogli autofinanzianti. Inoltre,
al crescere del numero di passi (o più correttamente per n→∞), la distribuzione tende a
convergere alla distribuzione lognormale del modello di Black-Scholes, garantendo
la validità asintotica del modello discreto rispetto al caso continuo.
La probabilità neutrale al rischio q consente di trattare il problema del pricing in modo
coerente con l’assenza di arbitraggio, e considerando il processo Q come una martingala,
possiamo considerare il prezzo futuro scontato, condizionato all’informazione attualmente
disponibile come:

S0 = EQ
[
S1

1 + r

]
(2.5)

oppure, in tempo continuo:

St = EQ
[
e−r(T −t)ST | Ft

]
. (2.6)

2.2.1 I prezzi neutrali al rischio

Il concetto di prezzo neutrale al rischio assume un ruolo cruciale nella formulazione e
nell’interpretazione del modello di Cox-Ross-Rubinstein, risulta dunque utile valutarne
con maggior dettaglio i fondamenti matematici.
In prima analisi, possiamo affermare che la misura neutrale al rischio modifica le proba-
bilità associate ai possibili movimenti del prezzo del sottostante in modo tale che, sotto
tale misura, il prezzo atteso del primo cresca esattamente al tasso risk-free, implicando
che il premio per il rischio, il quale di norma richiede un rendimento atteso superiore per
le attività più rischiose, venga neutralizzato12.

Sketch proof : La coerenza con il principio di neutralità del rischio è resa possibile dal fatto
che la misura in analisi gode della proprietà di martingala, e può essere definita come
misura martingala equivalente (EMM). In particolare, consideriamo un mercato con
un sottostante il cui prezzo al tempo n è Sn e un periodo discreto ∆t.

Il valore attuale è definito come
Ŝn = Sn

(1 + r)n
. (2.7)

Nel modello binomiale, tra n e n + 1 il prezzo del sottostante può muoversi solo in due
modi:

Sn+1 ∈ {Snu, Snd}, (2.8)
12In altri termini, tutte le attività rischiose avranno lo stesso rendimento atteso, pari al tasso privo di

rischio.
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con u > 1 + r > d per eliminare la possibilità di arbitraggio.

La misura neutrale al rischio Q assegna probabilità p∗ all’incremento up u e 1 − p∗ al
decremento down d, con

p∗ = (1 + r)− d
u− d

. (2.9)

Per dimostrare che Ŝn è una martingala sotto Q, dobbiamo verificare che

EQ
[
Ŝn+1 | Fn

]
= Ŝn. (2.10)

Calcoliamo esplicitamente:

EQ
[
Ŝn+1 | Fn

]
= EQ

[
Sn+1

(1 + r)n+1 | Fn

]
= 1

(1 + r)n+1E
Q [Sn+1 | Fn] .

Dal momento che Sn è noto in n, e il movimento successivo è binomiale, otteniamo:

EQ [Sn+1 | Fn] = p∗Snu+ (1− p∗)Snd = Sn (p∗u+ (1− p∗)d) .

Sostituiamo p∗:

p∗u+ (1− p∗)d = u
(1 + r)− d
u− d

+ d
u− (1 + r)
u− d

= u((1 + r)− d) + d(u− (1 + r))
u− d

,

sviluppiamo il numeratore:

u(1 + r)− ud+ du− d(1 + r) = u(1 + r)− d(1 + r) = (1 + r)(u− d),

da cui,
p∗u+ (1− p∗)d = (1 + r)(u− d)

u− d
= 1 + r.

Pertanto,

EQ
[
Ŝn+1 | Fn

]
= 1

(1 + r)n+1E
Q [Sn+1 | Fn] = 1

(1 + r)n+1Sn(1 + r) = Sn

(1 + r)n
= Ŝn,

(2.11)
dimostrando che Ŝn è una martingala sotto Q.

20



2.2.2 Utilizzo del modello binomiale per opzioni europee e americane

Una volta appurato che la misura neutrale al rischio Q è definibile come un fair game, si
può procedere con la costruzione del pricing di un derivato tramite aspettativa condizio-
nata sotto Q.
Nuovamente, considerata l’evoluzione del sottostante in N passi discreti, ciascuno di dura-
ta ∆t = T

N
, e la probabilità neutrale al rischio p∗ come definita alla (2.9), risulta evidente

che, dopo N passi, il sottostante possa assumere solo valori della forma:

SN = S0u
kdN−k (2.12)

con k incrementi di prezzo e N − k movimenti down.
Dal momento che i movimenti sono fissi e con probabilità fissa sotto ls misura neutrale al
rischio, la probabilità di avere esattamente k incrementi sul totale dei passi risulta pari a:

Q(X = k) =
(
N

k

)
p∗kqN−k.

Espandendo l’aspettativa in funzione della distribuzione binomiale,

E[Q(Φ(SN))] =
N∑

k=0
Φ(S0u

kdN−k)Q(X = k) =
N∑

k=0
Φ(S0u

kdN−k)
(
N

k

)
p∗k(q)N−k

e considerando che il prezzo iniziale dell’opzione, in accordo al principio di neutralità
al rischio, è il valore atteso scontato del payoff Φ(SN) sotto Q, possiamo ottenere una
formula chiusa per la determinazione del prezzo iniziale di un’opzione europea:

C0 = 1
(1 + r)N

N∑
k=0

(
N

k

)
p∗kqN−k Φ(S0u

kdN−k) (2.13)

In rapporto al pricing di un’opzione americana risulta necessario implementare nella for-
mula alcune modifiche di carattere sostanziale che consentano di tenere conto della possi-
bilità di esercizio anticipato ad ogni nodo temporale. Deve quindi essere sviluppata una
relazione che permetta il confronto tra il valore dell’opzione in caso di esercizio imme-
diato Φ(Sn, j) e il valore di continuazione, dato dal valore atteso scontato del prezzo
nei nodi successivi, e quindi, in termini formali:

Cn,j = max
{

Φ(Sn,j),
1

1 + r
[p∗Cn+1,j+1 + qCn+1,j]

}
13. (2.14)

13Oppure, usando una notazione che metta maggiormente in risalto l’aspettativa condizionata rispetto
alla filtrazione, possiamo scrivere Cn,j = max

{
Φ(Sn,j), EQ

[
1

1+r Cn+1

∣∣∣Fn

]}
.
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Il problema del prezzaggio di un’opzione americana può quindi essere visto in un’ottica di
optimal stopping (Harrison e Kreps, 1979), ovvero della ricerca del momento ottimale di
esercizio che permetta di massimizzare il valore atteso scontato del payoff. In particolare,
seguendo suddetto approccio, la relazione del prezzo di un’opzione call americana assume
la forma:

Cn,j = sup
τ∈Tn

EQ

[
1

(1 + r)τ−n
Φ(Sτ )

∣∣∣∣∣Sn = Sn,j

]
. (2.15)

Il problema di optimal stopping si risolve facendo ugualmente ricorso alla backward in-
duction, con il prezzo dell’opzione che al tempo finale N sarà necessariamente pari a
CN,j = Φ(SN,j), mentre per ogni periodo n < N , analogamente a quanto cennato in prece-
denza, dovranno essere confrontati i valori di esercizio e di continuazione, rispettivamente
corrispondenti a:

Φ(Sn,j)

e
EQ

[ 1
1 + r

Cn+1

∣∣∣∣Sn = Sn,j

]
= 1

1 + r
(p∗Cn+1,j+1 + qCn+1,j)

mentre la formula ricorsiva per il prezzo ad ogni nodo può essere scritta come:

Cn,j = max {Φ(Sn,j), Vcont} .

2.3 Il modello di Black-Scholes-Merton

Il modello di Black-Scholes rappresenta una pietra miliare della moderna finanza ma-
tematica, in quanto è stato in grado di fornire una formula chiusa e una metodologia
sistematica che hanno permesso di prezzare in modo preciso e coerente le opzioni, sulla
base di variabili quali il prezzo corrente dell’asset, la volatilità, il tempo alla scadenza e il
tasso privo di rischio.
La forza del modello, al quale si segnalano i successivi contributi di R.C. Merton, risiede
nell’aver introdotto un approccio quantitativo basato su processi stocastici continui e
tecniche di hedging dinamico14, e la sua centralità nella teoria finanziaria moderna si è
costantemente accentuata, in luce della fitta attività di ricerca volta a superarne le iniziali
limitazioni, che ha portato allo sviluppo di modelli più sofisticati incorporanti volatilità
stocastica e salti nei prezzi.
Il fattore di maggior successo del modello di Black-Scholes è certamente la capacità di

14Quello dell’hedging dinamico è un tema di estrema innovazione del modello BSM, in quanto apre
alla possibilità di costruire portafogli replicanti in grado di eliminare il rischio associato alle variazioni di
prezzo del sottostante.
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aver introdotto una nuova prospettiva sul pricing dei derivati, servendosi di strumenti
matematici quali le martingale, gli stopping times e le probabilità neutrali al rischio.

2.3.1 Proprietà del moto browniano

Il moto browniano, osservato per la prima volta dal botanico Robert Brown nel 1827, de-
scrive il movimento irregolare e apparentemente caotico di particelle microscopiche sospese
nel vuoto. All’inizio del XX secolo, Einstein e Smoluchowski ne fornirono una spiegazione
teorica, mentre Norbert Wiener, nel 1923, ne propose la formalizzazione come processo
stocastico.
Nel contesto della finanza matematica, il moto browniano si pone come elemento di base
dell’evoluzione dei prezzi degli asset rischiosi, e costituisce il punto cardine, nonché il più
importante elemento innovativo, del modello di Black-Scholes-Merton.

Il moto browniano standard, denominato solitamente come (Wt)t≥0, è un processo stoca-
stico a tempo continuo, con W0 = 0, dove per ogni 0 ≤ s < t, l’incremento Wt −Ws è
indipendente dalla storia del processo fino al tempo S, ovvero dalla σ-algebra generata
da Wu : u ≤ s.
In secondo luogo, suddetti incrementi sono distribuiti normalmente con media zero e va-
rianza t − s15, e quindi (Wt − Ws) ∼ N (0, t − s). Le traiettorie del processo (Wt)t≥0

sono continue, ma non derivabili in alcun punto. Inoltre, il processo è auto-similare con
esponente di Hurst H = 1

2 , ovvero ∀a > 0, (Wat)t≥0
d= (a1/2Wt)t≥0.

Il moto browniano è, infine, una martingala rispetto alla sua filtrazione naturale (Ft)t≥0,
pertanto E[Wt | Fs] = Ws,∀s ≤ t.

Consideriamo il moto browniano standard W (t) definito per t ≥ 0. Per ogni intervallo [s, t]
con s < t, l’incremento W (t)−W (s) può essere rappresentato come somma di incrementi
elementari su una partizione dell’intervallo. Sia quindi ti = s + i∆t con ∆t = t−s

n
e

i = 0, 1, . . . , n, allora:

Wt −Ws =
n−1∑
i=0

[
Wti+1 −Wti

]
(2.16)

Per ogni i, Wi+1−Wti
∼ N(0,∆t), ovvero sono incrementi gaussiani indipendenti a media

nulla e varianza ∆t. In particolare, si può scrivere:

Wti+1 −Wti
=
√

∆tZi

15La distribuzione normale degli incrementi implica che, su intervalli di tempo ridotti, le variazioni del
processo sono proporzionali alla radice quadrata della lunghezza dell’intervallo.
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dove Zi ∼ N(0, 1) sono variabili indipendenti standard. Quindi, complessivamente:

Wt −Ws =
√
t− sZ

Inoltre, il moto browniano Wt è un processo di Markov; per verificarlo esplicitamente,
consideriamo l’attesa condizionata:

E[Wt | Ws] = Ws

Possiamo scrivere:
Wt = Wt −Ws +Ws

Quindi:
E[Wt | Ws] = E[Wt −Ws | Ws] +Ws

Poiché Wt −Ws è indipendente da Ws e ha media nulla, si ottiene:

E[Wt −Ws | Ws] = E[Wt −Ws] = 0

Pertanto:
E[Wt | Ws] = Ws (2.17)

È così possibile appurare che, in un processo di moto browniano, la probabilità di transi-
zione ad uno stato futuro dipende solo dallo stato corrente, confermando sia la proprietà
di Markov sia quella di martingala.

2.3.2 Formula di Black-Scholes

Veniamo ora alla determinazione della formula utilizzata nell’ambito del modello in ana-
lisi per prezzare un’opzione call europea. Il punto di partenza è la modellizzazione del
comportamento del valore del sottostante, che si assume segua un andamento casuale. Per
eliminare il rischio legato alla volatilità del mercato, si costruisce un portafoglio composto
dall’opzione e dall’attività sottostante, in modo da annullare le componenti aleatorie.
Analogamente a quanto visto in precedenza, l’assenza di opportunità di arbitraggio im-
pone che suddetto portafoglio cresca al tasso di interesse privo di rischio, rendendo così
necessaria la formulazione di un’equazione differenziale parziale che permetta di descrivere
l’evoluzione del prezzo dell’opzione nel tempo.
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In primo luogo, ipotizziamo che il prezzo dell’azione segua un moto browniano geometrico

dS(t) = µS(t)dt+ σS(t)dW (t) (2.18)

dove µ indica il tasso di rendimento atteso e σ la volatilità, che si considera costante. La
soluzione esplicita risulta essere pari a:

S(t) = S(0) exp
{(

µ− σ2

2

)
t+ σW (t)

}
(2.19)

che implica rendimenti logaritmici normalmente distribuiti.

Consideriamo ora un’opzione call con prezzo di esercizio K e scadenza T , il cui prezzo
è C(t, S). Applicando il lemma di Itô16 alla funzione di prezzo dell’opzione, si ricava la
sua dinamica stocastica che incorpora sia la variazione deterministica che il termine di
diffusione:

dC = ∂C

∂t
dt+ ∂C

∂S
dS + 1

2
∂2C

∂S2 (dS)2

Inoltre, poiché:
dS = µSdt+ σSdW, (dS)2 = σ2S2dt

si ha:
dC =

(
∂C

∂t
+ µS

∂C

∂S
+ 1

2σ
2S2∂

2C

∂S2

)
dt+ σS

∂C

∂S
dW (2.20)

Costruiamo un portafoglio auto-finanziato replicante, composto da una posizione dinamica
∆ nel sottostante e una posizione corta nell’opzione, in modo tale da neutralizzare il rischio
sistematico derivante dalla volatilità del sottostante:

Π = ∆S − C, (2.21)

la cui variazione è:

dΠ = ∆dS − dC =

= ∆(µS dt+ σS dW )−
(∂C

∂t
+ µS

∂C

∂S
+ 1

2σ
2S2∂

2C

∂S2

)
dt+ σS

∂C

∂S
dW

 =

=
(

∆µS − ∂C

∂t
− µS∂C

∂S
− 1

2σ
2S2∂

2C

∂S2

)
dt+

(
∆σS − σS∂C

∂S

)
dW.

16La formula del lemma di Itô deriva da uno sviluppo di Taylor stocastico; in particolare, la formula
di Taylor per una variazione infinitesima di una funzione f(t, x), df

dt = ∂f
∂t dt + ∂f

∂x dx, risulta inadeguata
qualora S(t) segua una traiettoria casuale. Al contrario, i processi di Itô hanno incrementi dS che
includono l’incremento di moto browniano (o termine di rumore) dW . Sulla base di tale premessa,
considerando una funzione sufficientemente regolare quale la (2.18), lo sviluppo di Taylor stocastico al
secondo ordine assume la forma df = ∂f

∂t dt + ∂f
∂S dS + 1

2
∂2f
∂S2 (dS)2.
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Separando i termini:

dΠ =
(

∆µS − ∂C

∂t
− µS∂C

∂S
− 1

2σ
2S2∂

2C

∂S2

)
dt+

(
∆σS − σS∂C

∂S

)
dW.

Per eliminare il rischio sistematico, poniamo che il coefficiente stocastico dW sia uguale
a zero:

∆ = ∂C

∂S
.

Di conseguenza, il valore del portafoglio replicante diventa:

dΠ = −
(
∂C

∂t
+ 1

2σ
2S2∂

2C

∂S2

)
dt.

Poiché il portafoglio è privo di rischio, esso deve crescere al tasso r, pertanto:

dΠ = rΠdt = r

(
∂C

∂S
S − C

)
dt.

Uguagliando le due espressioni per dΠ e riordinando i termini otteniamo, si ottiene la
classica equazione differenziale parziale di Black-Scholes:

−
(
∂C

∂t
+ 1

2σ
2S2∂

2C

∂S2

)
= r

(
∂C

∂S
S − C

)
,

∂C

∂t
+ 1

2σ
2S2∂

2C

∂S2 + rS
∂C

∂S
− rC = 0. (2.22)

La PDE possiede tre distinte condizioni al contorno:

C(T, S) = max(S −K, 0), C(t, 0) = 0, lim
S→∞

C(t, S) = S −Ke−r(T −t).

Introduciamo le variabili trasformate:

τ = T − t, x = ln
(
S

K

)
, C(t, S) = Kv(τ, x),

calcoliamo le derivate parziali di C in funzione di v, applicando la regola della catena:

∂C

∂t
= −K∂v

∂τ
,

∂C

∂S
= K

S

∂v

∂x
,

∂2C

∂S2 = K

S2

(
∂2v

∂x2 −
∂v

∂x

)
.

Sostituendo nella PDE originale e riordinando i termini, otteniamo:

−∂v
∂τ

+ 1
2σ

2
(
∂2v

∂x2 −
∂v

∂x

)
+ r

∂v

∂x
− rv = 0,
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che si riscrive come:
∂v

∂τ
= 1

2σ
2 ∂

2v

∂x2 +
(
r − 1

2σ
2
)
∂v

∂x
− rv.

Per eliminare i termini di primo ordine e lineari in v, si introduce la trasformazione:

v(τ, x) = eαx+βτu(τ, x),

dove α e β sono parametri da determinare.
Calcoliamo le derivate di v in funzione di u:

∂v

∂τ
= eαx+βτ

(
βu+ ∂u

∂τ

)
,

∂v

∂x
= eαx+βτ

(
αu+ ∂u

∂x

)
,

∂2v

∂x2 = eαx+βτ

(
α2u+ 2α∂u

∂x
+ ∂2u

∂x2

)
.

Sostituendo nell’equazione differenziale parziale precedente e dividendo per eαx+βτ , si
ottiene:

βu+ ∂u

∂τ
= 1

2σ
2
(
α2u+ 2α∂u

∂x
+ ∂2u

∂x2

)
+
(
r − 1

2σ
2
)(

αu+ ∂u

∂x

)
− ru,

riordinando i termini nella PDE per la funzione u(τ, x), si ha:

∂u

∂τ
= 1

2σ
2∂

2u

∂x2 +
(
σ2α + r − 1

2σ
2
)
∂u

∂x
+
(1

2σ
2α2 + α

(
r − 1

2σ
2
)
− r − β

)
u.

Per eliminare i termini in ∂u
∂x

e u, imponiamo le condizioni:

σ2α + r − 1
2σ

2 = 0 =⇒ α = −
r − 1

2σ
2

σ2 ,

1
2σ

2α2 + α
(
r − 1

2σ
2
)
− r − β = 0 =⇒ β = −

(
(r − 1

2σ
2)2

2σ2 + r

)
.

Con tali scelte, la PDE per u si riduce alla classica equazione del calore:

∂u

∂τ
= 1

2σ
2∂

2u

∂x2 . (2.23)

La condizione finale per C è:

C(T, S) = max(S −K, 0).
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In termini di v e u:

v(0, x) = max(ex − 1, 0), u(0, x) = e−αxv(0, x) = max
(
e(1−α)x − e−αx, 0

)
.

La soluzione dell’equazione del calore (2.23) è data dalla convoluzione con il nucleo
gaussiano:

u(τ, x) = 1√
2πσ2τ

∫ +∞

−∞
e− (x−y)2

2σ2τ u(0, y)dy. (2.24)

Ritornando alla funzione originale, il prezzo dell’opzione si esprime come:

C(t, S) = Keαx+βτu(τ, x).

Per passare dalla soluzione integrale alla formula chiusa, consideriamo la rappresentazione
probabilistica:

u(τ, x) = E
[
u0
(
x+ σ

√
τZ
)]
,

dove Z ∼ N (0, 1) e
u0(y) = max

(
e(1−α)y − e−αy, 0

)
.

Poiché u0(y) = 0 per y < 0, l’integrale si riduce a:

u(τ, x) =
∫ +∞

0

1√
2πσ2τ

e− (x−y)2

2σ2τ

(
e(1−α)y − e−αy

)
dy.

È possibile separare l’integrale in due componenti:

u(τ, x) = I1 − I2,

con
I1 =

∫ +∞

0
ϕ(y;x, σ2τ)e(1−α)ydy, I2 =

∫ +∞

0
ϕ(y;x, σ2τ)e−αydy,

dove
ϕ(y;m, s2) = 1√

2πs2
e− (y−m)2

2s2

è la densità della normale con mediam e varianza s2. Utilizzando la proprietà del momento
generatore della normale, si ha

∫ +∞

a
eλyϕ(y;m, s2)dy = eλm+ λ2s2

2 N

(
m+ λs2 − a

s

)
(2.25)

per a = 0 e s = σ
√
τ , otteniamo:

I1 = e(1−α)x+ (1−α)2σ2τ
2 N

(
x+ (1− α)σ2τ

σ
√
τ

)
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I2 = e−αx+ α2σ2τ
2 N

(
x+ ασ2τ

σ
√
τ

)

Ricordando che
C(t, S) = Keαx+βτ (I1 − I2)

sostituendo I1 e I2, il prezzo dell’opzione può essere scritto come:

C(t, S) = Keαx+βτ
[
e(1−α)x+ (1−α)2σ2τ

2 N(d1)− e−αx+ α2σ2τ
2 N(d2)

]
(2.26)

dove
d1 = x+ (1− α)σ2τ

σ
√
τ

, d2 = x+ ασ2τ

σ
√
τ

Semplificando le esponenziali:

C(t, S) = K
[
ex+βτ+ (1−α)2σ2τ

2 N(d1)− eβτ+ α2σ2τ
2 N(d2)

]

Usando le definizioni di α e β e sostituendo x = ln S
K

, dopo semplificazioni si ottiene la
forma classica:

C(t, S) = SN(d1)−Ke−r(T −t)N(d2)17 (2.27)

con

d1 =
ln S

K
+
(
r + σ2

2

)
(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t

2.3.3 Convergenza del modello binomiale al metodo BSM

Una volta descritti i principi matematici che costituiscono la base dei due modelli, è possi-
bile dimostrare come, l’estensione al tempo continuo del modello di Cox-Ross-Rubinstein,
converga a quello di Black-Scholes.

Anche in questo caso, si suddivida l’intervallo temporale [0, T ] in n intervalli di ampiezza
∆t = T

n
, in ciascuno dei quali, il prezzo può salire o scendere secondo le probabilità

u = eσ
√

∆t, d = e−σ
√

∆t

17Questa relazione fornisce una soluzione chiusa alla PDE per un’azione che non paga dividendi. Qua-
lora sussistesse la corresponsione di un dividendo continuo ad un tasso q, proporzionale al prezzo del-
l’azione, la predetta formula si modificherebbe in C(t, S) = Se−q(T −t)N(d1) − Ke−r(T −t)N(d2), con

d1 =
ln( S

K )+
(

r−q+ σ2
2

)
(T −t)

σ
√

T −t
, d2 = d1 − σ

√
T − t.
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Riprendendo l’equazione (2.9) con la quale si è definita la probabilità neutrale al rischio p

p = (1 + r)− d
u− d

e considerato che il tasso risk-free per ogni nodo rn risulta pari a

rn = er∆t − 1

predetta probabilità nel tempo continuo può essere calcolata come:

p = er∆t − d
u− d

(2.28)

mentre la relazione per determinare il prezzo di un’opzione call assume la forma:

C0 = e−rT
n∑

k=0

(
n

k

)
pk(1− p)n−k max(S0u

kdn−k −K, 0)

Per poter conseguire l’obiettivo preposto, è necessario individuare, o quantomeno appros-
simare, i parametri del modello CRR qualora ∆t→ 0.
Dato x = σ

√
∆t, espandendo u in serie di Taylor intorno a zero, risulta:

u = ex = 1 + x+ x2

2 + x3

6 + · · ·

u = 1 + σ
√

∆t+ (σ
√

∆t)2

2 + (σ
√

∆t)3

6 + · · ·

u = 1 + σ
√

∆t+ σ2∆t
2 + σ3(∆t)3/2

6 + · · ·

u = 1 + σ
√

∆t+ 1
2σ

2∆t+ o
(
(∆t)3/2

)
Analogamente, considerando y = −σ

√
∆t,

d = ey = 1 + y + y2

2 + y3

6 + · · ·

d = 1− σ
√

∆t+ (σ
√

∆t)2

2 + (σ
√

∆t)3

6 + · · ·

d = 1− σ
√

∆t+ σ2∆t
2 + σ3(∆t)3/2

6 + · · ·

d = 1− σ
√

∆t+ 1
2σ

2∆t+ o
(
(∆t)3/2

)
In cui, il termine (σ

√
∆t)2 è di ordine superiore e diventa trascurabile rispetto al termine
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in
√
t quando ∆t → 0, analogamente ai termini di ordine (∆t)3/2 e superiori, ancora più

piccoli e conseguentemente ignorati nelle approssimazioni di primo ordine.
Pertanto, sulla base di tali considerazioni, i termini u e d possono essere approssimati
come:

u ≈ 1 + σ
√

∆t, d ≈ 1− σ
√

∆t

Secondo una logica analoga, è possibile approssimare anche il valore della probabilità
neutrale al rischio, espandendo in Taylor er∆t e utilizzando i valori di u e d appena
individuati:

er∆t = 1 + r∆t+ o(∆t)

Pertanto la (2.9) può essere riscritta come:

p =
1 + r∆t− (1− σ

√
∆t+ 1

2σ
2∆t) + o(∆t)

(1 + σ
√

∆t+ 1
2σ

2∆t)− (1− σ
√

∆t+ 1
2σ

2∆t) + o(∆t)

p =
σ
√

∆t+ (r − σ2

2 )∆t+ o(∆t)
2σ
√

∆t+ o(∆t)

p = σ
√

∆t
2σ
√

∆t
+

(r − σ2

2 )∆t
2σ
√

∆t
+ o(
√

∆t)

p = 1
2 +

r − σ2

2
2σ
√

∆t+ o(
√

∆t)

dove il termine r− σ2
2

2σ

√
∆t riflette il drift corretto per garantire la misura neutrale al rischio

nel limite.

Nel modello di Cox-Ross-Rubinstein, dopo N passi, k è una variabile casuale con distri-
buzione binomiale

k ∼ Bin(n, p)

Come visto nei precedenti paragrafi, la probabilità di osservare esattamente k rialzi è
misurata da:

P (k) = Q(X = k) =
(
N

k

)
pkqN−k

e più nel dettaglio

P (k) =
(
n

k

)
pk(1− p)n−k = n!

k!(n− k)!p
k(1− p)n−k

Dato un certo m generico, la formula di Stirling fornisce un approssimazione per m!, data
da:

m! ≈
√

2πm
(
m

e

)m

(2.29)
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che può essere applicata a n!, k! e (n− k)!, i possono essere stimati come:

n! ≈
√

2πn
(
n

e

)n

, k! ≈
√

2πk
(
k

e

)k

, (n− k)! ≈
√

2π(n− k)
(
n− k
e

)n−k

Sostituendo tali valori alla formula di P (k) si ottiene:

P (k) ≈

√
2πn

(
n
e

)n

√
2πk

(
k
e

)k√
2π(n− k)

(
n−k

e

)n−k
pk(1− p)n−k

P (k) ≈
√

2πnnn

√
2πk

√
2π(n− k)kk(n− k)n−k

pk(1− p)n−k

Per semplificare il trattamento analitico, può essere conveniente considerare il logaritmo
di P (k),

lnP (k) ≈ 1
2 ln(2πn)−1

2 ln(2πk)−1
2 ln(2π(n−k))+n lnn−k ln k−(n−k) ln(n−k)+k ln p+(n−k) ln(1−p)

Si prenda ora la variabile normale standardizzata:

k = np+ z
√
np(1− p) (2.30)

dove z è una variabile reale che misura la deviazione normalizzata del valore atteso np.
Da ciò risulta che:

ln k = ln(np+ z
√
np(1− p))

ln(n− k) = ln(n(1− p− z
√
np(1− p)))

Per n grandi, è possibile ricorrere nuovamente all’espansione di Taylor per approssimare
i logaritmi di k e n− k attorno ai loro valori attesi np e n(1− p), rispettivamente.
Ricordando che per x ≈ a, si può espandere il logaritmo come:

ln x = ln a+ x− a
a
− (x− a)2

2a2 + · · ·

applicando questa formula a

k = np+ δ, δ = z
√
np(1− p), n− k = n(1− p)− δ

si ottengono le approssimazioni ai logaritmi di k e n− k:

ln k ≈ ln(np) + δ

np
− δ2

2(np)2
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ln(n− k) ≈ ln(n(1− p))− δ

n(1− p) −
δ2

2(n(1− p))2

Inserendo queste espressioni nella formula per lnP (k), si ricava che

lnP (k) ≈ cost− 2
z2 + o(1)

dove si nota come il valore della costante dipenda da n e p, ma non da z.
Di conseguenza, la probabilità P (k) può essere approssimata da una funzione gaussiana
di tipo

P (k) ≈ Ce− z2
2

c è una costante di normalizzazione che, tenendo conto del termine di radice proveniente
dalla formula di Stirling, si traduce nella seguente espressione:

P (k) ≈ 1√
2πnp(1− p)

exp
(
− (k − np)2

2np(1− p)

)

ossia la densità della variabile normale standardizzata

Zn := k − np√
np(1− p)

(2.31)

la cui funzione di ripartizione è

Fn(z) = P (Zn ≤ z) = P
(
k ≤ np+ z

√
np(1− p)

)

Tale funzione corrisponde alla somma cumulativa delle probabilità binomiali fino al valore
intero più grande minore o uguale a np+ z

√
np(1− p),

Fn(z) =

⌊
np+z
√

np(1−p)
⌋

∑
k=0

P (k) =

⌊
np+z
√

np(1−p)
⌋

∑
k=0

(
n

k

)
pk(1− p)n−k

Dal teorema locale di De Moivre-Laplace, per valori di k vicini a np, si ha:

P (k) ≈ 1√
2πnp(1− p)

exp
(
− (k − np)2

2np(1− p)

)
.

Si definisca ora la funzione
g(x) = 1√

2π
e− x2

2 (2.32)

densità della normale standard.
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Per dimostrare la convergenza in distribuzione della variabile Zn ad una normale, si può
ricorrere alla costruzione di somme di Riemann.
In particolare, riformuliamo la somma delle probabilità binomiali in termini della variabile
normalizzata xk:

xk = k − np√
np(1− p)

che ora diventa:
Fn(z) ≈

∑
xk≤z

1√
2πnp(1− p)

e− 1
2 x2

k

Si osservi che la distanza tra due valori consecutivi della variabile xk è data da

∆x = 1√
np(1− p)

Pertanto, la somma delle probabilità può essere riscritta nella forma

Fn(z) ≈
∑

xk≤z

g(xk) ∆x

Poiché ∆x→ 0 18 per n→∞, la somma di Riemann converge all’integrale
∫ z

−∞
g(x) dx = Φ(z)

dove Φ(z) è la funzione di ripartizione della normale standard.
Se dunque, limn→∞ Fn(z) = Φ(z), allora si può affermare che la funzione di riparti-
zione della variabile binomiale normalizzata Zn converge puntualmente alla funzione di
ripartizione della normale standard Φ, o più formalmente:

k − np√
np(1− p)

d−→ N (0, 1) (2.33)

Una volta appurata tale convergenza, si riprenda la relazione (2.12), che esprime il prezzo
del sottostante dopo n passi:

Sn = S0u
kdn−k

di cui si calcola il logaritmo:

lnSn = lnS0 + k ln u+ (n− k) ln d
18Ciò appare chiaro, dal momento che limn→∞ ∆x = limn→∞

1√
np(1−p)

= 1
∞ = 0.
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sostituendo i valori di u e d, si ha:

lnSn = lnS0 + kσ
√

∆t− (n− k)σ
√

∆t ≈ lnS0 + σ
√

∆t(2k − n)

Considerando nuovamente la variabile normalizzata Zn = k−np√
np(1−p)

, si riscrive 2k−n come

2k − n = 2(k − np) + 2np− n = 2
√
np(1− p)Zn + n(2p− 1)

pertanto,
lnSn = lnS0 + σ

√
∆t

(
2
√
np(1− p)Zn + n(2p− 1)

)
Dato che ∆t = T

N
,

lnSn = lnS0 + σ

√
n

T
2
√
np(1− p)Zn + σ

√
n

T
n(2p− 1)

lnSn = lnS0 + 2σTp(1− p)Zn + σTn(2p− 1)

Si prendano ora in analisi i limiti dei termini presenti;
Per quanto concerne il termine stocastico, è stato appena appurato che, per il teorema
del limite centrale (De Moivre-Laplace), Zn

d−→ N (0, 1), mentre in rapporto al termine
deterministico, è necessario calcolare il limite di σ

√
Tn(2p− 1).

Ad ogni modo, considerando che

p = 1
2 +

(r − σ2

2 )
2σ

√
∆t+ o(

√
∆t)

allora,

2p− 1 = 2(1
2 +

(r − σ2

2 )
2σ

√
∆t) + o(

√
∆t)− 1

2p− 1 =
(r − σ2

2 )
σ

√
∆t+ o(

√
∆t)

sostituiamo
√

∆t = T
n

,

2p− 1 =
r − σ2

2
σ

√
T

n
+ o( 1

n
)

σ
√
Tn(2p− 1) = σ

√
Tn

(r − σ2

2 )
σ

√
T

n
+ o(

√
1
n

)

da cui:
lim

n→∞
σ
√
Tn(2p− 1) = (r − σ2

2 )T
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Quindi, è ora possibile affermare che:

lnSn
d−→ lnS0 + (r − 1

2σ
2)T + σ

√
TZ

O più precisamente,
lnSn

d−→ lnS0 + (r − 1
2σ

2)T + σWT , (2.34)

dove WT ∼ N (0, T ).
In tal modo si è potuto dimostrare come il logaritmo del prezzo terminale nel modello di
Cox-Ross-Rubinstein converga in distribuzione alla dinamica lognormale di Black-Scholes,
e quindi, in altri termini, che

Sn = eln Sn d−→ ST = S0 exp
{

(r − 1
2σ

2)T + σWT

}

Considerando il prezzo di un’opzione call europea nel modello CRR al tempo 0,

C
(n)
0 = e−rT EQn [max(Sn −K, 0)]

poiché Sn
d−→ ST , e il payoff max(S − k, 0) è una funzione continua e limitata dal basso,

per il teorema della convergenza dominata19, si ha:

lim
n→∞

EQn [max(Sn −K, 0)] = EQ [max(ST −K, 0)]

Da cui,
lim

n→∞
C

(n)
0 = e−rT EQ [max(ST −K, 0)] = CBS(S0, K, r, σ, T ) (2.35)

2.4 Metodo Monte Carlo per le opzioni

Pochi anni dopo che Black e Scholes da una parte, e Cox e Ross dall’altra proposero i
rispettivi metodi di valutazione, P. Boyle introdusse un nuovo approccio basato sulle simu-
lazioni Monte Carlo, in forza del quale era consentito stimare il valore atteso di un’opzione
simulando direttamente la dinamica stocastica del sottostante, senza richiedere una so-
luzione analitica dell’equazione di Black-Scholes. Possiamo dire che qui giaccia, forse, la
necessità di individuare un nuovo approccio alla valutazione delle opzioni, in quanto, se la
(2.27) rappresenta una soluzione chiusa alla PDE in caso di azione che non paga dividendi
(con le opportune modifiche in caso di dividendo costante e proporzionale al prezzo

19È possibile ricorrere al teorema della convergenza dominata in quanto la funzione payoff f(S) =
max(S − K, 0) è continua e non negativa, e inoltre, è dominata da una funzione integrabile avente
aspettativa finita sotto la misura neutrale al rischio nel modello Black-Scholes.
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dell’azione), in presenza di altre politiche di dividendo è inevitabile il ricorso a metodi
numerici per la risoluzione dell’equazione differenziale20.

Analogamente al caso precedente, sia St il prezzo del sottostante al tempo t, che sotto la
misura neutrale al rischio Q, evolve secondo il GBM:

dS(t) = rS(t) dt+ σS(t) dW (t)

la cui soluzione esplicita è rappresentata dalla (2.19).
Successivamente, si procede alla generazione delle traiettorie del prezzo del sottostante,
ciascuna delle quali ne rappresenta una possibile evoluzione futura, coerentemente con il
modello stocastico ipotizzato.
Sia n il numero di simulazioni; per ogni i, . . . , n, si genera una variabile casuale indipen-
dente Z(i) ∼ N (0, 1), estratta da una distribuzione normale standard. In seguito, ricor-
rendo alla soluzione analitica dell’equazione differenziale stocastica del moto browniano
geometrico, si ottiene:

S
(i)
T = S0 exp

{(
r − 1

2σ
2
)
T + σ

√
T Z(i)

}

Pertanto, dalla generazione di N simulazioni, si ottiene una distribuzione empirica dei
possibili prezzi a scadenza.
Una volta generata la sequenza di prezzi simulati a scadenza

(
S

(i)
T

)n

i=1
, per ciascuna si-

mulazione i, si calcola il payoff dell’opzione in funzione del prezzo simulato S(i)
T , sia esso

max(S(i)
T −K, 0) per una call o max(K −S(i)

T , 0) per una put. Successivamente, si calcola
la media dei payoff ottenuti sulle n simulazioni:

P = 1
n

n∑
i=1

P (i)

Poiché il valore atteso del payoff è riferito alla scadenza T , è necessario attualizzarlo al
tempo presente utilizzando il tasso privo di rischio:

CMC
0 = e−rTP = e−rT 1

n

n∑
i=1

P (i) (2.36)

ottenendo in questo modo la stima Monte Carlo del prezzo dell’opzione.
20La pubblicazione originale di Boyle fa riferimento al metodo adottato da E.S. Schwartz nel 1977,

particolarmente efficace nella valutazione di opzioni in contesti in cui non è disponibile una soluzione
chiusa, come nel caso di politiche di dividendo complesse. Tale approccio consiste nel discretizzare il
dominio temporale e spaziale, e approssimare le derivate parziali con differenze finite, trasformando il
problema continuo in un sistema lineare risolvibile con metodi iterativi.
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La varianza della stima è data da:

Var(CMC
0 ) = e−2rT

n
Var(P (i))

e, conseguentemente, l’errore standard è pari a:

SE(CMC
0 ) = e−rT

√
n
sP

dove sP indica la deviazione standard campionaria dei payoff simulati.

Secondo il teorema del limite centrale, per n sufficientemente grande, la distribuzione di
CMC

0 tende ad una normale, pertanto:

CMC
0 ∼ N

(
C0,

e−2rT

n
Var(P (i))

)

Per migliorare l’efficienza della simulazione, possono essere adottate tecniche di riduzione
della varianza, come il metodo delle variabili di controllo e delle variabili antitetiche
(Boyle, 1977); in particolare, nel primo caso, si introduce una variabile Y correlata al
payoff e al valore atteso noto, e si costruisce una nuova stima:

ĈCV
0 = CMC

0 + λ(Y ∗ − E[Y ])

mentre nel caso delle variabili antitetiche, per ogni Z(i), si considera anche −Z(i), otte-
nendo due simulazioni accoppiare e riducendo la varianza complessiva21. Nel caso in cui il
sottostante paghi dividendi discreti, la simulazione deve tenerne conto riducendo il prezzo
del sottostante in corrispondenza delle date di stacco.

2.4.1 Convergenza delle simulazioni Monte Carlo al modello di Black-Scholes

Così come per il modello di Cox-Ross-Rubinstein, è possibile mostrare che il prezzo cal-
colato tramite le simulazioni Monte Carlo converge, al crescere della numerosità dei path,
al prezzo teorico individuato dal modello di Black-Scholes-Merton. Ad ogni modo, la
dimostrazione in tal ultimo caso appare molto più immediata rispetto al precedente.

Si riprendano le relazioni (2.27) e (2.36), che descrivono rispettivamente il prezzo di un’op-
zione call europea calcolata con Monte Carlo e Black-Scholes; appare chiaro che in entram-

21Calcolando la media dei payoff associati a ciascuna coppia (Z,−Z), si ottiene una stima che, grazie
alla covarianza negativa tra i due risultati, presenta una varianza inferiore rispetto a quella ottenuta con
due simulazioni indipendenti, con l’effetto di aumentare l’efficienza della simulazione senza incrementare
significativamente il costo computazionale.
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bi i casi, seppur mediante approcci differenti, lo scopo dei modelli sia quello di determinare
il valore atteso scontato dell’aspettativa neutrale al rischio, EQ[max(ST −K, 0)].

Con riferimento alla formula di Monte Carlo, si è definito P (i) = max(St
(i)−K, 0), da cui;

Xi = e−rTP (i) = e−rT max(ST
(i) −K, 0)

La legge dei grandi numeri afferma che, se X1, X2, . . . , Xn sono variabili casuali iid, con
valore atteso finito E[Xi] = µ, allora

1
n

n∑
i=1

Xi
n→∞−−−→ µ

e dunque, se la quantità µ = E[Xi] coincide con il valore atteso del payoff scontato sotto
la misura neutrale al rischio, il prezzo calcolato con il metodo Monte Carlo coincide con
quello teorico Black-Scholes

C0
MC = CBS = EQ[e−rT max(ST −K, 0)] (2.37)

Tale convergenza si rafforza al crescere di n, infatti la probabilità che la media campio-
naria C0

MC differisca significativamente dal valore atteso CBS tende a 0 al crescere della
numerosità delle simulazioni effettuate:

∀ε > 0 : P
(
|CMC

0 − CBS| > ε
)
−→ 0 per n→∞

Assume importanza primaria effettuare, affinché si possa apprezzare il fenomeno in analisi,
un numero sufficientemente ampio di simulazioni22. Un’applicazione pratica di quanto qui
affermato, sia con riferimento al metodo Monte Carlo che al modello CRR, sarà fornita a
partire dal capitolo seguente.

2.5 Il modello di Datar-Mathews

Il metodo Datar-Mathews viene introdotto ad inizio millennio come estensione del tradi-
zionale modello del Valore Attuale Netto specificamente per la valutazione delle opzioni
reali. Si tratta di un nuovo approccio alquanto meritevole di interesse, che si serve delle
simulazioni Monte Carlo per il calcolo del payoff, troncando i risultati negativi in modo da
riflettere la facoltà dell’holder di non esercitare l’opzione in condizioni ad esso sfavorevoli.

22Ai fini operativi, si suggerisce di implementare un minimo di 10000 simulazioni, in modo tale da poter
avere un riscontro numericamente visibile della convergenza.
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2.5.1 Implementazione del modello con la simulazione Monte-Carlo

Per risalire alla struttura della formula del premio dell’opzione attraverso il modello in
analisi, si parta dalla concezione che, un progetto di investimento, in condizioni di incer-
tezza, può generare una varietà di possibili valori attuali netti a scadenza. Risulta allora
possibile individuare il valore dell’opzione associata al progetto come il valore atteso del
massimo tra il payoff della stessa e zero:

V = E[max(NPV, 0)] (2.38)

La formula generale per il calcolo del valore attuale netto NPV = ∑T
t=1

CFt

(1+r)t − I0 non
richiede modificazioni, ma risulta necessario soffermarsi sulla distribuzione di probabilità
delle variabili che impattano sulla struttura dei flussi si cassa CFt.
In un contesto di incertezza, ogni variabile deve essere trattata come una variabile aleatoria
ed è imperativo assegnarle una distribuzione di probabilità FX(x) che ne rappresenti
adeguatamente il comportamento atteso. Le principali variabili che vengono prese in
considerazione sono il prezzo di vendita Pt, la quantità venduta Qt, il costo variabile
unitario Cvar,t, il costo fisso totale Cfx,t , l’investimento iniziale I0, il tasso di sconto r e
l’orizzonte temporale T .

Per ciascuna variabile, la scelta della distribuzione di probabilità deve essere guidata dalla
natura intrinseca della variabile stessa, e pertanto il prezzo di vendita è tipicamente mo-
dellato tramite una distribuzione lognormale (Pt ∼ LogNorm(µP , σ

2
P )), in quanto la stessa

garantisce la positività dei prezzi e riflette la possibilità di variazioni asimmetriche e di
eventi estremi, caratteristiche che possono risultare alquanto frequenti nei mercati reali,
mentre la quantità venduta può essere rappresentata da una distribuzione normale tronca-
ta (Qt ∼ TruncNorm[0,∞)(µQ, σ

2
Q)), discreta (ad esempio Poisson, per beni indivisibili), o

uniforme, a seconda della granularità dei dati e delle specificità del settore. I costi variabili
sono frequentemente modellati attraverso distribuzioni triangolari X ∼ Triang(a,m, b),
in modo da poter incorporare con maggior precisione informazioni su valori minimo, mas-
simo e più probabile, oppure, in presenza di variabilità simmetrica e ben documentata,
il ricorso ad una normale può essere ugualmente adeguato. In rapporto ai costi fissi, la
loro stabilità rende possibile trattarli come deterministici e conseguentemente di model-
larli con una distribuzione normale a bassa varianza, in modo da poter includere possibili
shock esogeni, mentre l’investimento iniziale, anch’esso di norma considerato come deter-
ministico, può essere rappresentato da una distribuzione discreta in presenza di scenari
alternativi di investimento.

Una volta individuate le variabili e le relative distribuzioni, si procede, per ciascuna
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simulazione i, all’estrazione dei valori P (i)
t , Q

(i)
t , C

(i)
var,t, C

(i)
fx per ogni t secondo le rispettive

FX(x) definite nella precedente fase di modellazione. Appare chiaro che molte di queste
variabili sono lungi dall’essere indipendenti (banalmente, il prezzo di vendita e la quantità
venduta sono generalmente correlati negativamente, oppure i costi variabili possono essere
influenzati, positivamente, dai volumi di produzione) e per tale motivo, prima di procedere
all’estrazione dei dati, si origina la necessità di rappresentare correttamente la dipendenza
tra le stesse, generando campioni che rispettino la struttura di correlazione empirica o
attesa.

Uno strumento che in una simile circostanza può rivelarsi particolarmente utile è la decom-
posizione di Cholesky, grazie alla quale è possibile generare campioni di variabili aleatorie
multivariate con una struttura di correlazione specifica. Volendo approfondire, si consi-
deri una matrice di covarianza23 Σ, simmetrica e definita positiva. Per un sistema di N
variabili, Σ assume la forma:

Σ =



σ2
1 ρ12σ1σ2 · · · ρ1Nσ1σN

ρ12σ1σ2 σ2
2 · · · ρ2Nσ2σN

... ... . . . ...
ρ1Nσ1σN ρ2Nσ2σN · · · σ2

N


La tecnica in analisi consiste nel trovare una matrice triangolare inferiore L, tale che:

Σ = LL⊤

La matrice L si calcola ricorsivamente, con gli elementi diagonali dati da:

Lkk =

√√√√√Σkk −
k−1∑
j=1

L2
kj

mentre gli elementi sotto la diagonale sono della forma:

Lik = 1
Lkk

Σik −
k−1∑
j=1

LijLkj

 , i > k

A questo punto, generando un vettore Z = (Z1, . . . , ZN)T di variabili aleatorie standard
normali indipendenti, si ottiene il vettore

X = LZ

23Oppure, in presenza di variabili standardizzate, la matrice di correlazione.
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La variabile casuale X ha distribuzione multivariata normale con media nulla e matrice
di covarianza Σ, in quanto, per definizione di covarianza e linearità dell’operatore, si ha:

Cov(X) = Cov(LZ) = LCov(Z)L⊤

Dato che Z è un vettore di variabili standard normali indipendenti, la sua matrice di
covarianza è la matrice identità I, pertanto

Cov(X) = LIL⊤ = LL⊤ = Σ24 (2.39)

Una volta impostata la decomposizione di Cholesky e generati campioni di variabili alea-
torie correlate che siano effettivamente in grado di catturare la dipendenza tra le variabili
economiche chiave, si può procedere alla costruzione delle simulazioni dei flussi di cas-
sa, secondo una linea d’azione ormai non dissimile a quella disaminata nel precedente
paragrafo 2.4.

Nello specifico, è ora possibile, per ciascuna simulazione, utilizzare i valori delle varia-
bili correlate per ogni periodo t, ottenuti tramite Cholesky tenuto conto delle rispettive
distribuzioni marginali e procedere al calcolo del valore attuale del progetto:

NPV(i) =
T∑

t=1

P
(i)
t Q

(i)
t − C

(i)
var,tQ

(i)
t − C

(i)
fx

(1 + r)t
− I0. (2.40)

Rammentando dalla (2.38) che il modello in analisi interpreta il valore dell’opzione come
il valore atteso tra il payoff simulato e zero, si procede al calcolo della media dei payoff
opzionali sulle n simulazioni:

CDM
0 = 1

n

n∑
i=1

V (i) = 1
n

n∑
i=1

max
(
NPV(i), 0

)
, (2.41)

che rappresenta la stima Monte Carlo del prezzo dell’opzione reale secondo il modello
Datar-Mathews.

2.6 Il modello di Heston

Introdotto nel 1993, il modello di Heston si distingue da quelli precedentemente analizzati
in quanto considera la volatilità come una variabile casuale che segue un processo stoca-
stico, andando oltre una delle più rilevanti assunzioni del modello di Black-Scholes.

24Inoltre, poiché la trasformazione LZ è lineare e Z è gaussianamente distribuito, anche X ∼ N (0, Σ).
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Si consideri un asset avente distribuzione

dS(t) = µSdt+
√
v(t)SdZ(1)(t)

Se la volatilità segue un processo di Ornstein-Uhlenbeck25, allora la sua dinamica può
essere descritta come

dYt = −βYt dt+ δ dW
(2)
t , β > 0, δ > 026.

Utilizzando il lemma di Itô si può mostrare che la varianza istantanea segue il processo

dvt = 2Yt dYt + (dYt)2 =
(
δ2 − 2βvt

)
dt+ 2δ√vt dW

(2)
t ,

che, facendo ricorso al processo CIR, può essere riscritto come

dvt = κ(θ − vt) dt+ ξ
√
vt dW

(2)
t ,

con identificazione
κ = 2β, ξ = 2δ, θ = δ2

2β ,

definendo in tal modo l’ampiamente adottata notazione contestualmente al metodo in
analisi 

dSt = rSt dt+√vt St dW
(1)
t ,

dvt = κ(θ − vt) dt+ ξ
√
vt dW

(2)
t ,

(2.42)

con correlazione istantanea d⟨W (1),W (2)⟩t = ρ dt.
Ipotizzando che il tasso di interesse rimanga costante, è possibile affermare che il prezzo
al tempo t di un’unità del bond27 a scadenza τ + t sia pari a

P (t, t+ τ) = e−rτ .

In analogia con l’argomento di copertura alla Black-Scholes, il prezzo U(S, v, t) soddisfa
la PDE

Ut + 1
2vS

2USS + ρ ξ vS USv + 1
2ξ

2v Uvv + rS US +
[
κ(θ − v)− λv

]
Uv − rU = 0 (2.43)

soggetta ai vincoli:
25Equazione differenziale stocastica che descrive l’evoluzione dei sistemi mean-reverting.
26Si noti che il termine di rumore è additivo nel processo Yt = √vt, e diventa moltiplicativo in vt dopo

il cambio di variabile.
27O di altra attività priva di rischio.
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• U(S, v, T ) = max[0, S −K],

• ∂U
∂S

(∞, v, t) = 1,

• U(S,∞, t) = S,

• U(0, v, t) = 0,

• rS US(S, 0, t) + κθ Uv(S, 0, t)− rU(S, 0, t) + Ut(S, 0, t) = 0.

Il termine λ rappresenta il costo legato alla volatilità, indipendente dallo specifico asset.
Lamoureux e Lastrapes (1993) hanno mostrato che tale valore è significativamente diverso
da 0 (t-test asintotico). Richiamando ora il modello basato sul consumo di Breeden, si
afferma che

λ(S, v, t)dt = γCov[dv, dC
C

],

in cui C(t) è il tasso di consumo e γ indica l’avversione al rischio dell’investitore.
Si prenda ora in considerazione il processo di consumo che emerge nel modello di Cox-
Ingersoll-Ross,

dC(t) = µcv(t)Cdt+ σC

√
v(t)CdZ(3)(t), (2.44)

nel quale la crescita del consumo mostra una correlazione con il ritorno dell’asset. Da ciò
si genera un premio proporzionale a v, con λ(S, v, t) = λ vt.

In accordo a quanto precedentemente appurato già a partire dal paragrafo 2.3, per analogia
con la formula di Black-Scholes, possiamo individuare, per un’opzione call, una soluzione
della forma

C(S, v, t) = S P1 −Ke−r(T −t)P2,

dove il primo termine indica il valore attuale dell’asset dietro esercizio ottimale dell’op-
zione, e il secondo consta nel valore attuale del prezzo di esercizio, entrambi soddisfacenti
la PDE originale di Black-Scholes.
Può essere conveniente scrivere i due membri in termini del logaritmo del prezzo spot,

x = ln[S].

Sostituendo la soluzione appena proposta nella PDE originale, è possibile constatare che
P1 e P2 soddisfano le equazioni differenziali parziali

1
2v Pj,xx+ρ ξ v Pj,xv + 1

2ξ
2v Pj,vv +(r+ujv)Pj,x+(a−bjv)Pj,v +Pj,t = 0, j = 1, 2, (2.45)
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per
u1 = 1

2 , u2 = −1
2 , a = κθ, b1 = κ+ λ− ρξ, b2 = κ+ λ.

Affinché il prezzo del sottostante soddisfi le condizioni terminali appena esposte, le PDE
sono soggette alla condizione

Pj(x, v, T ; ln[K]) = 1x≥ln[K]

e possono pertanto essere interpretate come probabilità aggiustate per il rischio;

dxt = (r + ujvt) dt+√vt dW
(1)
t , (2.46)

dvt = (a− bjvt) dt+ ξ
√
vt dW

(2)
t . (2.47)

dove a e bj rappresentano la definizione precedentemente fornita. La probabilità condi-
zionata che l’opzione scada ITM è definita come

Pj(x, v, T ; ln[K]) = P [x(T ) ≥ ln[K] |x(t) = x, v(t) = v] . (2.48)

Suddette probabilità non possono essere calcolate attraverso il ricorso ad una forma chiusa,
tuttavia, è possibile dimostrare che le funzioni caratteristiche soddisfano le PDE sopra
esposte. Nello specifico, consideriamo la funzione (doppiamente derivabile) f(x, v, t), che
presenta una buona aspettativa condizionata di x e v;

fj(x, v, t) = E[g(XT , VT ) | Xt = x, Vt = v] . (2.49)

Il Lemma di Itô mostra che;

dfj =
(1

2v fj,xx + ρξv fj,xv + 1
2ξ

2v fj,vv + (r + ujv) fj,x + (a− bjv) fj,v + fj,t

)
dt

+
√
v fj,x dW

(1)
t + ξ

√
v fj,v dW

(2)
t .

Ricorrendo alle aspettative iterate, sappiamo che f deve essere una martingala;

E[df ] = 0.

Per completezza, vale la pena di notare che la densità di transizione congiunta pj(x, v, t)
soddisfa l’equazione di Fokker–Planck (forward):

∂tpj = −∂x

[
(r+ujv) pj

]
−∂v

[
(a−bjv) pj

]
+ 1

2 ∂xx

[
v pj

]
+∂xv

[
ρξv pj

]
+ 1

2 ∂vv

[
ξ2v pj

]
. (2.50)
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Ai fini del pricing, tuttavia, è di maggior interesse la funzione valore (2.49) appena definita,
la cui condizione terminale associata risulta

fj(x, v, T ) = g(x, v).

Nel dettaglio, se g(x, v) = δ(x − x0), la soluzione rappresenta (in senso distribuzionale)
la densità di transizione in x0, se g(x, v) = 1{x≥ln K}, essa coincide con la probabilità
condizionata che XT ≥ lnK, e per g(x, v) = eiΦx, si ottiene la funzione caratteristica.
Data la natura affine della dinamica della varianza (processo CIR) e la linearità di x =
ln[St] in vt, è naturale ipotizzare che la funzione caratteristica del processo congiunto
abbia una forma esponenziale affine assimilabile a

fj(x, v, t;u) = exp
(
Cj(τ, u) +Dj(τ, u) v + iux

)
, (2.51)

con τ = T − t. La presente relazione soddisfa l’equazione di Kolmogorov backward

∂fj

∂t
+ Ljfj = 0, (2.52)

dove L è l’operatore infinitesimale associato al processo (xt, vt),

Lj = (r + ujv)∂x + (a− bjv)∂v + 1
2v ∂xx + ρξv ∂xv + 1

2ξ
2v ∂vv.

Le derivate di f secondo l’ansatz risultano:


∂fj

∂t
= −

(
C ′

j(τ, u) +D′
j(τ, u) v

)
fj,

∂fj

∂x
= iu fj,

∂2fj

∂x2 = −u2 fj,

∂fj

∂v
= Dj(τ, u) fj,

∂2fj

∂v2 = Dj(τ, u)2 fj,

∂2fj

∂x ∂v
= iuDj(τ, u) fj.

Sostituendo l’ansatz nella (2.52) e dividendo per fj ̸= 0, si ottiene

−(C ′
j +D′

jv) + (r + ujv)(iu) + (a− bjv)Dj + 1
2v(−u2) + ρξv(iuDj) + 1

2ξ
2vD2

j = 0.
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Raggruppando i termini costanti e quelli proporzionali a v:

(
− C ′

j + iur + aDj

)
+ v

(
−D′

j + ujiu−
1
2u

2 + (ρξiu− bj)Dj + 1
2ξ

2D2
j

)
= 0.

Poiché l’identità deve valere per ogni v, entrambi i termini devono annullarsi. Si ottengono
in tal modo le equazioni differenziali ordinarie

C ′
j(τ, u) = iur + aDj(τ, u), (2.53)

D′
j(τ, u) =

(
uj iu−

1
2u

2
)

+
(
ρξiu− bj

)
Dj(τ, u) + 1

2ξ
2Dj(τ, u)2, (2.54)

con condizioni iniziali Cj(0, u) = 0, Dj(0, u) = 0.
Si definisca ora la funzione caratteristica nella forma;

fj(x, v, t; Φ) = exp
(
Cj(T − t; Φ) +Dj(T − t; Φ) v + iΦx

)
.

Cj e Dj soddisfano dunque certe equazioni differenziali ordinarie del tipo Riccati; nello
specifico

Cj(τ, u) = iur τ + a

ξ2

[(
bj − ρξiu+ dj(u)

)
τ − 2 ln

(
1− gj(u)edj(u)τ

1− gj(u)

)]
, (2.55)

Dj(τ, u) = bj − ρξiu+ dj(u)
ξ2

1− edj(u)τ

1− gj(u)edj(u)τ , (2.56)

dove:

dj(u) =
√(

ρξiu− bj

)2
− ξ2

(
2ujiu− u2

)
, gj(u) = bj − ρξiu+ dj(u)

bj − ρξiu− dj(u) .

Una volta adeguatamente analizzate le equazioni differenziali ordinarie, risulta più sem-
plice calcolare il prezzo dell’opzione superando i limiti della volatilità costante del modello
di Black-Scholes.
Si esprima, mutuando la precedente notazione, il prezzo di una call europea attraverso

C(S0, v0, T ) = S0P1 −Ke−rTP2,

dove P1 è una probabilità sotto misura azionaria (share measure) Q(1) e P2 è una proba-
bilità sotto misura risk-neutral Q.
La logica secondo la quale si articolano i seguenti passaggi risiede nell’idea che

P1 = Q(1)(ST > K | Ft), P2 = Q(ST > K | Ft).
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La probabilità Q[X > lnK] può essere dunque scritta come:

Pj(x, v, t;K) = 1
2 + 1

π

∫ ∞

0
ℜ
[
e−iu ln K fj(x, v, t;u)

iu

]
du, j = 1, 2, (2.57)

con Φ1(u) = Φ(u−i)
Φ(−i) , Φ2(u) = Φ(u).

A questo punto, dato:

(ST −K)+ = ST 1{ST >K} −K 1{ST >K},

Ct = e−r(T −t)EQ
[
(ST −K)+ | Ft

]
= e−r(T −t)EQ

[
ST 1{ST >K} | Ft

]
−Ke−r(T −t)Q(ST > K | Ft).

Definendo la misura azionaria (share measure) Q(1):

dQ(1)

dQ

∣∣∣∣
FT

= e−r(T −t)ST

St

,

si ottiene
e−r(T −t)EQ

[
ST 1{ST >K} | Ft

]
= St Q(1)(ST > K | Ft) =: StP1,

Q(ST > K | Ft) =: P2.

Pertanto
Ct = StP1 −Ke−r(T −t)P2. (2.58)
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Appendice: Processi stocastici e simulazioni Monte-
Carlo per le azioni

L’applicabilità delle simulazioni Monte Carlo in campo finanziario si estende notevolmente
oltre le opzioni, in quanto esse si rivelano di particolare utilità ogniqualvolta sussistano
scenari di incertezza nei mercati.
L’utilizzo di Monte Carlo è pertanto ampiamente adottato relativamente a problemi di
gestione del rischio e ottimizzazione dell’allocazione delle attività in contesti di incertezza
dinamica.

L’approccio tradizionale, introdotto da Markowitz nel 1952 attraverso la teoria media-
varianza28 risulta limitato dalle sue assunzioni di normalità dei rendimenti e lineari-
tà delle relazioni tra le attività, che spesso risultano inadeguate nel cogliere a pieno
le caratteristiche reali delle serie storiche finanziarie, quali asimmetrie, kurtosi eleva-
ta, volatilità stocastica (Cont, 2001) e rischi di coda. L’implementazione tipica della
tecnica in analisi prevede l’utilizzo di distribuzioni multivariate per i rendimenti gior-
nalieri o logaritmici dei titoli, dalle quali si estraggono molteplici traiettorie simulate
R(i) = {r(i)

t }T
t=1, con i = 1, . . . , N , la cui aggregazione, tenuto conto dei pesi assegnati

ai singoli asset, genera una distribuzione probabilistica del valore futuro del portafoglio.
Ricorrendo ora ad un maggior formalismo matematico, è possibile constatare che il valore
finale del portafoglio simulato per ciascuna traiettoria possa essere determinato come

V
(i)

T = V0

T∏
t=1

(
1 + w⊤r

(i)
t

)

L’aggregazione sulle N simulazioni fornisce la citata distribuzione empirica per la variabile
aleatoria VT , da cui è possibile stimare diverse misure di rischio, quali, in primis, il Value
at Risk (VaR), definibile al livello di confidenza α da

VaRα = − inf {v ∈ R : P(VT − V0 ≤ v) ≥ α}

All’interno dell’analisi a cui è dedicata questa appendice, si è scelto di affiancare a tal
ultimo indicatore anche l’Expected Shortfall o Conditional VaR (CVaR), definibile
come la media delle perdite peggiori oltre il VaR stesso (Rockafellar e Uryasev, 2000), o
più precisamente

CVaRα = E [VT − V0 |VT − V0 ≤ −VaRα]
28Tale approccio prevede la minimizzazione della varianza del portafoglio dato un rendimento atteso

prefissato.

49



Un punto di notevole forza di tale approccio è la possibilità, grazie alla natura iterativa
e parametrica delle simulazioni, di testare diverse allocazioni, scenari economici e para-
metri di input (quali tassi risk-free, orizzonti temporali e correlazioni) in modo da poter
effettuare analisi di sensibilità approfondite.
Inoltre, tale framework è compatibile con diverse metodologie di ottimizzazione robusta
e approcci bayesiani per l’aggiornamento dinamico dell’aspettativa su parametri incer-
ti (Jobson e Korkie, 1980), integrando stimoli empirici continui dalla simulazione con
valutazioni teorico-statistiche.

Poste tali premesse, anche con l’intenzione di fornire un preludio all’analisi di maggior
rilievo pratico che avrà luogo successivi capitoli, si vuole qui proporre un semplice tool
sviluppato in Python concepito per la valutazione del valore futuro dei portafogli median-
te il metodo Monte Carlo.
Nello specifico, il codice, partendo dai dati storici ricavati dalla piattaforma Yahoo Finan-
ce, stima media e matrice di covarianza, genera percorsi tramite campionamento multiva-
riato e calcola diversi indicatori di performance e rischio. Infine, sono generati due grafici
che permettono meglio di valutare la stabilità numerica e consentono la visualizzazione
delle distribuzioni.

Volendo approfondire gli aspetti computazionali dello strumento oggetto di trattazione è
possibile esaminare con maggior dettaglio la funzione usata per la generazione dei path
simulati.

def run_mc (stocks , weights , start , end , sims_n , T, init , rf):

df = yf. download (stocks , start=start , end=end , auto_adjust =

False , progress =False)[’Close ’]. ffill ()

r = df. pct_change (). dropna ()

mu , cov = r.mean (), r.cov ()

simulations = np.zeros ((T, sims_n ))

finals = np.zeros( sims_n )

for i in range( sims_n ):

dr = np. random . multivariate_normal (mu.values ,

cov.values , T)

simulations [:, i] = init*np. cumprod (1 + dr.dot( weights ))

finals [i] = simulations [-1, i]

rets = np.log(sims [1:] / simulations [: -1]). flatten ()

ann_ret = rets.mean () * 252

ann_vol = rets.std () * np.sqrt (252)

downside = rets[rets < 0]

sharpe = ( ann_ret - rf) / ( ann_vol + 1e -9)
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sortino = ( ann_ret - rf) / (np.std( downside ) *

np.sqrt (252) + 1e -9)

sk = skew( finals ); ku = kurtosis (finals , fisher =True)

cum_mean = np. cumsum ( finals ) / np. arange (1, sims_n + 1)

stderr = np.std(finals , ddof =1) / np.sqrt(np. arange

(1, sims_n + 1))

return simulations , finals , (cum_mean , stderr ), {

"Media simulazione ": cum_mean [-1], " Minimo ": finals .min (),

" Massimo ": finals .max (), "5 percentile (VaR)":

np. percentile (finals , 5),

"95 percentile ": np. percentile (finals , 95) , "CVaR 5%":

compute_cvar ( finals ),

" Rendimento annuo %": ann_ret * 100,

" Volatilita ’ annua %": ann_vol * 100,

" Sharpe Ratio": sharpe , " Sortino Ratio": sortino ,

" Skewness ": sk , " Kurtosis ": ku ,

" StdErr media": stderr [-1], " CoeffVar ": stderr [-1] /

cum_mean [ -1]}

Listing 1: Funzione path Monte Carlo.

La funzione prende in input una lista di ticker azionari o di altra tipologia29, di cui si
scaricano i dati storici dell’ultimo anno, i pesi di ciascuno di essi all’interno del portafoglio
(individuato all’interno di un array numpy la cui somma dei valori deve essere pari a 1,
pena il sollevamento di un’eccezione e la conseguente interruzione della simulazione), le
date, di inizio e fine per il periodo storico da cui estrarre o i dati in serie storica, il numero
delle simulazioni Monte Carlo da eseguire, il numero di passi temporali T (il cui valore
di default è fissato a 252 giorni di trading), il valore iniziale del portafoglio e il tasso di
interesse privo di rischio.

In seguito si procede allo scaricamento dei prezzi di chiusura storici non aggiustati per
il periodo indicato da Yahoo Finance e al calcolo dei rendimenti medi giornalieri e della
matrice di covarianza dei rendimenti tra i titoli. La variabile simulations contiene la
matrice T × sims_n per memorizzare i valori del portafoglio simulati giorno per giorno e
per ciascuna simulazione, mentre finals è un vettore di lunghezza sims_n con all’interno
il valore finale di ogni simulazione.

Il ciclo for rende possibile che per ogni simulazione i, si generi un cammino di rendimenti
29Vengono forniti come valori di default i ticker ’META’ e ’NVDA’.
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multivariati giornalieri30. I rendimenti giornalieri del portafoglio sono calcolati mediante
il prodotto vettoriale tra i rendimenti simulati di ciascun titolo e il relativo peso degli
stessi. Successivamente è calcolata la sere cumulativa del valore del portafoglio simulato
mediante np.cumprod(1 + dr.dot(weights)), moltiplicata per il valore iniziale init ed infine,
l’ultimo valore di ciascun cammino simulato viene salvato nella variabile finals[i].

Attraverso la variabile rets si individuano i rendimenti logaritmici giornalieri di tutte le
simulazioni, che vengono concatenati in un vettore unidimensionale utilizzato immedia-
tamente dopo per il calcolo delle statistiche annualizzate e degli indici di performance.

Una volta eseguito il codice, all’utente è fornito accesso all’interfaccia iniziale, nella quale
è possibile inserire i valori di input precedentemente menzionati.

Figura 6: Esempio di assegnazione valori di input.

L’accensione del pulsante Esegui simulazione attiva la funzione on_run, tramite la
quale vengono mostrati i dati relativi alla simulazione e riportati i grafici annessi.

def on_run (_):

with out:

out. clear_output ()

tk = [t.strip ().upper () for t in tickers_w .value.split(’,

’)]

w = np.array ([ float (x) for x in weights_w .value.split(’,’

)])

total_weight = w.sum ()

if abs( total_weight - 1.0) > 1e -4:

raise ValueError (f"La somma dei pesi deve essere 1.

Somma attuale = { total_weight :.4f}")

30Più precisamente, si tratta di un array T × len(stocks) estratto da una normale multivariata con
media mu e covarianza cov.
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simulations , finals , (cum_mean , stderr ), stats = run_mc (

tk , w, start_w .value , dt.date.today (),

sims_w .value , T_w.value , init_w .value , rf_w.value)

df = pd. DataFrame (stats.items (), columns =[’Statistica ’, ’

Valore ’])

sty = (df.style. format ({’Valore ’: smart_val_format }).

background_gradient (’Blues ’, subset =[’Valore ’])

. set_table_styles ([{ ’selector ’: ’th’, ’props ’: [(’

background -color ’, ’#003366 ’),

(’color ’, ’white ’) ,(’font -size ’, ’14px’)]},{’selector

’: ’td’, ’props ’:

[(’padding ’, ’6px’),

(’font -size ’, ’13px’)]}]). set_caption (" Statistiche

Monte Carlo"))

display (sty)

Listing 2: Attivazione pulsante Esegui simulazione.

Una volta verificatosi l’evento utente (i.e. l’utilizzo del pulsante) gli input forniti dallo
stesso vengono puliti, convertiti in maiuscolo, trasformati in una lista di float e normalizza-
ti per sommare a 1. Come sopra cennato, qualora questa condizione non fosse soddisfatta,
sarebbe sollevato un ValueError che comporterebbe l’interruzione della simulazione.

I dati, ora adeguatamente pre-processati possono essere usati per la costruzione dei path
simulati, attraverso simulations, finals, (cum_mean, stderr), stats che esegue la funzione
run_mc con i relativi parametri utente. L’output restituito comprende la matrice dei
cammini simulati, il vettore dei valori finali delle simulazioni, la media cumulativa e
l’errore standard, e il dizionario delle metriche sintetiche.
Tutti i valori, formattati secondo l’apposita funzione smart_val_format

def smart_val_format (x):

return f"{x:.2e}" if abs(x) < 0.01 else f"{x:,.2f}"

Listing 3: Funzione di formattazione dati.

sono mostrati in un DataFrame a due colonne, in cui sono indicate ciascuna statistica e
il rispettivo valore numerico.
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Figura 7: Tabella riepilogativa della simulazione.

In aggiunta alla tabella, sono forniti due grafici interattivi realizzati con il ricorso alla
libreria Matplotlib, progettati per fornire un riscontro visivo dei risultati della simulazione
effettuata. Più precisamente i grafici visualizzano rispettivamente l’evoluzione simulata
del portafoglio nel tempo e la media cumulata dei valori finali nel corso delle simulazioni.

for i in range(n):

ax0.plot( simulations [:, i], color= colors [i],

alpha =0.35 , lw =0.7)

ax0.grid(True , linestyle =’:’, linewidth =0.7 , alpha =0.7)

N, bins , patches = ax1.hist(finals , bins =30,

density =True , orientation =’horizontal ’,

edgecolor =’white ’, lw =0.5)

norm = Normalize (vmin =0, vmax=N.max ())

cmap_hist = plt. get_cmap (’Blues ’)

for count , patch in zip(N, patches ):

patch. set_facecolor ( cmap_hist (norm(count)))

ax1. tick_params (axis=’y’, labelleft =False)

kde = gaussian_kde ( finals )

ys = np. linspace ( finals .min (), finals .max (), 1000)

dens = kde(ys)
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ax1.plot(dens , ys , color=’#5 FA8D3 ’, lw =2)

ax1. axhline ( finals .mean (), color=’#5 FA8D3 ’, ls=’--’, lw

=1.5)

ax1.grid(True , linestyle =’:’, linewidth =0.7 , alpha =0.6)

plt. tight_layout ()

plt.show ()

Listing 4: Plot percorsi Monte Carlo.

La figura è divisa in due sotto-grafici orizzontali, in cui il primo, ax0, mostra nel det-
taglio l’andamento temporale dei percorsi simulati, mentre il secondo, ax1, presenta la
distribuzione marginale dei valori finali.

Figura 8: Simulazione Monte Carlo del portafoglio (n = 10000).

Può essere utile segnalare l’utilizzo della Kernel Density Estimation (KDE) per stimare
la distribuzione dei risultati finali.

fig2 , ax2 = plt. subplots ( figsize =(10 , 4))

fig2. canvas . header_visible = False

fig2. canvas . toolbar_visible = True

fig2. canvas . footer_visible = False

ax2.plot(cum_mean , label=’Media cumulata ’, color=’navy ’)

ax2. fill_between (np. arange (len( cum_mean )), cum_mean -

stderr , cum_mean + stderr ,
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color=’navy ’, alpha =0.2 , label=’+/-1 std err ’)

ax2.grid(True , linestyle =’--’, linewidth =0.6 , alpha =0.7)

ax2. legend ()

fig2. tight_layout ()

plt.show ()

Listing 5: Media cumulata dei risultati simulati

Nel secondo grafico, la riga ax2.plot(cum_mean, label=’Media cumulata’, color=’navy’)
traccia la media cumulata dei risultati simulati, a cui succesivamente viene aggiunta una
barra intorno alla curva pari a ± 1 errore standard.

Figura 9: Media cumulata della simulazione (n = 10000)

È ampiamente apprezzabile la riduzione dell’errore standard della media al crescere del
numero dei cammini. Significativo risulta anche il beneficio di un maggior numero di simu-
lazioni nei confronti del coefficiente di variazione, nell’ambito di una maggiore robustezza
dell’intero processo in presenza di un elevata numerosità di percorsi simulati.

Come precisato in apertura di sezione, il ricorso a tecniche di simulazione Monte Carlo
consente di superare i limiti del tradizionale approccio media-varianza, fondato sull’as-
sunzione di normalità dei rendimenti. Tale ipotesi, tuttavia, risulta spesso disattesa nei
mercati reali, dove le distribuzioni empiriche dei rendimenti mostrano frequenti deviazioni
dalla normalità, rendendo l’approssimazione gaussiana inadeguata a descriverne accura-
tamente il comportamento.
Si consideri, a titolo esemplificativo, un portafoglio composto in via esclusiva ed in pari
misura dai titoli Meta e Nvidia, il cui valore di partenza è fissato a $10000.
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Figura 10: Distribuzione asimmetrica dei rendimenti (META = 0.5 ; NVDA = 0.5).

La simulazione31 mostra valori di Skewness e Kurtosis rispettivamente pari a 1.36 e 3.43,
indicando che la distribuzione presenta un’asimmetria a destra e code pesanti (e dun-
que, una non normalità statisticamente significativa32), distaccandosi fortemente
dal modello gaussiano, come facilmente desumibile dall’immagine di cui sopra.
Inoltre, considerando lo Sharpe Ratio e il Sortino Ratio, quantificati in 0.72 e 1.19, si
coglie facilmente come considerare la deviazione standard come unica misura del rischio,
in accordo alla logica di Markowitz, porti ad una sottostima del rendimento corretto per
il rischio, o, secondo la prospettiva opposta, che contribuisca a sovrastimare il rischio ef-
fettivo percepito dall’investitore, in quanto manca della capacità di distinguere tra rischio
upside e downside.

31Effettuata in data 8 agosto 2025, 41 minuti dopo l’apertura dei mercati.
32Con la conseguente maggiore probabilità di eventi estremi, sia negativi che positivi.
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3 Applicazioni pratiche dei modelli

Il presente capitolo apre la seconda sezione dell’elaborato, incentrata sulla valutazione
empirica delle performance predittive dei modelli teorici finora discussi. In particolare, i
prezzi delle opzioni ottenuti mediante le diverse metodologie verranno confrontati con i
corrispondenti dati di mercato, al fine di verificarne l’attendibilità e la capacità di replica
delle dinamiche reali.

3.1 Introduzione all’analisi

Dopo aver delineato i principi matematici alla base dei modelli di Cox-Ross-Rubinstein,
Black-Scholes, Monte Carlo e Heston, si procede ora alla loro comparazione pratica. L’o-
biettivo è testare le ipotesi teoriche alla luce dei dati osservati, valutando la capacità di
ciascun modello di approssimare i prezzi delle opzioni effettivamente negoziati sul mercato.

3.1.1 Un programma omnicomprensivo

Nell’ottica dell’attuazione del confronto tra i diversi modelli di pricing, si fa ricorso ad un
apposito programma progettato per misurare la capacità di ciascun modelli di aderire ai
prezzi di mercato delle opzioni, misurando l’accuratezza predittiva tramite l’RMSE.

L’analisi che segue fornirà una valutazione approfondita della convergenza del modello di
Cox-Ross-Rubinstein (CRR) e delle simulazioni Monte Carlo rispetto ai prezzi calcolati
mediante il modello Black-Scholes, ferma restando l’osservanza delle condizioni preliminari
stabilite. Sarà inoltre proposta una valutazione esaustiva del modello di Heston, con
particolare attenzione alla sua procedura di calibrazione. Nello specifico, il modello di
Heston con salti viene calibrato utilizzando un processo di ottimizzazione numerica, che
mira a minimizzare la differenza tra i prezzi derivati dal modello e quelli osservati sul
mercato. I parametri ottimizzati includono la volatilità stocastica, la correlazione tra il
processo stocastico del sottostante e la volatilità, nonché i parametri associati ai salti nel
processo di prezzo.

Inoltre, il programma fornisce una serie di grafici interattivi generati tramite la libreria
Plotly, che permettono di visualizzare in modo intuitivo e dettagliato i risultati dell’analisi
e consentono di esplorare facilmente la performance di ciascun modello, facilitando un
confronto visivo tra i prezzi simulati e quelli di mercato.
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3.2 Capacità previsionali dei modelli

Poste le ampie premesse teoriche, è possibile nell’immediato appurare la convergenza
BS-CRR-MC, i quali, posti come base di riferimento, saranno confrontati con il modello
Heston, in modo tale da poter verificare i vantaggi introdotti dall’adozione di un sistema
a volatilità stocastica.

Si prenda in analisi il test effettuato in data 28 agosto 2025 sull’option chain AAPL con
scadenza al 5 settembre dello stesso anno. In generale, le opzioni del settore tecnologico
presentano una maggiore volatilità e dunque permettono di valutare il comportamento
del modelli tradizionali in condizioni non ottimali.

Figura 11: Tabella riepilogativa AAPL Call 9/5/2025.

Per garantire una maggiore qualità dell’analisi, i dati riportati sono stati precedentemente
filtrati, in modo che venissero considerate solo opzioni in un intervallo dello strike compreso
tra l’85% e il 115% del prezzo spot.
Un secondo elemento di filtraggio è rappresentato dallo spread bid/ask contro prezzo di
riferimento, il quale deve sottostare a valori inferiori al 30%. Sono inoltre considerate le
opzioni solo con valori di volatilità ragionevoli, ossia compresi tra 0.000001 e 2.5.
Infine, il prezzo di mercato deve risultare superiore al valore intrinseco dell’opzione, ma
non deve andare oltre un multiplo ragionevole del sottostante.
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Potendo ora passare alla valutazione dei risultati, si nota come, da una parte i prez-
zi calcolati dai modelli ad albero binomiale, Black-Scholes e Monte Carlo tendano a
convergere, fornendo una conferma empirica di quanto stabilito nella sezione teorica, e
dall’altra quanto, alla luce della prossimità temporale della scadenza e delle caratteristiche
intrinseche del settore in cui opera Apple, questi forniscano una stima meno accurata del
più recente modello di Heston.

Le opzioni su titoli tecnologici presentano caratteristiche strutturali che incidono forte-
mente sulla qualità del pricing e sulla precisione di ciascun modello. In primo luogo, come
precedentemente affermato, si annovera la forte volatilità storica, che si traduce in alti
valori delle relative volatilità implicite (e dunque di superfici di volatilità più accentuate),
specialmente nel breve termine.
È da considerare anche la forte dipendenza da eventi specifici, relativi alla singola impresa
o al più ampio scenario macroeconomico, dalle cui aspettative si può originare uno skew
temporaneo.
Tali considerazioni giustificano la formazione di uno smile di volatilità e mettono in mostra
i noti limiti del modello di Black-Scholes (e, per estensione, di CRR e MC).

Nel caso in analisi si evidenzia che, su una scadenza di pochi giorni il modello di Heston
con salti fornisce la miglior aderenza ai prezzi di mercato, con un RMSE complessivo di
0.3039, contro valori maggiori di 0.80 relativi agli altri modelli.
Tuttavia, può essere utile soffermarsi sulle caratteristiche degli errori commessi dai mo-
delli. Nello specifico, mentre per strike compresi tra 180 e 200 USD, Heston sovrastima
in modo sistematico, i modelli a volatilità costante tendono a sottostimare anche di oltre
2 USD. La superiorità di Heston diventa lampante nella regione ATM (Strike da 195 a
205 USD), dove Heston mantiene errori dell’ordine di 10−3, a differenza di Black-Scholes,
CRR e Monte Carlo che mostrano errori quadratici intorno al dollaro e mezzo. Dai dati
si evince chiaramente come i salti e la volatilità stocastica siano uno strumento di grande
valore per catturare l’accelerazione dello skew di breve periodo.

Il medesimo comportamento è riscontrabile in tutte le altre opzioni del settore tech, e il mo-
dello di Heston (specialmente nella variante qui utilizzata) si presenta come un’alternativa
generalmente più raffinata rispetto ai modelli a volatilità costante.

Spostando l’attenzione dal settore tecnologico è possibile compiere il medesimo test su
uno strumento di replica, come un ETF, su una scadenza più lunga.
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Figura 12: Tabella riepilogativa QQQ ETF 9/26/2025.

Si propongono pertanto i prezzi calcolati sui primi 20 strike filtrati dell’ETF offerto da
Invesco e negoziato sul Nasdaq, con scadenza fissata al 26 settembre 2025.
Anche in questo caso la modellizzazione con volatilità stocastica si mostra superiore ri-
spetto ai modelli a volatilità costante, specialmente in corrispondenza degli strike in cui
il volatility smile risulta più accentuato. Tuttavia, si denotano i primi segni di deteriora-
mento della stima anche in rapporto al modello di Heston, in parte a causa della qualità
dei dati offerti dalla piattaforma Yahoo Finance, che sebbene adeguati a scopi informati-
vo/divulgativi, possono risultare inadeguati per una calibrazione efficace dei parametri di
Heston, ma anche a causa delle limitazioni intrinseche del modello, anche al netto dell’im-
plementazione del termine di salto. Per tale ragione, nel capitolo successivo è proposta
la derivazione di un nuovo modello della famiglia Heston, con l’intenzione di fornire una
stima del prezzo maggiormente accurata sotto le condizioni in cui il modello di Heston
tradizionale di è dimostrato fallace.

3.2.1 Implementazione dei salti lognormali nel modello di Heston

Per raggiungere una stima il più precisa possibile si è scelto di dotare il modello di Heston
tradizionale di un termine che potesse tenere in considerazione gli effetti dei salti di prezzo,
sulla scia dei modelli di Bates e dei jump-diffusion di Merton.
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Nel particolare caso in analisi si combina una dinamica diffusa a varianza stocastica di tipo
CIR con un processo di Poisson indipendente che genera salti moltiplicativi del prezzo.
Sotto la misura neutrale al rischio Q, le dinamiche del prezzo del sottostante e della
varianza risultano

dSt

St−
= (r − q − λJκJ) dt+√vt dW

(S)
t + (eJ − 1) dNt, (3.1)

dvt = κ(θ − vt) dt+ ξ
√
vt dW

(V )
t , (3.2)

dove d⟨W (S)
t ,W

(V )
t ⟩ = ρ dt, mentre i parametri κ, θ, ξ > 0 indicano la velocità di mean

reversion, il livello di lungo periodo e la volatilità della volatilità del processo CIR per vt.
Il termine

κJ := E[eJ − 1] = eµJ + 1
2 σ2

J − 1 (3.3)

rappresenta il compensatore dei salti, avente funzione correttiva del drift affinché e−(r−q)tSt

sia una martingala sotto Q. La coppia (St, vt) risulta in tal modo un affine jump-diffusion
(Duffie-Pan-Singleton, 2000).
Denotando XT = lnST e x = lnS0, il prezzo di una call europea può essere ottenuto a
partire dalla funzione caratteristica φ(u;T ) = EQ[eiuXT ].

In particolare, la struttura affine implica una fattorizzazione della funzione caratteristica
in una componente diffusa (Heston) e una di salto (Merton):

φ(u;T ) = exp
(
C(u;T )+D(u;T ) v0+iu [ x+(r−q−λJκJ)T ]

)
exp

(
λJT

(
eiuµJ − 1

2 σ2
J u2
−1
))
.

(3.4)
La seconda esponenziale è la funzione caratteristica del processo di salti lognormali alla
Merton. I coefficienti C e D della parte Heston risolvono ODE di Riccati e ammetto-
no forma chiusa. Seguendo i lavori di Kahl & Jaekle (2005) e Lord & Kahl (2010), si
introducono

d(u) =
√(

κ− ρξ iu
)2

+ ξ2
(
iu+ u2

)
, g(u) = κ− ρξ iu− d(u)

κ− ρξ iu+ d(u) , ℜd(u) > 0,

(3.5)
da cui

C(u;T ) = κθ

ξ2

[(
κ− ρξ iu− d(u)

)
T − 2 ln

(
1− g(u) e−d(u)T

1− g(u)

)]
, (3.6)

D(u;T ) = κ− ρξ iu− d(u)
ξ2

1− e−d(u)T

1− g(u) e−d(u)T . (3.7)

Le espressioni appena descritte sono numericamente stabili per l’uso in integrazioni di
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Fourier in forza della scelta della radice con parte reale positiva e alla normalizzazione
tramite g(u).
Con maggior dettaglio, si consideri l’ansatz affine

f(t, s, v) = Et

[
exp

(
iuXT

)]
= exp

(
A(τ) +B(τ) v + iu log s

)
, τ = T − t, (3.8)

applicando Feynman-Kac alle dinamiche di cui alle equazioni (3.1) e (3.2) con generatore
L e sostituendo la (3.8) si ottiene

∂τf = Lf = f
{
iu(r − q − λJκJ)− 1

2u
2v + 1

2ξ
2vB(τ)2 + κ(θ − v)B(τ) + ρξuvB(τ)i

}
+ f λJ

(
E[eiuJ ]− 1

)
. (3.9)

Eguagliando i coefficienti in potenze di v e nei termini costanti si ricavano le ODE in τ :

B′(τ) = 1
2ξ

2B(τ)2 + (ρξ iu− κ)B(τ)− 1
2u

2, B(0) = 0, (3.10)

A′(τ) = iu (r − q − λJκJ) + κθ B(τ) + λ
(
eiuµJ − 1

2 σ2
J u2
− 1

)
, A(0) = 0. (3.11)

L’equazione (3.10) è una Riccati a coefficienti costanti che si integra in forma chiusa
introducendo d(u) e g(u) come in (3.5); reinserendo B in (3.11) e integrando si ottiene A,
e complessivamente la decomposizione (3.4) con i coefficienti (3.6) e (3.7).

Come proposto da Heston (1993) e Lewis (2001), si consideri il prezzo di call espresso
nella nota forma

C(S0, K, T ) = S0e
−qT P1 −Ke−rT P2,

con le probabilità neutrali al rischio P1, P2 definite come

P1 = 1
2 + 1

π

∫ ∞

0
ℜ
(
e−iu log K φ(u− i;T )

iu φ(−i;T )

)
du, (3.12)

P2 = 1
2 + 1

π

∫ ∞

0
ℜ
(
e−iu log K φ(u;T )

iu

)
du, (3.13)

con φ(−i;T ) = E[ST ] = S0e
(r−q)T .

La rappresentazione per P1 si ottiene mediante cambio di misura alla share measure e
normalizzazione, e in entrambe le espressioni la singolarità in u = 0 è rimossa dalla quota
1
2 e dal fattore 1/(iu). Le trasformate (3.12) e (3.13) sono ben condizionate nel contesto
Heston/Bates, purché si impieghi la Little Heston Trap per la parte diffusiva della funzione
caratteristica.
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In particolare, la parametrizzazione LHT impone ℜd(u) > 0 e |g(u)| < 1 nell’insieme di
(u, T ) di interesse. Il fattore logaritmico che compare in C(u;T ) può essere riscritto come

z(T, u) = 1− g(u) e−d(u)T

1− g(u) = 1− g(u) e−d(u)T︸ ︷︷ ︸
=: w(T,u)

.

Poiché |g(u)| < 1 e ℜd(u) > 0, si ha |w(T, u)| < 1 per ogni T > 0, e dunque z(T, u)
rimane in un intorno controllato di 1.
Ne conseguono due limiti regolari che guidano la scelta del ramo del logaritmo; più preci-
samente, per T →∞ si ha e−dT → 0 e quindi z(T, u)→ 1 dall’interno del disco unitario,
e per T → 0, z(T, u)→ 1 in modo continuo.

Pertanto, al variare di (u, T ), la traiettoria di z(T, u) non attraversa la semiretta reale
negativa (branch cut del logaritmo complesso), il numero di avvolgimento attorno all’ori-
gine è nullo e Arg z(T, u) resta lontano da ±π.
In termini computazionali, il termine ln z(T, u) nella formula del pricing di una call è
valutabile sul ramo principale senza salti di fase (di valore pari a ±2πi) né cancellazioni
catastrofiche quando 1 − ge−dT è particolarmente ridotto. Tale normalizzazione, intro-
dotta per evitare trappole di ramo e singolarità spurie, si è dimostrata particolarmente
efficace per scadenze lunghe e per valori di |u| elevati (Lord & Kahl, 2010)33.

Può inoltre essere utile analizzare il ruolo della condizione di Feller nel garantire la stabilità
computazionale del modello.
Nello specifico suddetta condizione, definita attraverso la relazione

2κ θ > ξ2, (3.14)

assicura che lo zero sia inaccessibile e che vt rimanga strettamente positivo con probabilità
uno. Se la condizione è soddisfatta, allora √vt risulta definita lungo tutto il cammino, la
densità di vt è regolare e non emergono comportamenti patologici al bordo.
La rappresentazione affine resta valida anche quando Feller non è soddisfatta, ma la
prossimità allo zero può accrescere la sensibilità numerica nella valutazione di d(u) e del
rapporto (1−ge−dT )

(1−g) per orizzonti brevi. La Little Heston Trap mitiga tali instabilità, mentre
la condizione in analisi fornisce una garanzia strutturale addizionale che si riflette in una
maggiore regolarità dello smile nel breve e in una riduzione del rischio di degenerazioni

33Per completezza, si osservi che una forma algebricamente equivalente ma numericamente sfavorevole
sostituisce g con il suo reciproco g̃ = 1/g (tipicamente con |g̃| > 1); in tal caso il fattore z̃(T, u) = 1−g̃e−dT

(1−g̃)
può avvicinarsi a zero lungo traiettorie che lambiscono o attraversano la branch cut, inducendo cambi
di ramo del logaritmo e una generale maggiore instabilità. Ad ogni modo, la scelta Little Trap evita
sistematicamente simili fenomeni, e risulta pertanto in questo contesto preferibile.
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numeriche.

La valutazione degli integrali delle probabilità neutral al rischio richiede una scelta ac-
curata dello schema di integrazione numerica sull’asse reale positivo. In primo luogo, il
contributo in u = 0 è trattato separando esplicitamente la quota 1

2 e la regolarizzazione
indotta dal fattore 1

(iu) , cosicché l’integrando è ben definito al limite. Inoltre, è opportu-
no troncare l’intervallo di integrazione a [0, Umax] con Umax selezionato in funzione della
scadenza e dei parametri: in molte configurazioni pratiche un intervallo nell’ordine di
grandezza compreso tra poche decine e qualche centinaio è sufficiente, mentre in presenza
di frequenze di salto elevate o varianze dei salti più ampie è spesso necessario estendere
il dominio di integrazione per catturare l’apporto delle code. In terzo luogo, la scelta di
tolleranze assolute e relative stringenti nella quadratura adattiva consente di controllare
l’errore numerico accumulato e di evitare artefatti oscillatori; la stabilizzazione fornita
dalla Little Trap sulla parte diffusiva contribuisce a rendere l’integrando più regolare,
migliorando la velocità di convergenza. Infine, risulta buona pratica verificare la condi-
zione di normalizzazione φ(−i;T ) = S0e

(r−q)T come controllo interno di coerenza sulla
compensazione del drift e sulla fattorizzazione.

Per T → 0 si ha C(u; 0) = D(u; 0) = 0 e φ(u; 0) = eiux, come richiesto dalle condizioni
iniziali. Per T → ∞, segue che ln

(
1−ge−dT

1−g

)
→ − ln(1 − g), e che D(u;T ) → κ−ρξiu−d

ξ2(1−g) ,
riflettendo l’avvicinamento al regime stazionario della varianza.
I vincoli di non arbitraggio 0 ≤ C ≤ S0e

−qT e la parità put-call sono preservati dall’im-
postazione per trasformata, grazie alla correzione −λJκJ nel drift e alla normalizzazione
φ(−i;T ) = S0e

(r−q)T .

3.2.2 Calibrazione del modello Heston-Bates

La procedura di calibrazione del modello è fortemente legata alle considerazioni teoriche
appena poste. L’impiego della forma LHT costituisce un passaggio chiave per garantire
la stabilità numerica del modello.

Volendo evidenziare alcune specificità più tecniche di suddetta procedura, si osserva in-
nanzitutto che sotto la misura di rischio neutro Q si fissa la funzione caratteristica φ(u;T )
del log-prezzo XT = logST come prodotto tra la componente diffusiva e quella di salto,
con drift compensato pari a r − q − λJκJ , dove κJ = eµJ + 1

2 σ2
J − 1.

Tale struttura è incapsulata, nel caso del programma di pricing proposto in questo elabora-
to, nella funzione interna _heston_charfun, nella quale si definiscono, oltre a d(u) e g(u), i
termini C(u;T ) eD(u;T ), e si moltiplica per il fattore di Merton exp

[
λJT

(
eiuµJ − 1

2 σ2
J u2 − 1

)]
.
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def _heston_charfun (u, T, S0 , r, q, kappa , theta , v0 , xi , rho ,

lambda_jump , muJ , sigmaJ ):

i = 1j

x = np.log(S0)

d = np.sqrt (( rho*xi*i*u - kappa)**2 + (xi **2) *(i*u + u**2))

g = (kappa - rho*xi*i*u - d) / (kappa - rho*xi*i*u + d)

edT = np.exp(-d*T)

C = (kappa*theta /(xi **2)) * (( kappa - rho*xi*i*u - d)*T -

2.0* np.log ((1.0 - g*edT)/(1.0 - g)))

D = (( kappa - rho*xi*i*u - d)/(xi **2)) * ((1.0 - edT)/(1.0 -

g*edT))

k_jump = np.exp(muJ + 0.5* sigmaJ * sigmaJ ) - 1.0

phi_J = np.exp( lambda_jump *T * (np.exp(i*u*muJ - 0.5* sigmaJ *

sigmaJ *u*u) - 1.0))

drift = (r - q - lambda_jump * k_jump )

return np.exp(C + D*v0 + i*u*(x + drift*T)) * phi_J

Listing 6: Implementazione della funzione caratteristica con Little Heston Trap.

La funzione restituisce il valore atteso sotto Q dell’esponenziale complesso eiuXT (dove u ∈
C indica la variabile di Fourier. Con maggiore dettaglio, l’input u viene immediatamente
convertito in array di tipo complesso per garantire compatibilità con operazioni vettoriali
e complesse.
Successivamente, si definisce l’unità immaginaria i = 1j e si calcola il logaritmo del prezzo
iniziale (che rappresenta lo stato iniziale del processo).

La parte diffusiva è gestita attraverso la soluzione analitica del modello di Heston, con sta-
bilizzazione numerica ottenuta tramite il metodo Little Heston Trap; si calcola il termine
d(u), dipendente dai parametri di mean-reversion, e successivamente g(u), il quale rappre-
senta una trasformazione razionale di d(u) e consente di evitare instabilità nei logaritmi.
L’esponenziale di −dt viene precomputato per semplificare i calcoli successivi.

In seguito, si determinano i coefficienti C(u;T ) e D(u;T ); nuovamente, il primo rap-
presenta la parte deterministica della funzione caratteristica, mentre il secondo modula
l’effetto della variabile iniziale v0.

Con riferimento alla componente di salto, modellata come un processo di Poisson con
ampiezze lognormali, è calcolato il compensatore κJ , che rappresenta il valore atteso del
salto e corregge la deriva del processo. La funzione caratteristica dei salti, ΦJ(u), è
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determinata secondo la relazione sopra definita immediatamente dopo κJ .

Infine, il drift del processo del log-prezzo viene compensato nella modalità precedente-
mente illustrata. Il valore della funzione caratteristica risulta così pari al prodotto tra la
parte diffusiva e quella di salto, rispettando la relazione fornita alla 3.4.

A partire da φ, il prezzo dell’opzione call C(S0, K, T ) è ottenuto mediante il ricorso ai noti
integrali di Lewis-Heston. Si prenda in analisi la funzione _Pj_heston_cf, in cui viene
calcolato il valore delle probabilità di esercizio dell’opzione P1 e P2, già definite come

P1 = 1
2 + 1

π

∫ ∞

0
ℜ
(
e−iu log K φ(u− i;T )

iu φ(−i;T )

)
du, P2 = 1

2 + 1
π

∫ ∞

0
ℜ
(
e−iu log Kφ(u;T )

iu

)
du.

La funzione riceve come input il parametro j, un indice che determina quale delle due
probabilità viene calcolata.

def _Pj_heston_cf (j, K, T, S0 , r, q, kappa , theta , v0 , xi , rho ,

lambda_jump , muJ , sigmaJ , abs_tol =1e-8, rel_tol =1e-6, max_eval

=200):

logK = np.log(K)

i = 1j

if j == 2:

def integrand (u):

u = float (u)

if u == 0.0:

return 0.0

phi_u = _heston_charfun (u, T, S0 , r, q, kappa , theta ,

v0 , xi , rho , lambda_jump , muJ , sigmaJ )

val = np.exp(-i*u*logK) * (phi_u / (i*u))

return np.real(val)

I, _ = quad(integrand , 0.0, np.inf , epsabs =abs_tol ,

epsrel =rel_tol , limit= max_eval )

return 0.5 + I/np.pi

Listing 7: Calcolo della probabilità neutrale al rischio P2.

Nel presente caso in cui j = 2, si definisce un integrando che valuta la funzione caratteri-
stica φ(u) per u ∈ R+, moltiplicata per il fattore e−iu log K

iu
.

elif j == 1:

phi_minus_i = S0 * np.exp ((r - q) * T)

def integrand (u):
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u = float (u)

if u == 0.0:

return 0.0

phi_shift = _heston_charfun (u - 1j, T, S0 , r, q, kappa ,

theta , v0 , xi , rho , lambda_jump , muJ , sigmaJ )

val = np.exp(-i*u*logK) * ( phi_shift / (i*u * phi_minus_i

))

return np.real(val)

I, _ = quad(integrand , 0.0, np.inf , epsabs =abs_tol , epsrel =

rel_tol , limit= max_eval )

return 0.5 + I/np.pi

Listing 8: Calcolo della probabilità neutrale al rischio P1.

Con j = 1, si utilizza una variante della funzione caratteristica valutata in u− i, che corri-
sponde ad uno spostamento nel piano complesso necessario per ottenere P1. In questo caso,
si introduce anche il termine φ(−i), che nel modello di Bates ha forma chiusa e corrisponde
al valore atteso del prezzo sotto la misura di rischio neutro (ovvero S0e

(r−q)T )34.

Entrambe le integrazioni sono eseguite tramite la funzione quad di SciPy. Qualora j fosse
diverso da 1 o 2, la funzione solleverebbe un ValueError, segnalando un uso non valido35.
Il wrapper call_price_heston_cf coordina le due valutazioni, mentre heston_price_vectorized

realizza la versione vettoriale su una griglia di strike, controllando tolleranze assolu-
te e relative tramite i parametri abs_tol, rel_tol e max_eval passati al processo di
quadratura.

def heston_price_vectorized (S0 , strikes , T, r, kappa , theta , v0 ,

xi , rho , lambda_jump , muJ , sigmaJ , q=0.0 , option_type =’call ’,

abs_tol =1e-8, rel_tol =1e-6, max_eval =200):

strikes = np. asarray (strikes , float )

out = np. empty_like (strikes , dtype=float )

if isinstance ( option_type , str):

option_types = [ option_type ] * len( strikes )

else:

option_types = np. asarray ( option_type )

34È proprio a seguito di questa normalizzazione che la relazione per il calcolo della probabilità assume
la forma descritta alla 3.12.

35Procedure di debug come questa sono molto diffuse all’interno del programma, in modo da supportare
una più rapida individuazione e correzione degli errori.
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for j, (K, opt_type ) in enumerate (zip(strikes , option_types ))

:

call_price = call_price_heston_cf (S0 , float (K), T, r, q,

kappa , theta , v0 , xi , rho , lambda_jump , muJ , sigmaJ ,

abs_tol =abs_tol , rel_tol =rel_tol , max_eval = max_eval )

if opt_type .lower () == ’call ’:

out[j] = call_price

elif opt_type .lower () == ’put ’:

out[j] = call_price - S0*np.exp(-q*T) + K*np.exp(-r*T

)

else:

raise ValueError (" option_type deve essere ’call ’ o ’

put ’")

return out

Listing 9: Vettorizzazione e controllo delle valutazioni.

Sulla base di quanto illustrato finora, è possibile comprendere come l’utilizzo della forma
LHT nella costruzione di φ renda regolare l’integrando in (u, T ), riducendo in tal modo
fenomeni di branch switching36 e cancellazioni numeriche37.

La funzione obiettivo obj_heston ricopre un ruolo di primaria importanza nella procedura
di calibrazione; essa definisce un target di ottimizzazione per calibrare i parametri del
modello utilizzando la trasformata di Fourier.

def obj_heston (p, S, strikes , market_prices , T, r, q=0.0 ,

option_types =None , w=None , penalty =None , abs_tol =1e-8, rel_tol

=1e-6, max_eval =200):

kappa , theta , v0 , xi , rho , lambda_jump , muJ , sigmaJ = map(

float , p)

Listing 10: Definizione e input della funzione obiettivo.

I parametri oggetto di calibrazione, racchiusi nel vettore p, vengono dapprima convertiti
in float e assegnati alle variabili che rappresentano le componenti fondamentali del mo-
dello, ossia mean reversion κ, livello medio di varianza θ, varianza iniziale v0, volatilità

36Cambiamento del ramo della funzione quando il parametro complesso attraversa una discontinuità o
un taglio di ramo.

37Ciò risulta necessario, in quanto nei modelli come Heston-Bates, l’integrando può contenere termini
oscillanti o esponenziali che si annullano parzialmente, rendendo difficile ottenere una stima precisa del
prezzo dell’opzione.
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della volatilità ξ, correlazione tra sottostante e varianza ρ, intensità dei salti λJ , media e
deviazione dei salti (µj, σJ)38.

model = heston_price_vectorized (S, strikes , T, r, kappa , theta ,

v0 , xi , rho , lambda_jump , muJ , sigmaJ , q=q, option_type =

option_types , abs_tol =abs_tol , rel_tol =rel_tol , max_eval =

max_eval )

market = np. asarray ( market_prices , float )

if w is None:

w = np. ones_like ( market )

w = np. asarray (w, float )

w = w / (w.mean () + 1e -12)

mse = np.mean(w * (model - market )**2)

reg = 0.0

Listing 11: Calcolo dei prezzi teorici.

Viene quindi la funzione obj_heston_jump_cf, utilizzando i parametri del modello e
controllando la precisione numerica tramite le tolleranze assolute e relative e il numero
massimo di valutazioni nel processo di quadratura.

if isinstance (penalty , dict):

reg += float ( penalty .get(’w_rho ’, 0.0))*rho **2

reg += float ( penalty .get(’w_sigmaJ ’, 0.0))* sigmaJ **2

reg += float ( penalty .get(’w_lambda ’, 0.0))* lambda_jump **2

reg += float ( penalty .get(’w_xi ’, 0.0))*xi **2

return float(mse + reg)

Listing 12: Creazione del vettore dei prezzi di mercato.

I prezzi di mercato vengono convertiti in array NumPy e, se non vengono forniti pesi
espliciti, si procede ad una pesatura uniforme. I pesi vengono normalizzati rispetto alla
loro media per evitare distorsioni numeriche.
In seguito, si calcola l’errore quadratico medio tra i prezzi teorici e quelli osservati, a
cui si aggiunge un termine di penalizzazione che consente di regolarizzare la calibrazione
introducendo pesi sui parametri più sensibili o instabili, quali rho, sigmaJ, lambda_jump

e xi.
38Anche con riferimento alla funzione obiettivo, qualora non fosse specificata la tipologia di opzione, si

imposta di default il pricing di una call.
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Il valore finale restituito dalla funzione è la somma tra l’errore quadratico medio e il
termine di penalizzazione, fornendo così una misura scalare da minimizzare durante il
processo di calibrazione.

Ricorrendo ad un maggior formalismo, si denota che la funzione obiettivo riceve il vettore
dei parametri

p = (κ, θ, v0, ξ, ρ, λJ , µJ , σJ),

genera i prezzi modello Ĉ(Ki; p) mediante heston_price_vectorized, e calcola

L(p) = 1
n

n∑
i=1

wi

(
Ĉ(Ki; p)− Cmkt

i

)2
+R(p)

dove Ci
mkt sono i prezzi osservati, n il è il numero si strike e w̃i indica la versione normaliz-

zata dei pesi positivi forniti in input. Il pricing è eseguito in forma vettoriale sugli strike,
e si individua in una formulazione che, per quanto essenziale, si è mostrata fortemente
efficace nel mitigare fenomeni di overfitting e preservare la trattabilità del nucleo affine.

La strategia numerica segue una pipeline a due stadi con meccanismo di fallback; nello
specifico, il primo stadio adotta la Differential Evolution per un’esplorazione globale e
non derivativa dell’ambiente di L, con vincoli di scatola su ciascun parametro.

A tal proposito, viene definita la funzione calibrate_heston_jump_cf_by_data, che si
serve del ricorso ad un ObjectiveRecorder per registrare l’ultima valutazione e facilitare
la diagnostica, nonché una callback che produce log periodici dell’avanzamento39

class ObjectiveRecorder :

def __init__ (self , func):

self.func = func

self. last_x = None

self. last_f = None

def __call__ (self , x, *args , ** kwargs ):

f = self.func(x, *args , ** kwargs )

self. last_x = None if x is None else np.array(x, copy

=True)

self. last_f = f

return f

Listing 13: Funzione di registrazione dell’ultima valutazione.

39Nei casi in cui la calibrazione può richiedere tempistiche maggiormente prolungate, può essere utile
un’indicazione del progresso della stessa nel log.
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it_de = {"k": 0}

def _cb_de (xk , conv):

it_de["k"] += 1

if dev and ( dev_logger is not None) and ( rec_coarse .

last_f is not None) and (it_de["k"] % 3 == 0):

dev_logger .write(f"[Bates -CF] DE step {it_de[’k ’]}: f

(x) = { rec_coarse . last_f :.6g}")

return False

de_opts = dict( maxiter =(40 if dev else 60) , popsize =(12 if

dev else 18) , mutation =(0.6 , 1.0) , ecombination =0.9 , polish

=False , disp=False , seed =42)

de_res = differential_evolution (rec_coarse , bounds , args=

args_coarse , callback =_cb_de , updating =’deferred ’, workers =

crn_map , ** de_opts )

x_start = np.array( de_res .x, dtype=float )

Listing 14: Utilizzo di Differential Evolution nella calibrazione (Stadio 1).

Dopo che lo stadio DE fornisce un valido punto di partenza, viene eseguita una rifinitura
locale tramite L-BFGS-B partendo da p(0), con gradienti approssimati iterativamente
dall’algoritmo e nel rispetto dei vincoli di scatola definiti in precedenza40.

it_lb = {"k": 0}

def _cb_lb (xk):

it_lb["k"] += 1

if dev and ( dev_logger is not None) and ( rec_fine . last_f

is not None) and (it_lb["k"] % 5 == 0):

dev_logger .write(f"[Bates -CF] L-BFGS iter {it_lb[’k

’]}: f(x) = { rec_fine . last_f :.6g}")

lb_opts = dict( maxiter =120 , disp=False , maxls =60, ftol =1e-8,

gtol =1e-5, eps =1e -8)

res_lb = minimize (rec_fine , x0=x0 , args=args , bounds =bounds ,

method =’L-BFGS -B’, options =lb_opts , callback = _cb_lb )

if res_lb . success and np.all(np. isfinite ( res_lb .x)):

return np.array( res_lb .x, float )

Listing 15: Rifinitura con L-BFGS-B (Stadio 2).
40Vincoli concepiti con il principale intento di assicurare che ξ resti positiva e ρ non esca da un dominio

ragionevolmente ammissibile.
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Qualora la rifinitura non converga ad una soluzione numericamente stabile o resti intrap-
polata in un altopiano (diagnosticato da messaggi di arresto o mancanza di miglioramento
di L), si attiva un ripiego (Powell) senza l’uso di derivate da p(0).

if dev and dev_logger is not None:

msg = getattr (res_lb , " message ", "n/a")

dev_logger .write(f"[Bates -CF] L-BFGS -B non riuscito ({ msg

}). Provo Powell ...")

res_pw = minimize (rec_fine , x0=x0 , args=args , bounds =bounds ,

method =’Powell ’, options ={’maxiter ’: 200, ’disp ’: False })

def _val(x):

return float( rec_fine (np.array(x, float ), *args))

candidates = []

try: candidates . append ((’DE’, x0 , _val(x0)))

except : pass

if res_lb . success and np.all(np. isfinite ( res_lb .x)):

try: candidates . append ((’LBFGS ’, res_lb .x, _val( res_lb .x)

))

except : pass

if res_pw . success and np.all(np. isfinite ( res_pw .x)):

try: candidates . append ((’POWELL ’, res_pw .x, _val( res_pw .x

)))

except : pass

if not candidates :

raise RuntimeError (" Calibrazione Bates -CF: nessuna

soluzione valida .")

Listing 16: Fallback Powell.

La funzione di calibrazione seleziona, infine, fra i candidati, quello con il valore obiettivo
più basso.

best = min(candidates , key= lambda t: t[2]) [1]

if dev and dev_logger is not None:

dev_logger .write(f"[Bates -CF] Selezionata soluzione

fallback con f(x)={ _val(best):.6g}")

return np.array(best , float )

Listing 17: Scelta del candidato.
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Gli aspetti numerici della valutazione per trasformata sono curati in maniera esplicita
all’interno delle funzioni di prezzo.
Come precedentemente cennato, la regolarizzazione in u = 0 avviene separando la quota
1
2 nelle definizioni di P1 e P2 e introducendo il fattore 1

iu
, sì da rendere l’integrando ben

definito al limite. L’intervallo di integrazione è troncato a [0, Umax], con Umax scelto in
funzione dell’orizzonte T e dell’intensità (e dispersione) dei salti41.
Le tolleranze abs_tol e rel_tol sono pensate per regolare l’accuratezza della quadra-
tura adattiva. L’utilizzo della Little Heston Trap nella costruzione di C e D ha portato
ad un significativo miglioramento nella velocità di convergenza e nella riduzione della
suscettibilità ad oscillazioni spurie.

La neutralità al rischio è monitorata imponendo internamente φ(−i;T ) = S0e
(r−q)T e

il drift compensato nella parte diffusiva. Sono proprio tali verifiche, congiuntamente
al controllo di non arbitraggio sui prezzi ricostruiti, a fornire una diagnostica di base
dell’implementazione.
Nel flusso applicativo, i log prodotti da ObjectiveRecorder nelle fasi DE e L-BFGS-B
documentano la traiettoria di L e consentono di individuare tempestivamente eventuali
criticità di tolleranza o di quadratura.

41All’aumentare di λJ o σJ , è opportuno estendere Umax al fine di catturare adeguatamente le code
della distribuzione.
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4 Formalizzazione di un approccio alternativo

Il modello di Heston, arricchito dalla componente di salto e per mezzo della procedura di
calibrazione appena descritta, propone un metodo di prezzaggio sistematicamente supe-
riore agli altri analizzati.
Esso risulta di valore non soltanto per la mera introduzione del concetto di volatilità sto-
castica, ma poiché è stato in grado di gettare le basi di un nuovo formalismo e di una linea
di pensiero che ha plasmato la successiva ricerca sulla teoria delle opzioni. Ciononostante,
come ogni prodotto frutto della ricerca, può essere migliorato, le sue assunzioni superate
e i limiti valicati.

Nell’ultima sezione di questo documento si propone una nuova metodologia di pricing a
volatilità stocastica a stato transitorio; un modello stocastico riconducibile alla famiglia
Heston con termine di feedback retroattivo e Schrödinger bridge.

4.1 Riflessioni sull’implementazione del modello Heston-Bates

In sede di implementazione e test del modello di pricing proposto nel capitolo precedente,
si sono manifestate diverse criticità strutturali e numeriche (già ampiamente discusse dal-
la letteratura negli ultimi decenni) aventi effetto limitativo dell’efficacia operativa dello
stesso.
Sul fronte statistico-strutturale, l’integrazione tra parametri diffusivi (i.e. ξ, ρ, θ) e com-
ponenti di salto genera collinearità e problemi di identificabilità, specialmente quando,
come nel caso in analisi, l’obiettivo di calibrazione è l’RMSE sui prezzi42. Inoltre, l’ipotesi
di parametri costanti nel tempo e di salti i.i.d. fatica a sostenere una term-structure dello
skew coerente tra scadenze e regimi, mentre il ricorso esclusivamente ai salti gaussiani e
alla correlazione tende a sottostimare skew estremi e smile di brevissimo termine, dando
vita all’esigenza, divenuta ormai prassi, di introdurre arricchimenti non gaussiani nei salti
per governare code e asimmetrie.

Sul piano numerico, i metodi a trasformata (e.g. FFT, Carr-Madan e affini) mostrano
sensibilità alla scelta di finestra, passo di griglia e damping, con aliasing e troncamenti
che impattano sistematicamente le code della smile e gli strike lontani.

42La scelta effettuata si presta ad accentuare valli piatte e molteplicità di minimi locali, portando ad
una conseguente instabilità delle soluzioni e una marcata variabilità cross-expiry (Sahalia & Kimmel,
2007).
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4.2 Proposta di un correttivo alla struttura tradizionale dei
modelli Heston-type

È a seguito della valutazione di tali limitazioni che si intende proporre un nuovo modello
di pricing della famiglia Heston che inserisce, accanto a salti asimmetrici nel sottostante
(e, ove necessario, salti nella varianza), un canale endogeno di feedback prezzo-
varianza concepito con l’intenzione di rendere la risposta di vt immediata e non lineare
agli shock e alleviando la pressione identificativa su ξ e ρ.

Sul piano operativo, lo schema QE di Andersen assicura una simulazione stabile ed effi-
ciente del fattore di varianza con meccanismo di switching numerico controllato, rendendo
la calibrazione Monte Carlo più robusta rispetto agli schemi naïve.

4.2.1 Quadro di riferimento

Riprendendo in parte quanto cennato in sede di introduzione della sezione, il modello SFV
(Stochastic Feedback and Volatility) si presenta come un’estensione dei paradigmi affini di
Heston e Bates proponendo l’utilizzo di salti DEJD (double-exponential) sul log-prezzo del
sottostante in stile Kou, salti spettro positivi sul termine di volatilità vt e introducendo
un termine di feedback istantaneo, il quale fornisce un elemento di novità rispetto al
tradizionale approccio fondato sull’esclusivo ricorso alla correlazione browniana.

L’obiettivo è catturare skew molto ripidi e wings estremi su scadenze brevi, nonché spikes
di volatilità successivi event-driven, mantenendo al contempo stabilità numerica tramite
una calibrazione regolarizzata (Schrödinger Bridge, Martingale Optimal Transport). Il
riferimento di partenza rimane il paradigma affine; Heston ottiene la funzione caratteri-
stica in chiuso per un modello SV diffuso, mentre Bates aggiunge salti sul prezzo restando
in ambito affine, consentendo calcolo rapido via integrali di Fourier (Heston, 1993; Bates,
1996).

4.2.2 Specificazione probabilistica del modello

Siano (Ω,F ,Ft≥0, P ) uno spazio di probabilità filtrato con le usuali, W S
t e W v

t due moti
browniani con correlazione ρ (⟨W S,W v⟩t = ρ, t), e µS(dt, dy) e µv(dt, dz) misure di Poisson
che descrivono rispettivamente i salti nel log-prezzo (y ∈ R) e nella varianza (z > 0), con
misure compensatrici νS(dy), dt e νv(dz), dt.
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Si denotino con µ̃S(dt, dy) = µS(dt, dy) − νS(dy), dt (e analogamente µ̃v) le misure di
Poisson compensate.

Il modello è definito da due equazioni differenziali stocastiche descriventi rispettivamente
le dinamiche del prezzo del sottostante e della varianza;

dSt

St−
= µdt+√vt dW

S
t +

∫
R

(
ey − 1

)
µ̃(S)(dt, dy), (4.1)

dvt = κ(θ − vt)dt+ ξ
√
vtdW

v
t + γdXc

t +
∫
R+
zµv(dt, dz). (4.2)

È interessante notare come i salti sul log-prezzo Y seguono una doppia-esponenziale
asimmetrica (Kou, 2002), con densità

fY (y) = pη1e
−η1y 1{y>0} + (1− p)η2e

η2y1{y<0},

con η1 > 1, η2 > 0 e p ∈ (0, 1).
La distribuzione Double-Exponential Jump Diffusion permette di offrire un controllo indi-
pendente della coda destra (y > 0) e sinistra (y < 0) del processo di salto, garantendo allo
stesso tempo una buona tracciabilità analitica per trasformate e payoff path-dependent
(Kou & Wang, 2004). In particolare, la pesantezza delle code è parametrizzata da η1 ed
η2, e dunque code più pesanti possono essere ottenute attraverso la scelta di un valore
piccolo di η2, senza alterare la coda destra, e viceversa.

Tutti i momenti di Y sono finiti, mentre la funzione generatrice MY (u) = E[euY ] è finita
per u in un intorno di 0 determinato dai tassi di decadimento43; nello specifico, η1 assicura
che MY (1) abbia valore finito, condizione necessaria per costruire la misura risk-neutral
tramite tilt di Esscher, come sarà esposto nei prossimi punti della trattazione.

Per catturare i bruschi incrementi di volatilità c.d. event-driven, si include in dvt una
componente compound Poisson con salti positivi di ampiezza z. Si assume inoltre un’in-
tensità costante λ e una distribuzione delle ampiezze con momenti finiti (un’esponenziale
troncata o una lognormale positiva) in modo da evitare esplosioni della varianza.
I salti di v sono indipendenti da quelli di S e introducono discontinuità nella varianza
analoghe a quelle proposte in contesti affini da Bates, pur non sussistendo nel caso qui
proposto un indissolubile vincolo alla struttura affine classica.

Il termine γ, dXc
t fornisce un leverage effect istantaneo e non lineare; ad ogni variazione

continua del log-prezzo, la varianza subisce un aggiustamento immediato proporzionale a
γ, con il risultato di introdurre un accoppiamento diretto non affine tra S e v, addizionale

43Precisamente, MY (u) <∞ per u ∈ (−η2, η1).
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rispetto alla correlazione ρ presente nei modelli affini standard.
Pertanto, un movimento improvviso (ma continuo) del prezzo influenza istantaneamente
la varianza, permettendo di riprodurre empiricamente spikes di volatilità più intensi e
asimmetrici di quanto ottenibile con la sola correlazione44.

Assunzioni di ben positura. Per garantire che il sistema di cui le (4.1) e (4.2) abbia
soluzioni uniche e positive, si assumono le seguenti condizioni (che non si differenziano in
modo particolare dalle condizioni di ben-posedness tipiche per le SDE con salti): κ > 0,
θ > 0, ξ > 0 e γ(t) un processo deterministico limitato da crescita al più lineare.
Si richiede inoltre che la distribuzione dei salti di Kou ammetta momenti esponenziali
in un intorno dell’unità, e dunque, come sopra menzionato, ∃ ϵ > 0 | MY (1 + ϵ) <

∞ ∧ MY (1 − ϵ) < ∞, e che i salti di v abbiano momenti finiti. È proprio in forza
delle citate condizioni che è possible garantire sia la positività delle soluzioni45, sia la
praticabilità dei cambi di misura martingala.

4.2.3 Costruzione della misura neutrale al rischio

Dato il numéraire Bt = e
∫ t

0 r ds, si vuole trovare Q ∼ P tale che il processo scontato

e
−

t∫
0

(r−q)ds

= St sia una martingala.

In base al primo teorema fondamentale dell’asset pricing, la condizione di non arbitraggio
equivale all’esistenza di una misura martingala equivalente Q (Delbaen & Schachermayer,
1994). Per effettuare il cambio di misura, si costruisce la densità di Radon-Nikodym
Zt = dQ

dP

∣∣∣
Ft

come l’esponente di Doléans contenente uno shift sui termini browniani e un
tilt sulle misure di salto. Nello specifico, si può definire

Zt = exp
{
−
∫ t

0
λs dW

S
s −

1
2

∫ t

0
λ2

s ds+
∫ t

0

∫
R

log ηs(y)
(
µS(ds, dy)− νS(dy) ds

)}
, (4.3)

dove λtt ≥ 0 è un processo prevedibile che regola lo shift del moto browniano W S e
ηt(y)t ≥ 0 è un processo positivo che effettua un tilt46 sul compensatore dei salti di S.
L’intuizione alla base è che λt modifichi il drift diffuso del sottostante, mentre ηt(y) inter-
venga sui salti.
Sotto condizioni sufficienti di integrabilità (criteri di Novikov/Kazamaki estesi ai salti,

44Su come questa estensione rompa la struttura affine classica dei coefficiente e sulle relative
implicazioni, si discuterà in seguito.

45Infatti, i processi di Cox-Ingersoll-Ross non esplodono sotto Feller, e i salti solo positivi non violano
la barriera dello 0.

46Cambio di misura essenzialmente esponenziale.
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ossia E[exp (1
2
∫ T

0 λ2
sds)] < ∞ e integrabilità esponenziale delle code di salto), Zt è una

vera martingala e quindi definisce una misura Q valida (Cheridito, Filipović & Yor, 2005).

La scelta naturale per preservare la famiglia a doppia esponenziale dei salti di Kou è un tilt
di Esscher costante, e dunque, ponendo ηt(y) ≡ expϑy, con ϑ parametro da determinare,
la distribuzione di Y sotto Q rimane invariata.
Imporre la condizione di martingalità sul prezzo scontato equivale allora a richiedere che
il log-generatore cumulante dei momenti dei salti soddisfi

κP (ϑ+ 1)− κP (ϑ) = r − q, (4.4)

in cui κP (u) = logE[euY ] indica il log-CGF di Y sotto P . Tale relazione determina il
parametro ϑ dell’Esscher tilt e assicura che EQ[eY − 1] = 0, eliminando il contributo
medio dei salti al drift del prezzo scontato (Gerber & Shiu, 1994).
Dato che κP (u) è esplicito e continuo in u, con η1 > 1 si ha la garanzia che esista una
soluzione in ϑ ∈ (−η2, η1 − 1) per la (4.4).

Per quanto concerne la parte diffusa, è necessario scegliere il processo di deriva λt in
modo da eliminare anche il drift continuo residuo, pertanto, osservando che sotto P il
drift istantaneo scontato è (µ− (r − q)− λSEP [eY − 1]), si impone

λt =
µS,c

t − (rt − qt) +
∫
R
(ey − 1)

(
ηt(y)− 1

)
νS(dy)

√
vt

,

ossia λt = (r−q)−µ−λSEP [eY −1]√
vt

nel caso stazionario, in modo che il drift del prezzo scontato
diventi nullo. Attraverso questa scelta si trasforma W S

t in un nuovo browniano W S,Q
t

sotto Q (Girsanov per la parte continua), tuttavia, un rilevante effetto collaterale è che,
a causa del termine di feedback γdXc

t in dvt, lo shift λt introduce anche una modifica nel
drift della varianza sotto Q.
In particolare, emerge un termine additivo ∆γ(t, vt) nel drift che sintetizza l’effetto del
cambio di misura sulla componente di feedback.

Sotto la misura neutrale al rischio si assume, per semplicità, che l’intensità dei salti
rimanga λv

47. In tal caso, la dinamica risk-neutral del modello risulta

dSt

St−
= (r − q)dt+√vtdW

(S),Q
t +

∫
R

(
ey − 1

)
µ̃S,Q(dt, dy), (4.5)

47Si rammenti che i salti di varianza non influenzano direttamente la martingalità e possono essere
lasciati invariati, purché si controlli la loro integrabilità.
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dvt =
[
κ(θ − vt) + ∆γ(t, vt)

]
dt+ ξ

√
vtdW

v,Q
t + γdXc

t +
∫
R+
zµv,Q(dt, dz). (4.6)

Qui νS,Q(dy) = η, νS(dy) è il nuovo compensatore per i salti di S (tiltato secondo (4.4)),
mentre µ̃S,Q e µv,Q sono le misure di salto sotto la misura di rischio neutro (compensata
per S, non compensata per v).

Il termine ∆γ(t, vt) rappresenta lo shift extra nel drift di v indotto dal cambio di misura
(la sua espressione esplicita può essere ottenuta mediante applicazione della formula di
Girsanov e dipende linearmente da γ e λt). Nei limiti speciali γ → 0, λS → 0, λv → 0,
il modello sotto Q si riduce esattamente alla soluzione affine di Heston (senza salti né
feedback), mentre per γ → 0 e λS > 0 (salti nel prezzo ma niente feedback) si ottiene
il classico modello di Bates affine (Heston con salti sul sottostante), entrambi casi noti
trattabili in chiuso.

4.2.4 Appartenenza alla famiglia Affine Jump-Diffusion

Al livello base (ovvero ponendo γ = 0, e trascurando dunque il termine di feedback), il
modello proposto rientra pienamente nella famiglia degli Affine Jump-Diffusion in con-
formità a quanto descritto da Duffie, Pan e Singleton (2000). In tal caso, il vettore di
stato (Xt, vt), con Xt = logSt, segue una dinamica a coefficienti affini, dove il drift di vt

è κ(θ − vt), la sua diffusività ξ√vt (varianza istantanea ξ2vt, affine in vt), e anche il drift
del log-prezzo risulta affine in vt (pari a r − q − 1

2vt − λQSEQ[eY − 1], il quale si compone
di una costante incrementata di un termine proporzionale a vt).
Le intensità di Poisson λS, λv sono costanti (affini come caso particolare di funzione costan-
te) e le distribuzioni di salto non dipendono dallo stato. Inoltre, la matrice di covarianza
del rumore browniano è costante e data (in forma correlata) da

Cov
dW S,Q

t

dW v,Q
t

 =
1 ρ

ρ 1

 dt,
per cui l’intensità istantanea di varianza di (dW S, dW v) risulta Var(dXt) = vt, dt, Var(dvt) =
ξ2vt, dt e Cov(dXt, dvt) = ξρ, vt, dt, coerentemente alla definizione di processo affine a due
dimensioni.
È in virtù di detta affinità, che il processo ammette una funzione caratteristica in forma
esponenziale affine e l’utilizzo di tecniche di trasformata (Fourier o Laplace) standard per
il pricing (Bakshi & Madan, 2000).

Nel caso completo di γ ̸= 0, invece, la presenza del termine di feedback dXc
t rompe la

struttura affine, in quanto la deriva della varianza istantanea dipende anche dal processo
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del log-prezzo in modo non lineare, e conseguentemente, la CF non è più risolvibile me-
diante il ricordo alle equazioni Riccati disaccoppiate, come illustrato nella sezione 2.6, ed
in generale, non esiste una soluzione chiusa per la trasformata di Xt

48.

4.2.5 Positività della varianza e condizione di Feller

Nonostante l’esistenza di un termine non affine, il processo della varianza rimane non
negativo se i parametri rispettano una condizione di Feller adeguata. Nel dettaglio, poiché
sotto la misura di rischio neutro i browniani W S,Q e W v,Q sono correlati con coefficiente
ρ, è possibile trovare un singolo moto browniano W̃t tale che una combinazione lineare
riproduca entrambi, ovvero

ξ dW
(v),Q
t + γ dW

(S),Q
t = σeff dWt, σ2

eff := ξ2 + γ2 + 2 ρ ξ γ. (4.7)

La parte diffusiva di dvt può quindi essere vista come un processo di tipo CIR con para-
metro di volatilità σeff al posto di ξ. I risultati classici per i processi CIR garantiscono
dunque che, se

2κθ ≥ σ2
eff , (4.8)

allora la varianza resta quasi certamente non-negativa per ogni t (e se 2κθ > σ2
eff , lo zero

non è raggiungibile partendo da v0 > 0, assicurando positività stretta), analogamente a
quanto avviene nel modello di Heston standard con condizione di Feller 2κθ ≥ ξ2. Inoltre,
essendo i salti in v spettro-positivi, non possono mai spingere la volatilità sotto zero.

4.2.6 Estensione non affine e implicazioni sulla calibrabilità

In assenza di formule chiuse, la calibrazione del modello può essere riformulata come un
problema variazionale di matching distributivo. Un modus operandi certamente degno
di interesse consiste nel vedere la calibrazione come un problema di Schrödinger bridge
entropico o, in linguaggio affine al settore finanziario, di Martingale Optimal Transport
in tempo continuo. L’idea chiave è di considerare il modello affine di partenza come
dinamica di riferimento Q, con le sue distribuzioni di transizione note, e di cercare tra
tutte le misure Q∗, quella che minimizza la distanza dalla misura di riferimento.

In termini matematici, si tratta di risolvere un problema di ottimizzazione sotto vincoli
di misura. Quindi, data Q come legge del processo sotto il modello affine non calibrato,

48Sebbene si avrà modo di illustrare ampiamente il trade-off tra chiudibilità analitica e maggiore
flessibilità nel fit di mercato.
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lo scopo da preporsi è quello di trovare la misura calibrata Q∗ che soddisfi, ad esempio, i
vincoli EQ∗ [Hi(XT )] = Pmkt

i per una collezione di payoff Hi al tempo finale T , replicando
esattamente i prezzi Pmkt

i osservati e minimizzando al contempo la divergenza entropica
rispetto a Q. Un esempio di caso ideale risulta certamente

Q∗ := arg min
Q′≪Q

{
H(Q′ | Q)

∣∣∣ EQ′ [Hi(XT )] = Pmkt
i , ∀i, e Q′ è una misura martingala

}
,

dove H(Q′ | Q) denota l’entropia relativa (Kullback-Leibler) di Q′ rispetto a Q. Il vincolo
di martingala, discusso più avanti, assicura che Q∗ rispetti l’assenza di arbitraggio (in
particolare, che il prezzo scontato dell’asset sottostante resti una martingala sotto Q∗).
Il problema qui proposto è essenzialmente un Schrödinger bridge vincolato; pertanto,
tra tutte le traiettorie probabilistiche che partono dalla legge iniziale implicita in Q e
arrivano alle distribuzioni coerenti coi prezzi di mercato, troviamo quella con minima
entropia relativa.

Il caso classico dello Schrödinger bridge considera solo vincoli sulle distribuzioni iniziale
e finale, ma qui includiamo i vincoli di martingala (da cui la denominazione martinga-
le Schrödinger bridge) e altri eventuali vincoli di prezzo intermedi, tipici del Martingale
Optimal Transport49. In letteratura recente, Henry-Labordère (2019) ha mostrato come
seguire la costruzione dello Schrödinger bridge porti a una nuova classe di modelli di vo-
latilità stocastica esattamente calibrati agli strumenti di mercato, interpretandoli proprio
come versioni martingale dello Schrödinger bridge. Analogamente, Guo, Loeper & Wang
(2022) hanno formulato la calibrazione di modelli locali-stocastici come un problema di
trasporto ottimale per semimartingale, risolvendo un problema convesso vincolato dai
prezzi europei senza approssimazione entropica, ma inquadrandolo comunque come un
problema di matching distributivo sotto vincolo di martingala.

Questa riformulazione probabilistica presenta due vantaggi cruciali, in quanto permette
di trasformare il problema di calibrazione (tipicamente non lineare) in un problema di
minimizzazione convessa (in particolare minimizzazione di entropia), garantendo unicità
e stabilità della soluzione calibrata Q∗, ed inoltre, sfruttando il riferimento affine, la
soluzione eredita in buona parte la trattabilità computazionale del modello di partenza,
poiché ottenuta tramite una leggera deformazione (i.e., un tilt) di Q, non richiedendo di
conseguenza la ricostruzione di un modello ex-novo.

Pertanto, il modello calibrato avrà le stesse sorgenti di casualità di quello affine originale
e differirà solo per la presenza di un termine di deriva aggiuntivo che rafforza l’accordo

49Il MOT è un’estensione del classico optimal transport di Kantorovich al caso in cui le misure di
margine iniziale e finale devono essere collegate da una misura con vincolo di Martingala (che preserva
quindi l’ordine convesso).
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con i prezzi di mercato, e proprio questo drift risulta legato alla densità ottima del tilt
entropico e può essere calcolato mediante metodi variazionali.

4.2.7 Formulazione variazionale e densità tiltata

Per formalizzare il problema di Schrödinger bridge martingala, si definisca innanzitutto
l’entropia relativa Kulback-Leibler) di una generica Q′ rispetto a Q;

H(Q′ | Q) = EQ′

[
ln dQ

′

dQ

]
(4.9)

nella quale dQ′

dQ rappresenta la derivata di Radon-Nikodym di Q′ rispetto alla misura di
riferimento.

Q può essere visto come la legge del processo Xt sotto il modello SFV affine non calibrato,
e Q∗ come la legge cercata calibrata; il problema variazionale consiste quindi nel mini-
mizzare H(Q∗ | Q) soggetto ai vincoli di calibrazione (vincoli lineari in Q∗, come attese
di payoff) e ai vincoli di martingala. Introducendo moltiplicatori di Lagrange associati ai
vincoli (in particolare, λi per ogni vincolo di prezzo Hi e un opportuno potenziale per il
vincolo di martingala), si può scrivere la funzione Lagrangiana estesa:

L(Q′;λ, α) = H(Q′ | Q)+
∑

i

λi

(
EQ′ [Hi(XT )]−Pmkt

i

)
+

K−1∑
k=0

EQ′

[
αk(Stk

)
(
Stk+1−e(r−q)∆kStk

)]
,

(4.10)
in cui i termini aggiuntivi garantiranno EQ′ [XT ] = X0 (o analoghi, se il tasso è non nullo) e
più in generale la proprietà di martingala. Minimizzando L rispetto a Q′ (e massimizzando
rispetto ai moltiplicatori) si ottengono le condizioni di ottimalità. In particolare, per ogni
vincolo lineare si ottiene una condizione di primo ordine che implica che la densità ottima
dQ∗

dQ è esponenziale nei payoff vincolati.

Nello specifico, imponendo vincoli solo sulla distribuzione finale XT ∼ νtarget e sul vincolo
di martingala, la soluzione ha la forma classica delle soluzioni di Schrödinger:

dQ∗

dQ

∣∣∣∣
FT

∝ exp
{
− Φ(XT )

}
, (4.11)

dove Φ(x) è un potenziale (funzione di penalità) tale che forzando questa forma, la legge
marginale di XT sotto Q∗ diventa proprio νtarget. Più in generale, per vincoli multipli, Φ(x)
sarebbe una combinazione lineare dei payoff (ossia Φ(x) = ∑

i λiGi(x) per opportuni Gi)
più eventualmente un termine dipendente da x che aggiusta la condizione di martingala.
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Un modo equivalente e più illuminante di rappresentare la soluzione è tramite un processo
ht tiltante (Doob h-transform). Definiamo la densità martingala:

ht = EQ

[
dQ∗

dQ

∣∣∣∣Ft

]
,

che per t = T soddisfa hT = dQ∗

dQ

∣∣∣
FT

e in t = 0 vale h0 = EQ[dQ∗/dQ] = 1 (per conserva-
zione della probabilità). Per costruzione ht è un processo F-martingala sotto Q, positivo,
spesso chiamato doob density o h-process. Allora la nuova misura Q∗ calibrata si può
esprimere in forma tiltata rispetto a Q tramite h, ossia:

dQ∗
∣∣∣∣
Ft

= htdQ
∣∣∣∣Ft, (4.12)

per ogni t (in particolare al tempo finale recuperiamo dQ∗|FT = hTdQ | FT ). Que-
sta espressione mostra che Q∗ è assolutamente continua rispetto a Q (come richiesto) e
individua esplicitamente la densità del cambiamento di misura fino al tempo t.

L’introduzione di ht risulta molto utile perché permette di caratterizzare direttamente la
dinamica sotto la misura calibrata Q∗. In particolare, se sotto Q il processo Xt soddisfa
dXt = b(Xt), dt+σ(Xt), dWQ

t (dinamica di riferimento), allora sotto Q∗ valgono le formule
di Girsanov

dWt
Q∗ = dWt

Q − θtdt, (4.13)

con θt definito come il processo di market price of risk indotto dalla densità ht. In
effetti, differenziando ht si trova che ht soddisfa una SDE la cui parte di martingala è
proporzionale a ht, θ

⊤
t dW

Q
t . Da questo, la drift correction sul processo X si determina

come σ(Xt)θt (componentwise). Più precisamente, la dinamica di Xt sotto Q∗ risulta:

dXt = b(Xt), dt+ σ(Xt), dWQ∗

t + σ(Xt), σ⊤(Xt),∇x ln ht(Xt), dt︸ ︷︷ ︸
drift di feedback

, (4.14)

dove il termine finale rappresenta l’extra-drift indotto dal tilt h.

Quest’ultimo è proprio il termine di feedback non affine precedentemente introdotto
ora analizzato con maggior formalismo, e che può essere rigorosamente identificato con
γt = σ(Xt), σ⊤(Xt),∇x ln ht(Xt), che quindi dipende sia dal tempo sia dallo stato (e in-
direttamente dagli obiettivi di calibrazione impostati tramite h). È chiaro che questo
drift aggiuntivo, derivato dalla densità entropica ottima, non possa risultare affine in Xt

(tranne casi degeneri), confermando pertanto che Q∗ appartiene a una classe di modelli
non affini.
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Tuttavia, tale drift è costruito in modo molto strutturato, e garantisce che Q∗ rispetti tut-
ti i vincoli di calibrazione impostati ed in particolare, agisce per forzare il log-prezzo sulle
distribuzioni target e correggere la tendenza del processo affinché rimanga una martingala.

4.2.8 Vincolo di martingala e struttura dell’h-processo

Un aspetto cruciale nella costruzione sopra è il vincolo di martingala. In un contesto di
pricing risk-neutral, questo vincolo assicura che il processo scontato del sottostante (o
dell’indice considerato) rimanga una martingala sotto la nuova misura calibrata Q∗.

Dal punto di vista dei vincoli di misura, ciò implica che le leggi marginali di Xt debbano
rispettare la condizione di coerenza martingala, tipicamente espressa come un vincolo sul
momento primo: EQ∗ [XT | X0 = x] = x (in assenza di tasso, oppure = xerT in presenza
di tasso r costante).
Nel caso di calibrazione a più scadenze o a prodotti dipendenti dal tempo, occorre ga-
rantire l’assenza di arbitraggio non solo marginalmente, ma lungo l’intero term-structure
di distribuzioni calibrate. In termini di MOT, questo equivale a richiedere che le misu-
re margine calibrate (µ0, µT , . . . ) soddisfino le relazioni di ordine convesso necessarie e
sufficienti affinché esista un processo martingala con quelle distribuzioni

Nella formulazione entropica, il vincolo di martingala entra naturalmente attraverso la
scelta del tilt, infatti, se ci limitassimo a imporre vincoli sulle distribuzioni marginali fina-
li senza però curarci della martingalità, potremmo trovare una misura Q∗ che riproduce
tali margini, ma che non è risk-neutral.
Alcuni lavori precedenti alla formalizzazione del vincolo di martingala incorsero in questo
problema; ad esempio, riprendendo la precedente citazione, Henry-Labordère notò che ap-
procci di calibrazione basati su ponti stocastici senza il vincolo di martingala producessero
drift incoerenti (diversi dal tasso privo di rischio) e dunque modelli con arbitraggio.

Per evitare ciò, nel problema variazionale qui esposto si è imposta esplicitamente la con-
dizione che Q∗ preservi la martingala. Operativamente, ciò corrisponde ad aggiungere
alla Lagrangiana un termine di vincolo (o una penalità) che imponga EQ′ [XT ] = EQ[XT ]
(e analoghi su eventuali scadenze intermedie).
Nel contesto dell’h-processo, questa condizione si riflette nelle proprietà della funzione
ht: in particolare, ht deve essere scelta in modo da non alterare il drift “risk-neutral”
del sottostante. Nel caso semplice in cui calibrassimo solo la distribuzione finale, que-
sto si tradurrebbe nel vincolo di normalizzazione su hT , EQ[XThT ] = EQ[X0], il quale
garantirebbe per Q∗ la condizione EQ∗ [XT ] = X0.
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Più in generale, la struttura dell’h-processo calibrato deve quindi risultare tale che il
Radon-Nikodym dQ∗

dQ abbia media condizionata 1 non solo al tempo finale ma lungo tut-
to il percorso, proprietà che risulta automaticamente soddisfatta se ht è definito come
EQ[dQ∗/dQ | Ft], sebbene si debba prestare attenzione a come i vincoli multipli vadano
a determinare hT .

Analizzando l’equazione del drift sotto Q∗, si noti come il vincolo di martingala impone
che σ(Xt)σ⊤(Xt)∇x ln ht(Xt) sia pari al gradiente di un potenziale armonico.
Pertanto, in altri termini, affinché Xt resti una martingala, la funzione h(t, x) introdotta
deve soddisfare una particolare equazione alle derivate parziali legata all’operatore genera-
tore L di X sotto Q, tipicamente una equazione di Poisson o di Hamilton-Jacobi-Bellman
associata al problema duale di calibrazione.

Nella costruzione dello Schrödinger bridge, suddetta condizione si manifesta come par-
te del sistema di Schrödinger, e quindi accanto all’equazione di Kolmogorov forward
per la densità, compare un’equazione backward per il potenziale h tale che il prodotto
φ(t, x)ψ(t, x) fornisce la densità ottima e φ, ψ soddisfano equazioni di tipo HJB accop-
piate. Imporre il vincolo di martingala significa che tali equazioni includono termini di
correzione per la deriva assenti nel caso standard. Ad esempio, Guyon (2022) mostra
che, nel caso di calibrazione congiunta di SPX e VIX, l’extra-drift nella volatilità risulta
path-dependent e può essere calcolato esplicitamente tramite la soluzione di equazioni di
HJB duali, la cui derivata fornisce esattamente la differenza tra prezzi di mercato e di
modello.

4.2.9 Procedura di calibrazione con regolarizzazione entropica

Con riferimento all’implementazione computazionale del modello in analisi, la calibrazione
viene impostata come un problema variazionale che combina fitting ai prezzi/IV con un
vincolo distribuzionale espresso tramite trasporto ottimale entropico (nello specifico, ci
si serve di un algoritmo di Sinkhorn) tra la legge terminale simulata del sottostante e.
la risk-neutral density ricostruita dallo smile, a cui si addizionano i vincoli strutturali
(condizioni di martingalità e Feller) e la regolarizzazione parametrica.

Si definiscano il vettore dei parametri Θ e l’insieme delle scadenze calibrate τ , in accordo
ai quali la funzione obiettivo può essere scritta come

L(Θ) =
∑
T ∈T

RMSEmkt(Θ) + λSK
∑
T ∈T
Sε(π(T )

Θ , π̂(T ))

+ ν
∑
T ∈T

(EΘ[ST ]− FT )2 + ξ
(
σ2

eff − 2κθ
)

+ η
∥∥∥Θ−Θ(0)

∥∥∥2

2
,

(4.15)
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con σ2
eff = ξ2 + γ2 + 2ρξγ.50 il termine Sε è calcolato con iterazione di Sinkhorn su griglie

1D in x = logS, con kernel K = exp(−C/ε) e costo Cij = (xi − xj)2; la convergenza
esponenziale dello scaling entropico nel quadro EMOT (Entropic MOT) assicura stabilità
della proiezione multi-marginale (Joseph, Loeper & Obloj, 2024).

Data una griglia x(T ) = (xk)n
k=1 e due istogrammi p, q ∈ ∆n (rispettivamente, la legge

empirica del log-prezzo simulato e la RND target), il costo empirico risulta pari a

Sε(p, q;x); =; min
Π∈Rn×n

+

{∑
i,j

Πij, Cij+ε
∑
i,j

Πij

(
log Πij−1

)
Π1 = q,Π⊤1 = p

}
, Cij = (xi−xj)2,

(4.16)
la cui soluzione ha forma

Π⋆ = diag(u)K diag(v), K = exp (−C/ε) ,

con (u, v) ottenuti per scaling alternato (u ← p/(Kv), v ← q/(K⊤u). Il vincolo di
martingala entra nella 4.15 come

Mart(Θ) =
∑
T ∈T

(
EΘ[ST ]− FT

FT

)2

, (4.17)

che forza E≰ ≈ FT a livello numerico, mentre la condizione di Feller penalizza le violazioni
della positività del canale vt.
Infine, la regolarizzazione Tikhonov stabilizza i parametri collineari (in primis γ, λS e λV ).

Volendo trattare con maggior dettaglio tecnico l’implementazione computazionale della
procedura di calibrazione qui descritta, si premette che essa segue, almeno in prima bat-
tuta, il medesimo modus operandi adottato per il modello di Heston tradizionale (alla cui
descrizione si richiama la sezione precedente), in accordo al quale si imposta una calibra-
zione globale (Differential Evolution), seguita da un polishing locale L-BFGS-B, con pesi
vega e di liquidità nella loss sui prezzi e sulla volatilità implicita.

Per ogni scadenza, la procedura seleziona gli strike in banda ATM, calcola la IV di
mercato, e costruisce i pesi

w_vega = 1.0 / (vega + 1e -8)

w_liq = np.sqrt(oi + vol + 1.0)

w_pre = normalize ( w_vega * w_liq)

Listing 18: Calcolo dei pesi finali per MSE.

50Si precisa che in tale contesto ξ si riferisce al peso di penalizzazione, e non alla vol-of-vol come nel
capitolo precedente.
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Questa ponderazione (vega × liquidità) stabilizza il fitting penalizzando meno gli stri-
ke OTM a bassa sensibilità e rumorosi. L’attivazione della regolarizzazione entropica
permetterebbe, per ciascun T , di ricostruire π̂(T ) sulla griglia unidimensionale in x.

x_grid , pi_hat = build_rnd_target_from_smile (slc , bins=

sinkhorn_bins , space=’logS ’)

slc[’rnd_grid ’] = x_grid

slc[’rnd_target ’] = pi_hat

Listing 19: Costruzione RND target.

In rapporto alla funzione obiettivo obj_sfv, si può notare come, per ogni scadenza, essa si-
muli ST attraverso simulator, il wrapper della funzione di pricing sfv_simulate_paths_vectorized,
e successivamente calcoli i prezzi vanilla

ST = simulator (theta , T=T, M=M_paths , dt=min(dt_min , T/256) , crn=

crn)

Pmod = pricer (ST , K, r=r, q=q, T=T)

loss_price += np.mean(w_pre * (Pmod - Pmkt)**2)

if use_iv and pricer_iv :

IVmod = pricer_iv (Pmod , K, F_T , T)

loss_iv += np.mean(w_pre * (IVmod - IVmkt)**2)

Listing 20: Calcolo dei prezzi per scadenza.

Successivamente, se la risk neutral density target è disponibile nello slice e la variabile
sinkhorn_scale assume valori maggiori di 0, la funzione costruisce l’istogramma empirico
sulla griglia rnd_grid, normalizza il target e chiama la funzione anonima _sinkhorn_distance_1d

if sinkhorn_scale > 0.0 and ’rnd_grid ’ in slc and ’rnd_target ’ in

slc:

x_grid = slc[’rnd_grid ’]

pi_tgt = slc[’rnd_target ’] / (slc[’rnd_target ’]. sum () + 1e

-16)

x_samp = np.log(np. maximum (ST , 1e -300)) if sinkhorn_space ==’

logS ’ else ST

p_emp = _hist_from_samples (x_samp , x_grid , density =True)

loss_sinkhorn += _sinkhorn_distance_1d (p_emp , pi_tgt , x_grid ,

eps= sinkhorn_eps , n_iter =500 , tol =1e -9)

Listing 21: Costruzione della griglia unidimensionale.
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È proprio _sinkhorn_distance_1d ad implementare lo scaling di Sinkhorn con il (già
definito) kernel K = exp(−C/ε), Cij = (xi − xj)2, restituendo il costo entropico Sε, o, in
altri termini, realizzando l’ancora distribuzionale dello Schrödinger bridge51. Assume par-
ticolare rilevanza il rispetto della citata condizione di Feller (definita soft, per distinguerla
dalla tradizionale forma adottata in rapporto al caso di Heston classico)

pars = param_extract (theta)

kappa , th , xi , gamma = pars[’kappa ’], pars[’theta ’], pars[’xi’],

pars[’gamma ’]

sigma_eff2 = xi*xi + gamma **2 + 2.0* rho*xi*gamma

feller_soft = max (0.0 , sigma_eff2 - 2.0* kappa*th)

Listing 22: Condizione di Feller

Infine, tutti i contributi qui descritti, vengono combinati per mezzo della variabile total.

Per quanto concerne la calibrazione in senso stretto, la funzione calibrate_sfv, analo-
gamente al caso precedente, costruisce un callable sull’obiettivo e lo ottimizza con l’uso
di Differential Evolution, per attuare un’esplorazione globale su bound prefissati, ed in
seguito rifinisce localmente attraverso L-BFGS-B. Anche in questo caso, è previsto il
meccanismo di fallback basato su Powell.

4.2.10 Analisi dei risultati

In prossimità della conclusione di questo elaborato, si vuole fornire una dimostrazione sul
campo di quelle che possono essere le capacità predittive del modello, in uno scenario nel
quale è possibile dimostrare la sua maggiore precisione.

Nello specifico si è scelto di riportare qui l’esito del test effettuato in data 15 settembre
2025 sull’opzione call TSLA con scadenza fissata al 19 dello stesso mese (dunque, si noti,
una scadenza particolarmente ravvicinata e un sottostante fortemente volatile, e dunque
uno skew reattivo e code pronunciate).

Si precisa che, anche in questo caso viene adottato il meccanismo di filtraggio dei risultati
di cui alla sezione 3.2, i cui aspetti fondanti sono già stati descritti in suddetta sezione,
alla quale si rimanda.

51E, grazie ai risultati EMOT, fornisce stabilità e assicura la convergenza dello scaling.
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Figura 13: Test su TSLA Call 19/09/2025 (primi 21 strike).

Nel test in analisi emerge con chiarezza una gerarchia predittiva, in accordo alla quale il
modello a volatilità stocastica con feedback ottiene l’RMSE medio più basso (≈ 0.1938),
seguito da Heston (≈ 0.2543), mentre i modelli a volatilità costante (BS, CRR e MC)
rimangono staccati di un ordine di grandezza (≈ 2.02), segnale inequivocabile dell’inca-
pacità della volatilità piatta di riprodurre la pendenza dello smile e la curvatura nelle
ali in prossimità di scadenze corte. Limitatamente a questi tre modelli, si denota lo svi-
luppo della citata convergenza, localizzata nello specifico su una crescita monotonica nel
frattempo che ci si allontana dalla zona ATM.

Il confronto SFV vs Heston è più sottile e interessante. Qui la riduzione dell’RMSE di
SFV rispetto a Heston è nell’ordine del 24%, ma soprattutto si osserva una struttura degli
errori per strike coerente con le rispettive meccaniche. Specificamente, nelle righe centrali
(near-ATM) i due modelli sono spesso comparabili, con scarti quadratici dell’ordine di
10−3 − 10−2, e piccoli vantaggi locali che talvolta premiano Heston (per esempio negli
strike 392.5 e 395), sintomo che il solo meccanismo leverage-correlazione (ρ < 0) è talora
sufficiente a catturare micro-asimmetrie del sorriso a strike ravvicinati.

Tuttavia, spostandosi verso zone ITM/OTM, le componenti di feedback e salto dello SFV,
forniscono un adattamento sistematicamente migliore delle ali, come dimostrano gli errori
quadratici del modello proposto, i quali rimangono contenuti e più stabili, mentre quelli
di Heston mostrano una deriva graduale, tipica dei processi affini lisci quando devono
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spiegare payoffs dominati da grandi deviazioni in orizzonti corti.
In rapporto ai livelli di prezzo, le colonne Market-Heston-SFV rivelano un bias moderato
e omogeneo su diverse righe (errori assoluti radice ≈ 0.1 − 0.5) e, cosa importante per
la previsione OOS, assenza di overshoot sistematico per SFV nelle ali. Infatti, laddove
BS/CRR/MC-BS sottoprezzano in massa (per via della IV piatta), SFV mantiene devia-
zioni quadratiche di ordine unitario minore e non accumula errore con la stessa velocità
su K crescenti.

La colonna IV, elevata e leggermente decrescente da 0.72 a 0.65 (approssimativamente),
conferma un contesto event-driven a volatilità realizzata attesa alta, in cui la forma dello
smile è cruciale. Qui Heston beneficia della correlazione negativa per generare skew, ma
SFV aggiunge gradi di libertà dinamici che migliorano la reattività locale dello smile e la
curtosi risk-neutral a breve, traducendosi in un vantaggio predittivo medio consistente.
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