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Abstract

Il presente elaborato si propone di effettuare una rassegna critica e comparativa dei piu no-
ti modelli di option pricing, che nel corso degli ultimi cinquant’anni hanno rappresentato
i maggiori contributi alla teoria delle opzioni. Nella prima sezione si analizzano nel detta-
glio tecnico le specificita sia delle strutture classiche, Black-Scholes, Cox-Ross-Rubinstein
e Monte Carlo, che dei piu avanzati modelli a volatilita stocastica della famiglia Heston.
Per ciascuno di essi si € voluta implementare un’approfondita trattazione sulle ipotesi
sottostanti, la costruzione della misura neutrale al rischio e i risultati di convergenza e
replicazione utili al pricing e all’hedging dinamico. A partire dal capitolo 3, che apre la
seconda sezione del lavoro, i modelli descritti vengono testati su chain reali, in modo da
effettuare un’accurata valutazione sulla stabilita dei parametri e la capacita di riprodurre
gli smile di volatilita. Assume particolare rilevanza in questo frangente il problema della
calibrazione del modello di Heston con termini di salto proposto, ed & pertanto stato rite-
nuto rilevante fornire un’informativa completa ed interamente open-source sulla strategia
sottostante l'intera procedura. Sulla base delle evidenze riscontrate nella fase precedente
e gia note in letteratura, viene introdotto un nuovo modello della famiglia Heston nel
quale, la dinamica della varianza, mean-reverting di tipo CIR, incorpora un termine di
retroazione (feedback) dipendente dal sottostante, in un quadro affine jump-diffusion con
controllo della positivita e possibili estensioni non affini. Seguendo la scia del recente
filone di ricerca, la calibrazione del modello ¢ impostata come problema variazionale con
regolarizzazione entropica Sinkhorn e densita tiltata sotto la misura di rischio neutro,
soggetta a vincolo di martingala, scelta che consente di integrare le informazioni deduci-
bili dalle volatilita implicite con restrizioni strutturali sulla risk-neutral density in modo

computazionalmente efficiente.
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Ai costruttori della conoscenza, poiché nobile e la causa di chi vota la

propria vita al progresso del genere umano.
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1 Le Opzioni

1.1 Definizioni e tipologie

Le opzioni costituiscono una categoria di derivati finanziari, strumenti il cui valore & le-
gato ad un’attivita sottostante, come azioni, obbligazioni, valute o materie prime. Piu
nel dettaglio, queste sono dei contratti che danno il diritto al possessore (detto holder
o beneficiario) di comprare o vendere una data quantita di sottostante ad un prezzo di
esercizio (o strike price) prestabilito. La controparte del titolare, ossia il conceden-
te (o writer), concede al primo 'opzione in cambio della corresponsione di un premio

(rappresentato dal prezzo dell’opzione stessa).

Tali strumenti finanziari possono essere classificati sulla base di vari criteri, sebbene la
distinzione piu adottata si basi sul diritto conferito al possessore. Su queste basi possiamo
distinguere tra opzioni call, che attribuiscono all’acquirente il diritto, ma non ’obbligo, di
acquistare il sottostante ad un prezzo specifico entro una determinata scadenza, e opzioni
put, le quali fanno ricadere in capo all’holder il diritto di vendere 'attivita sottostante

entro una data prefissata.

Ad ogni modo, ¢ possibile ricorrere anche ad altre discriminanti per classificare le opzioni,
quali la tipologia di sottostante e lo stile di esercizio. Volendo approfondire tale ultimo
criterio, individuiamo le opzioni europee, il cui diritto puo essere esercitato solo alla
scadenza, e le opzioni americane, il cui esercizio e possibile in qualsiasi momento fino a

tale data.

Infine, risulta utile distinguere le opzioni senza caratteristiche aggiuntive (cosiddette plain
vanilla) dalle opzioni esotiche, che presentano particolari condizioni relative alla loro
struttura o alle modalita di esercizio del diritto in esse incorporato. Come avremo oc-
casione di approfondire alla fine di questo capitolo, &€ ampio il ricorso a varianti quali le
opzioni barriera, che si attivano (o disattivano) solo se il prezzo del sottostante raggiunge
un certo prezzo predeterminato (c.d. barriera), le opzioni asiatiche, il cui payoff & de-
terminato dal prezzo medio del sottostante in un determinato periodo di tempo (questo
tipo di opzione si presta per sottostanti caratterizzati da marcata volatilita) o le opzioni
basket, che differiscono dalle precedenti in quanto aventi ad oggetto un paniere di attivita

sottostanti, e il cui payoff sara legato all’andamento complessivo delle stesse.

o At the money: se il prezzo di esercizio ¢ pari al prezzo del sottostante.

e In the money: se I'immediato esercizio del diritto incorporato sarebbe profittevole.



e Out of the money: se non sussiste profitto dall’esercizio immediato dell’opzione.

Prendiamo ora in analisi alcune tipologie di operazioni che possono essere effettuate sulle

opzioni call e put.

1.1.1 Posizioni su opzioni call

Tutte le tipologie di opzioni sono soggette ad operazioni di acquisto e vendita, il cui payoff

(e il conseguente profilo di profit/loss) ¢ facilmente determinabile.

Una posizione di acquisto di un’opzione call, nota come long call, ¢ tipica di un operatore
rialzista, che voglia sfruttare ’eventuale capital gain derivante dall’aumento di valore del
sottostante, o che quantomeno voglia coprirsi dal rialzo dello stesso, garantendosi il diritto

di acquistarlo ad un prezzo inferiore.

A livello matematico, possiamo esprimere il payoff di un’opzione call europea come:
max[0, S(t) — K] = [S(t) — K" (1.1)

dove S(t) indica il prezzo del sottostante alla scadenza e K il prezzo di esercizio.

Payoff

K S(t)

Figura 1: Payoff di una long call

Possiamo dunque facilmente comprendere come una long call presenti la possibilita di
conseguire un profitto virtualmente illimitato, considerando la crescita del sottostante
all’infinito.

Al contrario, la controparte di una long call, ossia una short call, puo essere identificato

in un operatore ribassista, che vuole lucrare sul capital loss del sottostante.



K S(t)

Payoff

Figura 2: Payoff di una short call

Specularmente, 1'holder di una short call cosiddetta naked (che non detiene il posses-
so del titolo, ed & quindi definibile come un ribassista puro) & esposto ad una perdita

potenzialmente illimitata.

Ad ogni modo, la relazione per determinare il payoff non varia a seconda che si tratti di
una posizione long o short, ma sulle premesse opposte delle due controparti dobbiamo

attuare una distinzione nel calcolo del profit/loss.

Nel caso di una long call, come gia detto, I'holder paga il premio alla controparte per assi-
curarsi la facolta di acquistare il sottostante al prezzo di esercizio, e pertanto 'operazione
varra

—c + max[0, S(t) — K] (1.2)

Pertanto 'operatore non incorrera in una perdita solamente se il prezzo del sottostante
crescera in misura pari o superiore al valore del premio corrisposto. Di converso, il deten-
tore della short call riceve il premio, ma potra essere esercitato dalla controparte qualora

la sua aspettativa non sia confermata; definiamo quindi il profilo di P&L come:

¢ — max[0, S(t) — K] (1.3)

1.1.2 Posizioni su opzioni put

Anche con riferimento alle opzioni put, e possibile effettuare operazioni di acquisto e
vendita, assumendo una posizione rispettivamente long e short. Tuttavia, la relazione
matematica per la determinazione del payoff risulta differente rispetto al caso prima ana-

lizzato.



Pit precisamente, il valore intrinseco di un’opzione put ¢ dato da:
max|[0, K — S(t)] (1.4)

Applicando la stessa logica adottata per le opzioni call, il profilo di profit/loss di una put

puo essere individuato come:
—p + max[0, K — S(t)] (1.5)

per una long put (ossia I’acquisto di un’opzione che assicura il diritto di vendita a scadenza,

del sottostante al prezzo di esercizio) e
p —max[0, K — S(t)] (1.6)

per una short put.

Volendo supportare 1'analisi con una visualizzazione grafica, possiamo vedere come nella
long put la perdita massima per 1’holder ¢ rappresentata dal premio in caso di mancato
esercizio dell’opzione (una situazione nella quale il beneficiario operatore ribassista po-
trebbe incorrere in caso di rialzo del prezzo del sottostante, dal momento che sarebbe per

lui piu vantaggioso vendere lo stesso sul mercato).

Payoff

S(t) K
Figura 3: Payoff di una long put
Con riferimento ad una short put, detenuta da un operatore rialzista per scopi speculativi

o di copertura (hedging), specularmente, il massimo profitto ottenibile dall’holder sarebbe

pari al premio, nell’eventualita in cui la sua controparte non eserciti il diritto di vendita.



S(t) K

Payoff

Figura 4: Payoff di una short put

1.2 Opzioni europee, opzioni americane, opzioni esotiche

Finora, abbiamo distinto le opzioni solo sulla base del diritto da esse incorporato, assu-
mendo che questo potesse essere esercitato esclusivamente alla scadenza.

Tuttavia, questa logica, che pure si pone alla base di molti dei modelli che saranno presi
in analisi in questo documento, viene meno nelle opzioni americane e in alcune tipologie
di opzioni esotiche.

Infatti, nelle prime, a differenza delle opzioni europee, I’holder ha la possibilita di esercita-
re il diritto incorporato in qualsiasi momento prima della scadenza, dando vita ad uno
strumento caratterizzato da maggiore flessibilita, sebbene risulti pitt complesso calcolarne
il prezzo (aspetto oggetto di ulteriore approfondimento nel corso dei successivi capitoli 2
e4).

Le opzioni esotiche invece si distinguono dalle europee e americane (c.d. plain vanilla)
non in termini strettamente legati all’intervallo di esercizio, ma perché, in senso piu am-
pio, presentano una o piu caratteristiche non convenzionali. Pertanto, sono strumenti
altamente personalizzabili e generalmente negoziati sui mercati OTC.

La seguente tabella illustra alcune delle tipologie di opzioni esotiche piu utilizzate e le

caratteristiche del loro payoff.

Numerose tipologie di opzioni esotiche tra quelle sopra proposte saranno richiamate nei
capitoli successivi, di conseguenza, puo essere utile definirne piu dettagliatamente le

proprieta alla base.

Opzioni con barriera: Come detto in precedenza, questa € un’opzione in cui I'importo

del payoff dipende dal fatto che il sottostante raggiunga o meno un livello determinato,



Opzione esotica Caratteristica del Payoff
L’entita del payoff ¢ subordinata al raggiungimento del

Con Barriera prezzo del sottostante di un livello predeterminato (bar-
riera).

Asiatiche Il payoft e calcolato sullg base del‘ prezzo medio del sot-
tostante durante un periodo specifico.

Lookback Il payoff & determinatf) dal p}"eZZ(.) piu favorevole del sot-
tostante durante la vita dell’opzione.

Binarie Offrono un payoff fisso se il prezzo del sottostante rag-
giunge un certo livello.

Composte Il sottostante e un’aljcra opzisme, pertanto il payoff e
legato alla presenza di due strike prices.

Bermudiane L’opzione puo essere esercitata solo in date specifiche
predeterminate, oltre che alla data di scadenza.
Il payoff dipende dall’andamento di un paniere di at-

Basket tivita sottostanti, come azioni, valute, materie prime o
merci.
11 payoff dipende dal percorso seguito dal prezzo del sot-

Path Dependent tostante durante la vita dell’opzione (e non da un singolo
valore in un periodo specifico).

. Garantiscono un rendimento minimo in cambio di un

Cliquet .

tetto massimo.

Tabella 1: Caratteristiche delle Opzioni Esotiche

detto barriera. Le opzioni in questione possono essere sia put che call, e si dividono
principalmente nelle due categorie knock-in e knock-out.

Risulta molto facile comprendere che tra le due vi sia una differenza sostanziale, poiché
mentre le prime si attivano solo se il prezzo dell’attivita sottostante raggiunge, supera
o scende sotto un livello di barriera specifica durante la vita dell’opzione, le seconde si
disattivano al verificarsi della medesima condizione.

Sulla base di tale premessa, all’interno delle knock-in possiamo individuare le opzioni
Down-and-In, che diventano attive solo se il prezzo del sottostante scende al di sotto
della barriera, e Up-and-In, che si attivano solo se il valore del sottostante diventa
superiore alla barriera, mentre nel novero delle knock-out distinguiamo tra opzioni Down-
and-Out, le quali si annullano se il sottostante scende sotto la barriera e opzioni Up-

and-Out, il cui payoff sara nullo nel caso opposto.

Le opzioni con barriera (come tutte le altre opzioni esotiche) mostrano un profilo di rischio
differente rispetto alle plain vanilla, e risultano adatte sia ad operatori altamente propensi
che fortemente avversi al rischio, sia per finalita speculative che di copertura.

In particolare, un’opzione knock-in ¢ adatta ad un operatore (rialzista e risk-lover) che

ritiene che il prezzo del sottostante raggiungera la barriera prima della scadenza, o che



voglia coprirsi da un eventuale rialzo dello stesso, ed in questo caso, attratto dal minor
costo della copertura, optera per un’opzione esotica della tipologia in analisi, piuttosto

che per una long call vanilla.

D’altra parte, un investitore ribassista avverso al rischio (o un hedger rialzista) potrebbe
trovare conveniente il ricorso ad un’opzione con barriera.
Le tabelle di seguito forniscono un riquadro di sintesi sulle condizioni alla base di ciascuna

tipologia di barrier option e sulle modalita di calcolo del rispettivo payoff.

Tipo di Opzione Condizione di Attivazione Payoff
Down-and-In Call Sy < B max(Sr — K, 0)
Up-and-In Call Sy > B max (S — K, 0)
Down-and-In Put Sy <B max(K — St,0)
Up-and-In Put S;> B max(K — Sz, 0)
Tabella 2: Condizioni e payoff delle Opzioni Knock-In
Tipo di Opzione Condizione di Annullamento | Payoff
Down-and-Out Call Sy > B max (S — K, 0)
Up-and-Out Call Sy < B max(Sr — K, 0)
Down-and-Out Put S, > B max (K — Sz, 0)
Up-and-Out Put Sy < B max(K — Sz, 0)

Tabella 3: Condizioni e payoff delle Opzioni Knock-Out

Opzioni Asiatiche: In questa tipologia di opzioni esotiche, il payoff dipende dal prezzo
medio del sottostante durante un determinato periodo di tempo, piuttosto che dal valore
a scadenza; pertanto, il ricorso ad un’opzione asiatica potrebbe essere consigliabile in
presenza di sottostanti caratterizzati da forte volatilita, quali prodotti petroliferi, metalli

preziosi o valute.
Un ulteriore aspetto da tenere in considerazione riguarda la frequenza con cui si osserva
il prezzo del sottostante durante la vita dell’opzione, che puo essere:

* Regolare, in cui il periodo tra una data di osservazione e la successiva non varia.

o Crescente, dove l'intervallo temporale tra due osservazioni si riduce progressiva-

mente al crescere della vita dell’opzione.

e Decrescente, in cui il periodo tra due osservazioni cresce durante la vita dell’op-

zione.

In rapporto al calcolo dei payoff, distinguiamo in prima analisi tra opzioni di tipo ave-

rage price, che corrispondono in pieno alla definizione precedentemente fornita (ossia
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un’opzione il cui payoff dipende dalla media dei prezzi del sottostante durante il periodo
di osservazione) e opzioni average strike, nelle quali il payoff ¢ legato alla differenza
tra il prezzo spot del sottostante alla scadenza e la media dei prezzi osservati durante il
periodo di osservazione.

In secondo luogo, sono meritevoli di approfondimento le modalita di calcolo della media,
in quanto ¢ possibile ricorrere anche alla media geometrica in sostituzione della piu co-
mune media aritmetica.

Il ricorso alla prima e consigliabile in mercati caratterizzati da alta volatilita e per sotto-
stanti che tendono a variare in modo esponenziale, poiché ¢ meno influenzata dai valori

estremamente alti o bassi (outliers) rispetto alla media aritmetica.

E pertanto, partendo dalle opzioni asiatiche con media aritmetica, calcoliamo i payoff

delle average price options, rispettivamente call e put, come

max (TllZSl - K, O> (1.7)
=1

max (K— iiso) (1.8)

i=1
E facile applicare la stessa logica alle opzioni di tipo average strike, delle quali i payoff si

calcolano considerando
1 n
max (ST - >S, 0> (1.9)
i=1
1 n
max (nZSZ - ST,(]) (].].0)
i=1

per call e put.

Qualora, per le ragioni sopra esposte, si preferisse ricorrere all’utilizzo della media geo-
metrica, allora la relazione in analisi (sara presentato ora solo il caso delle average pri-
ce, poiché si tratta di una semplice variante dei concetti appena presi in analisi, la cui

estensione al secondo caso é triviale) dovra essere espressa attraverso la forma

max ((ﬁl SZ)TIL ~ K, 0) (1.11)

max (K— (135)1 ,0) (1.12)

sempre, rispettivamente, qualora si considerino opzioni call e put.

Opzioni Lookback: Come nel caso precedente, questo tipo di opzione si puo rivelare



particolarmente utile in mercati volatili, dal momento che il suo valore intrinseco e legato
al prezzo minimo o massimo raggiunto dal sottostante durante la vita dell’opzione.

Anche per le lookback, & possibile distinguere tra opzioni europee, esercitabili solo alla
scadenza, e americana, esercitabili in qualsiasi momento entro tale data. Poste queste
premesse, possiamo affermare che, secondo una logica non troppo dissimile dalle opzioni

vanilla, il payoff di una lookback call europea ¢ determinato da
max (St — Smin, 0) (1.13)

dove Sy, indica il prezzo minimo assunto dal sottostante.

Il payoff di una lookback put europea ¢ determinato come
max(Smax — S7,0) (1.14)

dove S,z € il prezzo massimo del sottostante.
Non diversamente da quanto detto per le plain vanilla, le opzioni americane si distinguono
per il fatto che avremo un certo ¢t < 7' nel quale e possibile esercitare il diritto incorporato

nell’opzione.

La complessita della tipologia di opzione esotica qui analizzata non risiede nel calcolo del
suo valore intrinseco, bensi nella sua valutazione (o, in altri termini, nel calcolo del suo
premio), la cui formula analitica si basa sul modello di Black-Scholes (che sara oggetto
di analisi approfondita a partire dal paragrafo 2.3), esteso per includere i prezzi estremi
del sottostante.

Nello specifico, il premio di un’opzione lookback call europea ¢ calcolato attraverso:
Ct = Ste_q(T_t)N(CLl) — Smine_T(T_t)N(ag) (115)

dove:

St ¢ il prezzo del sottostante alla scadenza,

Smin € il prezzo minimo raggiunto dal sottostante durante la vita dell’opzione,

q ¢ il tasso di dividendo,

r & il tasso di interesse,

N(ay) e N(ag) sono le funzioni di distribuzione cumulativa normale,

S
In(g=L=)+(r—q+302)(T—t)
ooy = w2 . ay=a, —ovT —t.




Alternativamente, e possibile ricorrere ad una simulazione Monte Carlo per effettuare
una valutazione con campionamento discreto.
Per le opzioni lookback americane, puo inoltre risultare utile il modello ad albero

binomiale, anch’esso oggetto di analisi nel capitolo successivo.

Opzioni Binarie: Questa ¢ probabilmente la tipologia di opzione piu semplice che verra
trattata in questo elaborato. Spesso utilizzate dagli speculatori piu aggressivi, le opzioni
binarie offrono solo due possibili esiti, quali un guadagno fisso o una perdita totale del-
I'investimento iniziale.

E dunque, qualora la previsione dell’holder, sia essa rialzista o ribassista, dovesse essere
corretta, questi si vedrebbe attribuito un rendimento fisso, solitamente compreso tra il
70% e il 90% del premio, mentre, in caso contrario, perderebbe Iintero premio (possia-
mo pertanto convenire che in tal ultimo caso, il profilo di profit/loss dell’investitore non

sarebbe tanto diverso dal mancato esercizio di un’opzione vanilla Out-of-the-money).

Una seconda peculiarita di queste opzioni esotiche rientra nell’elevata brevita delle
scadenza, che generalmente variano da 30 secondi a 3 ore, risultando per tale motivo

uno strumento cosi attraente per le operazioni di trading a breve termine.

Oltre alle tradizionali call e put, le opzioni binarie possono distinguersi in one touch
e range, in cui l'investitore ritiene che il sottostante possa raggiungere un certo livello
almeno una volta prima della scadenza, o che rimanga fino a tale data all’interno di un
intervallo specificato.

Per ciascuna di queste tipologie, il payoff e rispettivamente determinabile come;

P se ST > K
Payoff (call) = (1.16)
0 seSr<K

in cui, riprendendo la notazione precedente:
o P ¢ il pagamento fisso (profitto) se I'opzione termina in-the-money,

o St e il prezzo dell’asset sottostante alla scadenza,

o K el prezzo di esercizio.

P se Spr <K
Payoff (put) = (1.17)
0 seSr>K

10



P sedt<T|S>L
Payoff (one touch) = (1.18)

0 seVi<T =S5 <L

dove:

S; e il prezzo dell’asset sottostante in qualsiasi momento t,

L ¢ il livello di prezzo specificato,

T ¢ la scadenza dell’opzione.

P se L1 S ST S L2
Payoff (range) = (1.19)
0 seSpr<Li{VSr>L,

con:
e L4 e Ly limiti inferiori e superiori dell’intervallo di prezzo.

Opzioni Composte: Rappresentano una sofisticata tipologia di opzioni esotiche il cui
sottostante non € un’attivita finanziaria tradizionale (quale un’azione, una valuta o una
materia prima), bensi un altro contratto di opzione. E possibile in quest’ambito distin-
guere le quattro combinazioni originabili da questo strumento; Call on Call, Call on
Put, Put on Call e Put on Put, che permettono all’investitore di acquisire posizioni

di acquisto o vendita sulle due tipologie di opzioni.

Puo essere interessante prendere in analisi le cosiddette opzioni chooser, le quali consento-
no all’acquirente di scegliere, entro una certa data, se trasformare il contratto sottostante
in una call o una put, mantenendo invariati strike e scadenza. Il vantaggio che un simile
tipo di opzione puo offrire & piuttosto evidente in contesti di elevata volatilita o in mercati

con direzionalita incerta.

Il payoft delle opzioni composte si determina in modo sequenziale, dal momento che deve
essere effettuata la valutazione sia dell’opzione sottostante che dell’opzione composta (in
cui sara considerato come sottostante S il valore intrinseco appena calcolato della prima
opzione).

In altri termini, esso puo essere espresso come la somma algebrica dei payoff delle singole
opzioni che la compongono, dati i prezzi di esercizio e le scadenze di ciascuna. Pertan-

to, considerando una call on call avente strike K; per 'opzione composta e Ky per la

11



sottostante, alla scadenza T il payoff sara pari a:
max (max (St — K»,0) — K1,0) (1.20)

Il calcolo del premio risulta maggiormente complesso rispetto alle opzioni vanilla, per il
semplice fatto che incorpora al suo interno la valutazione del valore atteso dell’opzione
sottostante, il cui computo, puo essere a sua volta di per sé complesso.

Il pricing di una call on call ¢ effettuabile mediante la formula di Geske (Geske, 1979)!,
derivante da un’estensione del modello di Black-Scholes. La principale criticita, legata
all’esistenza di due date di scadenza distinte, e dunque alla determinazione del valore
atteso di una variabile aleatoria condizionata ad un’altra variabile aleatoria correlata,
viene superata riducendo il problema al calcolo di probabilita congiunte delle variabili
gaussiane correlate, tramite la funzione di distribuzione normale bivariata, ottenendo cosi
un prezzo analitico (chiuso) per I'opzione (nel caso in esame call on call europea) senza la
necessita di ricorrere a metodi numerici o simulazioni Monte Carlo 2. Dal punto di vista
tecnico, siamo dunque di fronte ad una formula che nasce dalla necessita di calcolare il
valore atteso di un payoff dipendente da due variabili aleatorie correlate, ovvero i logaritmi
dei prezzi del sottostante a due scadenze diverse, dove la standardizzazione tramite d; e
b; consente d mappare il problema nel dominio della probabilita gaussiana, mentre la

funzione normale bivariata consente di integrare la dipendenza tra le due variabili.

In particolare, volendo definire S; come il prezzo del sottostante finanziario che segue
un moto browniano geometrico (concetto che sara largamente ripreso nel corso dei

capitoli successivi) sotto la misura di rischio neutrale:
dSt = T’St dt+0’st th (121)
¢ dimostrato che il prezzo C.. dell’opzione composta al tempo zero ¢ pari a:

Cee = So N2(d1, bi; P) - K2€_TT2 N2(d27 by; ,0) - Kle_TTl N(d3)3 (1-22)

1Sebbene Geske sia stato il primo a proporre una relazione per il prezzaggio delle opzioni composte,
si annovera il metodo alternativo proposto da Buraschi e Dumas (2001), particolarmente efficiente anche
per la valutazione di opzioni americane su azioni che pagano dividendi, nonché I'approccio innovativo
proposto da Hess (2022), basato sul calcolo di Malliavin e sulle trasformate di Fourier per la valutazione
di opzioni composte in contesti di volatilita stocastica e processi non standard.

2Ciononostante, il ricorso a tali tecniche risulta comunque inevitabile in una vasta pluralita di
circostanze, comprendenti volatilita stocastica, presenza di dividendi o flussi di cassa intermedi e
path-dependence.

3 Analizzando la struttura della relazione notiamo come questa si componga del valore atteso scontato
del sottostante, ponderato dalla probabilita congiunta che entrambe le variabili siano sopra le soglie d; e
b1, SoN2(d1,b1; p), dello strike della call sottostante, anch’esso ponderato per la probabilita congiunta
associata, Koe~"T2 Ny (dz, ba; p) e dello strike dell’opzione composta, ponderato dalla probabilita che
'opzione sottostante abbia, al tempo Ty, valore superiore a K1, K1e~"1t N(d3).
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dove:

e N(-) ¢ la funzione di distribuzione cumulativa della normale standard univariata,

o Ns(+,+;p) € la funzione di distribuzione cumulativa della normale bivariata standard

con correlazione p.

mentre i parametri b; e d; sono definiti come:

S() O'2
In <[(1> + <7’ + 2) T1
d1 =
o T1
dg = d1 — 0 T1
SO 0'2
i (1(2) * (r * 2) L (1.23)
bl -
o T2
bg = b1 — 0 TQ
S, o?
In (K(l> + <7“ — 2) Ty
ds =
g T1

La correlazione tra le due variabili normali risulta:
= /= (1.24)

Infine, per completezza definiamo la funzione di distribuzione cumulativa della normale

bivariata standard, la quale assume la forma:

1 v Y 1 2 2

Opzioni Bermudiane: rappresentano un’interessante categoria intermedia tra le opzioni
americane ed europee, caratterizzata dall’esistenza di diverse date di esercizio, fissate
contrattualmente ex-ante.

E dunque possibile affermare che siano provviste di un grado di flessibilita intermedio?, che
le rende molto diffuse nei mercati obbligazionari, in veste di clausole di rimborso anticipato

nei callable bonds, e nei derivati su tassi di interesse (come testimonia ’ampia diffusione

4che si traduce in un premio generalmente inferiore a quello di un’opzione americana ma superiore a
quello di un’opzione europea con identiche caratteristiche in termini di sottostante, strike e scadenza
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delle c.d. swaptions bermudiane), con le date di esercizio generalmente coincidenti con

quelle dei pagamenti delle cedole.

Definiamo il payoff come il massimo tra il valore dell’esercizio immediato nelle date con-
sentite e il valore atteso di mantenimento dell’opzione fino alla data di esercizio successiva,
e dunque, considerando un insieme ordinato di date di esercizio {ty,ts,...,t,} cont, =T,

il payoff al tempo t; risulta:
V(t,S:,) = max (h(Sti), FQ [efr(tiﬂfti)‘/(tm’Stm) (}LD (1.26)
in cui si precisa che:

o h(Sy,) corrisponde al payoff dell’esercizio immediato, ad esempio per una call: max (S, —
K, 0);

« ET[| ] ¢ l'aspettativa condizionata sotto la misura di rischio neutrale.

Il confronto tra il payoff dell’esercizio immediato e il valore atteso scontato del manteni-
mento in vita dell’opzione genera un problema di ottimizzazione dinamica e di valutazione
condizionata su un processo stocastico, che si traduce in una struttura a piu stadi (o ri-
corsiva) in cui il valore dell’opzione ¢ funzione del valore futuro atteso e delle decisioni
ottimali di esercizio, e proprio in luce di tale ricorsivita non ¢ ammissibile una soluzione
chiusa per questa tipologia di opzioni esotiche, in quanto il valore di ogni nodo dipende
da un’aspettativa condizionata sul valore dei nodi futuri, a sua volta legata ad ulteriori
aspettative condizionate, ed inoltre, il processo stocastico del sottostante, spesso modella-
to come un moto browniano geometrico, rende impossibile integrare analiticamente tutte
le variabili coinvolte in questa struttura dinamica.

La determinazione del premio di un’opzione bermudiana richiede in definitiva 'utilizzo di
modelli binomiali o trinomiali, i quali permettono la discretizzazione del processo e valu-
tano iterativamente il valore dell’opzione tramite backward induction, o alternativamente

di simulazioni Monte Carlo con regressione, o LSM (Longstaff e Schwartz, 2001).

Opzioni Basket: Si fa riferimento ad una classe di derivati esotici il cui payoff dipende
da attivita sottostanti, tipicamente costituiti da azioni, indici o valute. A differenza delle
opzioni vanilla, le basket options si basano su un valore aggregato calcolato come combi-
nazione lineare dei prezzi dei singoli componenti del paniere, pesati secondo un vettore di

pesi prestabilito. Formalmente, dati un vettore di prezzi S; = ( t(l), ,5(2), e St(")) e un

5Tale valutazione puo essere effettuata anche mediante il ricorso al’EDP di Black-Scholes estesa, con
condizioni al contorno e condizioni aggiuntive interne al dominio temporale, che riflettono 'opportunita
di esercizio discreto.
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vettore di pesi w = (wy, ws, . ..,w,), il valore del basket al tempo ¢ ¢ definito come:

B, = znj w; S (1.27)
i=1
Pertanto, si ha un payoff pari a:
max|Br — K, 0] (1.28)
per una basket call europea e
max|[K — Br, 0] (1.29)

per una put.

La complessita intrinseca delle opzioni basket risiede nella natura multidimensionale del
sottostante e nella necessita di modellare la dinamica congiunta dei prezzi dei singoli asset,
tenendo conto delle loro volatilita individuali, e soprattutto, delle correlazioni incro-
ciate. Assume rilevanza primaria per il pricing la matrice di correlazione tra i rendimenti
delle attivita componenti il basket, poiché la volatilita complessiva dello stesso non e sem-
plicemente una media delle volatilita individuali, ma una funzione che incorpora le corre-
lazioni tra i componenti, con 'effetto che una correlazione elevata tra i sottostanti tende
ad aumentare la volatilita aggregata del basket, incrementando il premio dell’opzione, e

viceversa.

Il modello piu diffuso per descrivere la dinamica dei prezzi sottostanti e il modello mul-
tivariato di Black-Scholes, in cui ciascun asset segue un GBM?® con volatilita o; e i

moti browniani sono correlati secondo una matrice p, tale che:
dS =SV dt + ;80 aw ), i=1,...,n (1.30)

dove Wt(z) sono moti browniani standard sotto la misura di rischio neutro Q, e sono

correlati tra loro secondo p;;.

Opzioni Cliquet: Ci riferiamo in questo caso a strumenti derivati che offrono un ren-
dimento minimo garantito annuale in cambio di un tetto massimo durante la vita del
contratto. E certamente vero che anche questa tipologia di opzione esotica si presti a
mercati volatili, ma a differenza delle opzioni asiatiche o lookback in senso stretto, si
prevede che il prezzo del sottostante sia soggetto ad una variabilita piu contenuta, o
quantomeno non si prevede un rialzo al di sopra del cap.

Le opzioni cliquet possono essere considerate come una forma di opzioni lookback, che

5Processo di moto browniano geometrico.
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fissano il miglior prezzo dell’asset sottostante su una serie di date predefinite durante la

vita dell’opzione.

Queste opzioni sono spesso utilizzate in prodotti strutturati, in primis obbligazioni equity
linked e investimenti garantiti da capitale, poiché permettono di bloccare i rendimenti a
intervalli regolari, proteggendo il capitale dai cali di mercato’, ma anche perché, in forza
del loro meccanismo di reset permette di ricalcolare il prezzo di esercizio sulla base delle
fluttuazioni del sottostante, e di attuare una gestione del rischio piu efficace, catturando

i momenti favorevoli del mercato mentre si limita 1’esposizione ai rischi di ribasso.

Pit nello specifico, le opzioni cliquet sono caratterizzate da una serie di intervalli di re-
set periodici, durante i quali il prezzo di esercizio dell’opzione viene ricalcolato in base
al valore corrente dell’asset sottostante, permettendo cosi di fissare i guadagni ottenuti
fino a quel momento, proteggendo I'investitore dai ribassi futuri.

Pertanto, il primo passo per il calcolo del payoff consiste nell’identificare le suddette date
di reset periodiche, siano esse, mensili, trimestrali, annuali, o ad una cadenza diversa e
procedere all’aggiornamento dello strike in accordo alle rilevazioni effettuate.

Dopodiché, e necessario calcolare il rendimento del sottostante, che dovra essere confron-
tato con il floor; qualora il primo fosse positivo, allora verrebbe registrato come profitto
per quel periodo, altrimenti, a seconda delle specifiche contrattuali, sara valutato come
zero o perdita. Dopo aver applicato limiti di rendimento massimo e minimo (tenendo
in tal modo conto degli eventuali effetti modificativi degli stessi sull’importo del payoff),
alla fine della vita dell’opzione, i payoff di tutti i periodi vengono sommati per ottenere il
valore intrinseco dell’opzione.

Possiamo dunque constatare che il payoff finale dell’opzione cliquet ¢ la somma dei rendi-

menti aggregati, tenuto conto di eventuali cap e floor applicati o, in termini matematici;

Payoff = » ~ max(min(R;, Cap), Floor), (1.31)

i=1

con R; che rappresenta il rendimento periodale del sottostante.

"Notiamo anche in questo caso che l'investitore acquista un’opzione cliquet per assicurarsi un rendi-
mento minimo, ma non si aspetta, al contrario, che il sottostante conosca una significativa crescita di
valore, ed e pertanto disposto ad accettare un tetto.
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2 I modelli di option pricing

Questo capitolo si propone di prendere in rassegna i pitu diffusi modelli di option pricing,
di analizzarne i fondamenti matematici e valutarne l'efficienza, mostrandone le capacita

applicative su un vasto campionario di opzioni, sia vanilla che esotiche.

2.1 Introduzione ai modelli utilizzati nell’analisi

Il primo approccio preso in analisi e il modello binomiale di Cox-Ross-Rubinstein,
il quale, discretizzando il processo di diffusione geometrica browniana in un albero bino-
miale ricombinante consente una flessibilita computazionale utile non solo al prezzaggio
delle opzioni plain vanilla, ma ne permette anche I’estensione alle opzioni path-dependent.
In secondo luogo viene descritto il modello di Black-Scholes-Merton (BSM), basato
su ipotesi di mercato perfetto e volatilita costante ® e ampiamente adottato nel pricing
delle opzioni europee, poiché fornisce una soluzione analitica particolarmente elegante.
Trova in seguito spazio il modello di Datar-Mathews, di ispirazione real options, in
cui si introduce un framework decisionale basato su simulazioni Monte Carlo, partico-
larmente adatto a contesti in cui l'incertezza ¢ multidimensionale e il valore dell’opzione
dipende da scenari discreti. Infine, viene trattato il modello di Heston, il quale per-
mette di incorporare una dinamica stocastica per la volatilita catturando fenomeni

empirici come il volatility smile e 'asimmetria dei rendimenti.

2.2 1l modello di Cox-Ross-Rubinstein

I modello CRR, introdotto da Cox, Ross e Rubinstein nel 1979 come discretizzazione
multiperiodale del modello continuo di Black-Scholes, si basa su una struttura ad albero

binomiale, in cui il prezzo del sottostante puo evolvere, ad ogni intervallo temporale At =
T
N
fattore d, generando una dinamica di processo stocastico moltiplicativo.

secondo due possibili movimenti, quali un incremento di fattore v o un decremento di

La costruzione dell’albero binomiale prevede che, in corrispondenza di ciascun nodo, il
prezzo del sottostante S, possa assumere valori pari a S,u o S,d, dove i parametri v e d

sono determinati in funzione della volatilita o nella misura di:

O'\/E (21)

8Ragion per cui si rendono necessarie sostanziali modifiche al modello per trattare strutture esotiche.
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d=e VA (2.2)

considerando la relazione u = é che lega i fattori di incremento e decremento e la ricom-
binabilita della struttura, nella quale i cammini che prevedono una sequenza up seguita

da una down (o viceversa) portano ad un valore pari a quello del sottostante?.

Suuu

Su Suud
Sd

Sudd

s
AV

Sdd

Sddd

Figura 5: Albero binomiale a tre periodi

Il pricing nel modello CRR viene effettuato mediante il ricorso alla backward induction,
partendo dai nodi terminali, dove il payoff € noto, e si risale ricorsivamente 1’albero cal-
colando, a ciascun nodo, il valore atteso scontato dei possibili valori futuri secondo la

probabilitd neutrale al rischio ¢'°, definita nel caso discreto come:

u—(1+7r)

= 2.3
q — (2.3)
11 valore dell’opzione (nel seguente caso una call) in ogni nodo & quindi pari a:
1 U d
Cn =1 (1= G + G ™ (2.4)

Quello proposto da Cox, Ross e Rubinstein ¢ un modello altamente replicabile, nel quale

ogni nodo rappresenta una possibile evoluzione del prezzo del sottostante, e la strategia

9Con il risultato di ridurre drasticamente il numero dei nodi e rendere il modello computazionalmente
molto piu efficiente.

0Puo inoltre essere definita come la probabilita (neutrale al rischio) che il sottostante conosca un
decremento nel prossimo periodo, quindi ¢ := P[S(t + 1) = dS(t)].

HTa presente formula di ricorsione trova applicazione in tempo discreto. Nel caso continuo, la formula
tiene conto della variazione della capitalizzazione del tasso di interesse, e puo essere scritta come C,, =

e At [(1 - Q)Cr(ﬁf)l + quﬁBl]
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di hedging puo essere costruita esplicitamente tramite portafogli autofinanzianti. Inoltre,
al crescere del numero di passi (o piu correttamente per n — 00), la distribuzione tende a
convergere alla distribuzione lognormale del modello di Black-Scholes, garantendo
la validita asintotica del modello discreto rispetto al caso continuo.

La probabilita neutrale al rischio ¢ consente di trattare il problema del pricing in modo
coerente con l'assenza di arbitraggio, e considerando il processo QQ come una martingala,
possiamo considerare il prezzo futuro scontato, condizionato all’informazione attualmente

disponibile come:

Sy
Sy = E© [} 2.5
‘ 1+r (2.5)
oppure, in tempo continuo:
Sy =E® e 08, | 7l (2.6)

2.2.1 1 prezzi neutrali al rischio

Il concetto di prezzo neutrale al rischio assume un ruolo cruciale nella formulazione e
nell’interpretazione del modello di Cox-Ross-Rubinstein, risulta dunque utile valutarne
con maggior dettaglio i fondamenti matematici.

In prima analisi, possiamo affermare che la misura neutrale al rischio modifica le proba-
bilita associate ai possibili movimenti del prezzo del sottostante in modo tale che, sotto
tale misura, il prezzo atteso del primo cresca esattamente al tasso risk-free, implicando
che il premio per il rischio, il quale di norma richiede un rendimento atteso superiore per

le attivita pin rischiose, venga neutralizzato!'?.

Sketch proof: La coerenza con il principio di neutralita del rischio e resa possibile dal fatto
che la misura in analisi gode della proprieta di martingala, e puo essere definita come
misura martingala equivalente (EMM). In particolare, consideriamo un mercato con
un sottostante il cui prezzo al tempo n ¢ S,, e un periodo discreto At.

Il valore attuale ¢ definito come g
A n

S, = ———. 2.7

(I+r)n (2.7)
Nel modello binomiale, tra n e n + 1 il prezzo del sottostante puo muoversi solo in due
modi:

Sps1 € {Sau, Spd}, (2.8)

12Tn altri termini, tutte le attivita rischiose avranno lo stesso rendimento atteso, pari al tasso privo di
rischio.
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con u > 1+ r > d per eliminare la possibilita di arbitraggio.

La misura neutrale al rischio Q assegna probabilita p* all’incremento up u e 1 — p* al

decremento down d, con

o= (1 :i)d— d (2.9)

Per dimostrare che S, & una martingala sotto Q, dobbiamo verificare che

E? [Spi1 | o] = S (2.10)

Calcoliamo esplicitamente:

. S 1
Q _RQ|_“ntl - - TwQ
= {S”“ | ]:”] =k l(l + 7)ntl | }—”] (14 r)nHE [Sh1 | Fal

Dal momento che S,, € noto in n, e il movimento successivo € binomiale, otteniamo:

Sostituiamo p*:
(1+7r) —d+du— (1+7r) _ uw((l+7)—d)+d(u— (1+r))7

prut( P Y u—d u—d u—d

sviluppiamo il numeratore:

u(l+r)—ud+du—dl+r)=ul+r)—dl+r)=(1+7r)(u—d),

da cui,
1+ —d
Pertanto,
. 1 1 S A
Q _ Q _ _ n _
E {Sn+1 | Fn} = WE [Sni1 | Ful = WS”“ +r)= (147 S,

dimostrando che S, & una martingala sotto Q.
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2.2.2 Utilizzo del modello binomiale per opzioni europee e americane

Una volta appurato che la misura neutrale al rischio @ ¢ definibile come un fair game, si
puo procedere con la costruzione del pricing di un derivato tramite aspettativa condizio-
nata sotto Q.

Nuovamente, considerata I’evoluzione del sottostante in N passi discreti, ciascuno di dura-
ta At = %, e la probabilita neutrale al rischio p* come definita alla (2.9), risulta evidente

che, dopo N passi, il sottostante possa assumere solo valori della forma:
Sy = SpuFdN =k (2.12)

con k incrementi di prezzo e N — k movimenti down.
Dal momento che i movimenti sono fissi e con probabilita fissa sotto Is misura neutrale al

rischio, la probabilita di avere esattamente k£ incrementi sul totale dei passi risulta pari a:

QX =k) = (g)p*kq”k-

Espandendo 'aspettativa in funzione della distribuzione binomiale,

N N
_ (VY _
BIQUR(S)] = 3 B(Sotk QX = ) = 3 (sa ) ()
k=0 k=0

e considerando che il prezzo iniziale dell’opzione, in accordo al principio di neutralita
al rischio, e il valore atteso scontato del payoff ®(Sy) sotto Q, possiamo ottenere una
formula chiusa per la determinazione del prezzo iniziale di un’opzione europea:

N

Co = (1"‘17“)]\[ ICZ:% <]Z>p*qu_k d(SouFa™ ) (2.13)
In rapporto al pricing di un’opzione americana risulta necessario implementare nella for-
mula alcune modifiche di carattere sostanziale che consentano di tenere conto della possi-
bilita di esercizio anticipato ad ogni nodo temporale. Deve quindi essere sviluppata una
relazione che permetta il confronto tra il valore dell’opzione in caso di esercizio imme-
diato ®(Sn,j) e il valore di continuazione, dato dal valore atteso scontato del prezzo

nei nodi successivi, e quindi, in termini formali:

1 *
Cyj = max {(I)(Sn,j)v 1Tr [p*Crgr 41 + an+1,j]} 13, (2.14)

130Oppure, usando una notazione che metta maggiormente in risalto 'aspettativa condizionata rispetto
alla filtrazione, possiamo scrivere C), ; = max {@(Smj), EQ [ﬁCnH ‘ ]:n} }
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Il problema del prezzaggio di un’opzione americana puo quindi essere visto in un’ottica di
optimal stopping (Harrison e Kreps, 1979), ovvero della ricerca del momento ottimale di
esercizio che permetta di massimizzare il valore atteso scontato del payoff. In particolare,
seguendo suddetto approccio, la relazione del prezzo di un’opzione call americana assume

la forma:

1
C, = E“ (S,
J = sup [(1 a2

S, = Sn,j] . (2.15)

Il problema di optimal stopping si risolve facendo ugualmente ricorso alla backward in-
duction, con il prezzo dell’opzione che al tempo finale N sara necessariamente pari a
Cn,j = ©(Sn ), mentre per ogni periodo n < N, analogamente a quanto cennato in prece-
denza, dovranno essere confrontati i valori di esercizio e di continuazione, rispettivamente

corrispondenti a:

(D(Sn,j)
€
Q 1 1 *
E m n+1 Sn = Sn,j = m (p Cn+1,j+1 + an+1,j)

mentre la formula ricorsiva per il prezzo ad ogni nodo puo essere scritta come:

Crnj = max{®(S,;), Veont} -

2.3 1l modello di Black-Scholes-Merton

Il modello di Black-Scholes rappresenta una pietra miliare della moderna finanza ma-
tematica, in quanto e stato in grado di fornire una formula chiusa e una metodologia
sistematica che hanno permesso di prezzare in modo preciso e coerente le opzioni, sulla
base di variabili quali il prezzo corrente dell’asset, la volatilita, il tempo alla scadenza e il
tasso privo di rischio.

La forza del modello, al quale si segnalano i successivi contributi di R.C. Merton, risiede
nell’aver introdotto un approccio quantitativo basato su processi stocastici continui e
tecniche di hedging dinamico!?, e la sua centralita nella teoria finanziaria moderna si &
costantemente accentuata, in luce della fitta attivita di ricerca volta a superarne le iniziali
limitazioni, che ha portato allo sviluppo di modelli piu sofisticati incorporanti volatilita
stocastica e salti nei prezzi.

Il fattore di maggior successo del modello di Black-Scholes ¢ certamente la capacita di

14 Quello dell’hedging dinamico & un tema di estrema innovazione del modello BSM, in quanto apre
alla possibilita di costruire portafogli replicanti in grado di eliminare il rischio associato alle variazioni di
prezzo del sottostante.
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aver introdotto una nuova prospettiva sul pricing dei derivati, servendosi di strumenti

matematici quali le martingale, gli stopping times e le probabilita neutrali al rischio.

2.3.1 Proprieta del moto browniano

Il moto browniano, osservato per la prima volta dal botanico Robert Brown nel 1827, de-
scrive il movimento irregolare e apparentemente caotico di particelle microscopiche sospese
nel vuoto. All'inizio del XX secolo, Einstein e Smoluchowski ne fornirono una spiegazione
teorica, mentre Norbert Wiener, nel 1923, ne propose la formalizzazione come processo
stocastico.

Nel contesto della finanza matematica, il moto browniano si pone come elemento di base
dell’evoluzione dei prezzi degli asset rischiosi, e costituisce il punto cardine, nonché il piu

importante elemento innovativo, del modello di Black-Scholes-Merton.

I1 moto browniano standard, denominato solitamente come (W;);>0, € un processo stoca-
stico a tempo continuo, con Wy = 0, dove per ogni 0 < s < ¢, I'incremento Wy — Wy ¢
indipendente dalla storia del processo fino al tempo S, ovvero dalla o-algebra generata
da W, :u <s.

In secondo luogo, suddetti incrementi sono distribuiti normalmente con media zero e va-
rianza t — s, e quindi (W, — W) ~ N(0,t — s). Le traiettorie del processo (W;)i>o
sono continue, ma non derivabili in alcun punto. Inoltre, il processo ¢ auto-similare con
esponente di Hurst H = %, ovvero Ya > 0, (Wat)i>0 4 (a'?W,) 0.

I1 moto browniano ¢, infine, una martingala rispetto alla sua filtrazione naturale (F);>o,
pertanto E[W; | Fy] = W, Vs < t.

Consideriamo il moto browniano standard W (t) definito per ¢ > 0. Per ogni intervallo [s, ¢]

con s < t, I'incremento W (t) — W (s) puo essere rappresentato come somma di incrementi

elementari su una partizione dell’intervallo. Sia quindi ¢; = s + At con At = t_TS e
1 =20,1,...,n, allora:
n—1
Wy =W, =3 [Wi., = W, (2.16)
i=0

Per ogni i, W; 1 —W,, ~ N(0, At), ovvero sono incrementi gaussiani indipendenti a media

nulla e varianza At. In particolare, si puo scrivere:

Wt¢+1 - Wti =V AtZl

15La, distribuzione normale degli incrementi implica che, su intervalli di tempo ridotti, le variazioni del
processo sono proporzionali alla radice quadrata della lunghezza dell’intervallo.
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dove Z; ~ N(0,1) sono variabili indipendenti standard. Quindi, complessivamente:
Wy —Ws =Vt —sZ

Inoltre, il moto browniano W, ¢ un processo di Markov; per verificarlo esplicitamente,

consideriamo l’attesa condizionata:
E[W, | W] = W

Possiamo scrivere:

Wt:Wt—Ws+Ws

Quindi:
E[W, | W] = E[W, — Wy | W] + W,

Poiché W; — W, e indipendente da W, e ha media nulla, si ottiene:
EW, — W, | W] = E[W, — W] =0

Pertanto:

E cosi possibile appurare che, in un processo di moto browniano, la probabilita di transi-
zione ad uno stato futuro dipende solo dallo stato corrente, confermando sia la proprieta

di Markov sia quella di martingala.

2.3.2 Formula di Black-Scholes

Veniamo ora alla determinazione della formula utilizzata nell’ambito del modello in ana-
lisi per prezzare un’opzione call europea. Il punto di partenza ¢ la modellizzazione del
comportamento del valore del sottostante, che si assume segua un andamento casuale. Per
eliminare il rischio legato alla volatilita del mercato, si costruisce un portafoglio composto
dall’opzione e dall’attivita sottostante, in modo da annullare le componenti aleatorie.

Analogamente a quanto visto in precedenza, l'assenza di opportunita di arbitraggio im-
pone che suddetto portafoglio cresca al tasso di interesse privo di rischio, rendendo cosi
necessaria la formulazione di un’equazione differenziale parziale che permetta di descrivere

I’evoluzione del prezzo dell’opzione nel tempo.
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In primo luogo, ipotizziamo che il prezzo dell’azione segua un moto browniano geometrico
dS(t) = uS(t)dt + o S(t)dW (t) (2.18)

dove p indica il tasso di rendimento atteso e o la volatilita, che si considera costante. La

soluzione esplicita risulta essere pari a:

S(t) = S(0) exp { (u - U;) t+ aW(t)} (2.19)

che implica rendimenti logaritmici normalmente distribuiti.

Consideriamo ora un’opzione call con prezzo di esercizio K e scadenza T, il cui prezzo
¢ C(t,S). Applicando il lemma di 1t6'® alla funzione di prezzo dell’opzione, si ricava la
sua dinamica stocastica che incorpora sia la variazione deterministica che il termine di
diffusione: . . L 820

dC = Edt + %dS + iﬁ(dS)Q
Inoltre, poiché:

dS = pSdt + o SdW, (dS)2 = o2S52%dt
si ha:

~(oCc  _oC 1, ,0°C oC
d0—<8t+u585+205aS2>dt+oSanW (2.20)

Costruiamo un portafoglio auto-finanziato replicante, composto da una posizione dinamica
A nel sottostante e una posizione corta nell’opzione, in modo tale da neutralizzare il rischio

sistematico derivante dalla volatilita del sottostante:
II=AS8-C, (2.21)

la cui variazione é:

dll = AdS — dC =
- oC  9C 1, ,0°C oc |
=A(puSdt+oSdW) — (815 +,uSaS+2aSaSQ>dt+USanW =
- oc  aC 1, ,0°C oC

16La formula del lemma di It deriva da uno sviluppo di Taylor stocastico; in particolare, la formula
di Taylor per una variazione infinitesima di una funzione f(t,z), % = % dt + % dz, risulta inadeguata
qualora S(t) segua una traiettoria casuale. Al contrario, i processi di Itd6 hanno incrementi dS che
includono lincremento di moto browniano (o termine di rumore) dW. Sulla base di tale premessa,
considerando una funzione sufficientemente regolare quale la (2.18), lo sviluppo di Taylor stocastico al

secondo ordine assume la forma df = % dt + % ds + %% (dS)2.
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Separando i termini:

80 oCc 1 0*C oC
= ApS — — — — —0%9? + (AcS — .
dlIl ( wS " wS g~ 5 o°S S2> dt ( oS —aS8 S) dW

Per eliminare il rischio sistematico, poniamo che il coefficiente stocastico dW sia uguale

a Zero:

oc
oS’
Di conseguenza, il valore del portafoglio replicante diventa:

oC 1 0*C
dll = 262 dt.
<6t s (952)

A:

Poiché il portafoglio e privo di rischio, esso deve crescere al tasso r, pertanto:
oC
dll =rlldt =r | =—=S5S —C | dt.
Mt = ( e )

Uguagliando le due espressioni per dII e riordinando i termini otteniamo, si ottiene la

classica equazione differenziale parziale di Black-Scholes:

2
(ac 125280> (acs C)

ot 052 s
oc 1 22 0°C  0C B
S 500 g FrSae —rC =0, (2.22)

La PDE possiede tre distinte condizioni al contorno:
C(T,S) = max(S — K,0), C(t,0)=0, lim C(t,8)=5- Ke I,
Introduciamo le variabili trasformate:
S
T=T—t, z=In (K) , C(t,9) = Kv(r, z),

calcoliamo le derivate parziali di C' in funzione di v, applicando la regola della catena:

oC ov 0C Kov 826’ K (820 01})

o - Moy a5 T Sor 9% T s \a  an

Sostituendo nella PDE originale e riordinando i termini, otteniamo:

ov 1 ,(0% v ov
7 \022 " O

-+ = — — =0,
87’+2 —|—rax rv
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che si riscrive come:

or (92

Per eliminare i termini di primo ordine e lineari in v, si introduce la trasformazione:

ov 132 1 5\ Ov
NS

v(T, ) = e PTu(r, 1),

dove a e 3 sono parametri da determinare.

Calcoliamo le derivate di v in funzione di wu:

v _ oea:+67' du @ __ ox+pT du
ar ¢ <B+ T)’ or ¢ u+83:

0% ozt fr ou 0%
@—e (au+2a(9a:+(9x2 .

Sostituendo nell’equazione differenziale parziale precedente e dividendo per e®**87 i
ottiene:

2
Bu + Ou = 102 <0z2u + QQ@ + M) + (T — 102> (au + 8u> — ru,
x x Ox

riordinando i termini nella PDE per la funzione u(7, x), si ha:

e (e i) B (e en (i) o)
or 82 [oame’; r 0' o (oane a\r 20’ r u.

Per eliminare i termini in g“ e u, imponiamo le condizioni:

— 152
r— 350

o2

Y

2 L,
aa+r—§a =0 = a=—

1 1 — 30°)°
202a2+a(7’—2a2>—7’—620 = 62—(002;20)—1—7).

Con tali scelte, la PDE per u si riduce alla classica equazione del calore:

ou 1 ,0%

La condizione finale per C' e:

C(T,S) = max(S — K, 0).
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In termini di v e w:
v(0,z) = max(e® — 1,0), u(0,2) =e *“v(0,z) = max (e(l_a)x —e O) :

La soluzione dell’equazione del calore (2.23) ¢ data dalla convoluzione con il nucleo

gaussiano:

1 Too  (@-w?
u(r,x) = \/m/_oo e 22 u(0,y)dy. (2.24)

Ritornando alla funzione originale, il prezzo dell’opzione si esprime come:
C(t,S) = Ke*™ P u(r, z).

Per passare dalla soluzione integrale alla formula chiusa, consideriamo la rappresentazione

probabilistica:

u(r,z) =E [uo (x + O'\/FZ)} :

dove Z ~ N(0,1) e

up(y) = max (e(l’o‘)y —e Y, 0) .
Poiché ug(y) = 0 per y < 0, l'integrale si riduce a:

+oo 1 (z—y)?

= et (Y omaw) gy
0 \2mo?r ( ) Y

u(r,x) =

E possibile separare Uintegrale in due componenti:
U,(T,.CE) = [1 — IQ,

con
“+oo

+oo
I = / o(y;x,0’r)e' "Wy, I, = / P(y; z, 0°T)e"dy,
0 0

dove
1 _(y=m)?

e 2:2
vV 2ms? )

¢ la densita della normale con media m e varianza s*. Utilizzando la proprieta del momento

o(y;m, s?) =

generatore della normale, si ha

(2.25)

+oo 2,2 /\ 9
| evetm, sy = TN (m+)

S

per a =0 e s = 0+/7, otteniamo:

Il _ e(lfa)er(l*a;foTN <$ + (1 — 04)0-27'>

oNT
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2
I, = e_a”QQgQTN T+ ao’T
o\T

Ricordando che
C(t,S) = Ke** ™7 (I, — )

sostituendo I, e Iy, il prezzo dell’opzione puo essere scritto come:

QQUQT

l—«a 2027
O(t, S) = Keta+bm |A-ae+ B2 () em0a+25 () (2.26)

dove
z+ (1 —a)o’r T+ ao’T

dlz O'\/F ) d2_ O_\/F

Semplificando le esponenziali:

a2027

O(t,S) = K |+ =T N(d,) — "5 N(dy)

Usando le definizioni di . e [ e sostituendo x = In %, dopo semplificazioni si ottiene la

forma classica:

C(t,S) = SN(dy) — Ke " TN (dy)'7 (2.27)

con
2

InZ+(r+%) (1T -t
d1: E_ T2—)t< >, dgzdl—U\/T—t

X[

2.3.3 Convergenza del modello binomiale al metodo BSM

Una volta descritti i principi matematici che costituiscono la base dei due modelli, ¢ possi-
bile dimostrare come, ’estensione al tempo continuo del modello di Cox-Ross-Rubinstein,

converga a quello di Black-Scholes.

Anche in questo caso, si suddivida l'intervallo temporale [0, 7] in n intervalli di ampiezza

At = %, in ciascuno dei quali, il prezzo puo salire o scendere secondo le probabilita

O’\/Kt d — e*O’\/Zt

17Questa relazione fornisce una soluzione chiusa alla PDE per un’azione che non paga dividendi. Qua-
lora sussistesse la corresponsione di un dividendo continuo ad un tasso g, proporzionale al prezzo del-
I’azione, la predetta formula si modificherebbe in C(t,S) = Se 9T=YN(d;) — Ke """ N(d,), con

In( = r— o2 —
dlz (K)+(a- ;tt2>(T t)’ dg:dl—am.

29



Riprendendo 'equazione (2.9) con la quale si € definita la probabilita neutrale al rischio p

(1+7r)—d
u—d

e considerato che il tasso risk-free per ogni nodo r, risulta pari a

Ty = eT'At -1

predetta probabilita nel tempo continuo puo essere calcolata come:

erAt —d

— (2.28)

p:

mentre la relazione per determinare il prezzo di un’opzione call assume la forma:
" (n
Co=e""Y <k>pk(1 — p)" " max(Spu*d"* — K, 0)
k=0

Per poter conseguire I'obiettivo preposto, € necessario individuare, o quantomeno appros-
simare, i parametri del modello CRR qualora At — 0.
Dato z = ov/At, espandendo w in serie di Taylor intorno a zero, risulta:
x> 2
u=e" =142+ —+—+---
2 6
(cVAL)? (oAt
2 * 6 *

2At 3 At 3/2
u:1+UVAﬁ+U2 +0(6) +

u=1+ocVALt+

u=1+0oVAt+ ;UQAt +o ((At)S/Q)

Analogamente, considerando y = —ov/At,

(VAL? (VA

d=1—-0oVAt
o + 5 6

2At 3 At 3/2
d=1-oVAt+ +G(6) +o-
1
d:1—a¢At+5ﬁAt+o«AﬂW)

In cui, il termine (0v/At)? ¢ di ordine superiore e diventa trascurabile rispetto al termine
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in vt quando At — 0, analogamente ai termini di ordine (At)3/? e superiori, ancora pitt
piccoli e conseguentemente ignorati nelle approssimazioni di primo ordine.
Pertanto, sulla base di tali considerazioni, i termini u e d possono essere approssimati

come:

ux1l+oVAt, dx=1-—oVAt

Secondo una logica analoga, e possibile approssimare anche il valore della probabilita

At e utilizzando i valori di u e d appena

neutrale al rischio, espandendo in Taylor e”
individuati:

€™M =14+ 1At + o(At)

Pertanto la (2.9) puo essere riscritta come:

1+7At — (1 — oAt + 102 At) + o(At)
(14 oVAt+ 102At) — (1 — oV AL + L02At) + o(At)

p:

VAL + (1 — T )AL + o At)
20V At + o( At)
oAt (r—Z)At

b= 20\/325 * 20\/515 * 0(\/Kt)

p= s+ I T R+ o(VAY

2 20

02
T;? VAt riflette il drift corretto per garantire la misura neutrale al rischio

dove il termine

nel limite.

Nel modello di Cox-Ross-Rubinstein, dopo N passi, k£ ¢ una variabile casuale con distri-

buzione binomiale
k ~ Bin(n, p)

Come visto nei precedenti paragrafi, la probabilita di osservare esattamente k rialzi e

misurata da:

e piu nel dettaglio

PO = (L oH0 =t = -

l(n —

Dato un certo m generico, la formula di Stirling fornisce un approssimazione per m!, data
da:
m m
m! & V2mm <> (2.29)

(&
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che puo essere applicata a n!, k! e (n — k)!, i possono essere stimati come:

n\" e\ n—k\""
n! ~ 27m<€), k!%\/27rk:<>, (n—k)! =~ 27T(n—k)< )

(& €

Sostituendo tali valori alla formula di P(k) si ottiene:

2mn (2)"
2k (5)"2n(n — k) (%)

) N \/ﬁn”
N V 21k /21 (n — k)kF(n — k)”—’“p

Per semplificare il trattamento analitico, puo essere conveniente considerare il logaritmo

di P(k),

P(k) ~ — (L —p)" "

P(k "1 —p)h

1 1 1
In P(k) ~ 3 111(27m)—§ ln(27rk)—§ In(27(n—k))+nlnn—kInk—(n—Fk) In(n—k)+k In p+(n—~k) In(1—p)

Si prenda ora la variabile normale standardizzata:

k =np+ z\/np(l —p) (2.30)

dove z e una variabile reale che misura la deviazione normalizzata del valore atteso np.
Da cio risulta che:

Ink = In(np + zy/np(1 — p))

In(n — k) = In(n(1 — p — 2y/np(1 — p)))

Per n grandi, e possibile ricorrere nuovamente all’espansione di Taylor per approssimare
i logaritmi di k e n — k attorno ai loro valori attesi np e n(1 — p), rispettivamente.
Ricordando che per x = a, si puod espandere il logaritmo come:

r—a (r—a)?

Inr =1 —
nx na -+ » e +

applicando questa formula a

k=np+6, d=z/np(l—p), n—k=n(l-p)—9

si ottengono le approssimazioni ai logaritmi di k£ e n — k:

1nk~ln(n)+£— o
S T 2np)?
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) B 52
n(l—p) 2(n(l-p))?

Inserendo queste espressioni nella formula per In P(k), si ricava che

In(n — k) =~ In(n(l —p)) —

2
In P(k) ~ cost — ] +o(1)

dove si nota come il valore della costante dipenda da n e p, ma non da z.
Di conseguenza, la probabilita P(k) puo essere approssimata da una funzione gaussiana
di tipo

Z2

P(k)~Ce™ 7

¢ € una costante di normalizzazione che, tenendo conto del termine di radice proveniente

dalla formula di Stirling, si traduce nella seguente espressione:

%—nm2>

~2np(1 — p)

1
P(k) ~ m exp(

ossia la densita della variabile normale standardizzata

k—np

Z, = (2.31)

np(l —p)

la cui funzione di ripartizione e

Fo.(2)=P(Z,<z)=P (k <np+ Z\/M)

Tale funzione corrisponde alla somma cumulativa delle probabilita binomiali fino al valore

intero piu grande minore o uguale a np + z\/np(1 — p),

= et
re- X rw- x (f)ra-or

Dal teorema locale di De Moivre-Laplace, per valori di k vicini a np, si ha:

(k—nwz>_

~2np(1 - p)

1
P(k) ~ mexp <

Si definisca ora la funzione

(2.32)

densita della normale standard.



Per dimostrare la convergenza in distribuzione della variabile Z,, ad una normale, si puo
ricorrere alla costruzione di somme di Riemann.
In particolare, riformuliamo la somma delle probabilita binomiali in termini della variabile

normalizzata zy:
k—np

np(l - p)
che ora diventa:
1
Fo(z) = - 3%
zr<z \/2mnp(1 — p)

Si osservi che la distanza tra due valori consecutivi della variabile x; ¢ data da

1
Ax =

np(1 —p)

Pertanto, la somma delle probabilita puo essere riscritta nella forma

F.(z) ~ Z g(zr) Az

<z

Poiché Az — 0 '8 per n — oo, la somma di Riemann converge all’integrale

| 9@y de = o(2)

—00

dove ®(z) ¢ la funzione di ripartizione della normale standard.
Se dunque, lim, o F,(2) = ®(z), allora si puo affermare che la funzione di riparti-
zione della variabile binomiale normalizzata Z,, converge puntualmente alla funzione di

ripartizione della normale standard ®, o piu formalmente:

B NN (2.33)

np(1 —p)

Una volta appurata tale convergenza, si riprenda la relazione (2.12), che esprime il prezzo
del sottostante dopo n passi:
Sn == Soukdnik

di cui si calcola il logaritmo:

InS,=InSy+klnu+ (n—Fk)lnd

18Cio appare chiaro, dal momento che lim,, oo Az = lim,,_,o ——— = + = 0.
’ V/np(1—p)
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sostituendo i valori di u e d, si ha:

In S, =InSy + koVAt — (n — k)ovVAt ~ In Sy + oV AL(2k — n)

Considerando nuovamente la variabile normalizzata Z,, = %, si riscrive 2k —n come
np{i—p

2k —n =2(k —np) +2np —n = 2¢/np(l — p)Z, + n(2p — 1)

pertanto,

InS, =1InSy+ oVAL <2\/np(1 —p)Z, +n(2p — 1)>
T
N

n n
InS,, =InSy+ 0\/;2\/71}9(1 —p)Zn + o\/;n(Qp - 1)

InS, =InSy+20Tp(1 —p)Z, +cTn(2p —1)

Dato che At =

Si prendano ora in analisi i limiti dei termini presenti;
Per quanto concerne il termine stocastico, e stato appena appurato che, per il teorema
del limite centrale (De Moivre-Laplace), Z, < N(0,1), mentre in rapporto al termine

deterministico, ¢ necessario calcolare il limite di o+/T,,(2p — 1).

Ad ogni modo, considerando che

1 _a
p=*+g;¥Q%E+dV&)
2 20
allora,
2p—1:2¢+KT;2)VAﬂ+dVZﬂ—1
o

2p_1:<7“;"5>m+0<@>

sostituiamo VAt = L,

n

_2 [r
2p—1=—2y—+o(-)
o n n

(r—2) | 1

ovVTn(2p—1)=0VTn 22\ =+o(/=)

o n
da cui: )

lim ov/Tn(2p—1) = (r — %)T

35



Quindi, ¢ ora possibile affermare che:
1
InS, % InSy+ (r — 50T + oVTZ

O piu precisamente,
1
InS, % In Sy + (r — 50T + oW, (2.34)

dove Wy ~ N(0,T).
In tal modo si e potuto dimostrare come il logaritmo del prezzo terminale nel modello di
Cox-Ross-Rubinstein converga in distribuzione alla dinamica lognormale di Black-Scholes,

e quindi, in altri termini, che

1
S, = e Sn 4, St = Sy exp {(r — 502)T + O'WT}

Considerando il prezzo di un’opzione call europea nel modello CRR al tempo 0,
i = e T E® [max(S, — K, 0)]

poiché S, LN St, e il payoff max(S — k,0) & una funzione continua e limitata dal basso,
per il teorema della convergenza dominata'®, si ha:

lim E@" [max(S, — K,0)] = E? [max(Sy — K, 0)]

n—oo

Da cui,
lim C{" = e T E? [max(Sy — K,0)] = Cps(So, K, r,0,T) (2.35)

n—oo

2.4 Metodo Monte Carlo per le opzioni

Pochi anni dopo che Black e Scholes da una parte, e Cox e Ross dall’altra proposero i
rispettivi metodi di valutazione, P. Boyle introdusse un nuovo approccio basato sulle simu-
lazioni Monte Carlo, in forza del quale era consentito stimare il valore atteso di un’opzione
simulando direttamente la dinamica stocastica del sottostante, senza richiedere una so-
luzione analitica dell’equazione di Black-Scholes. Possiamo dire che qui giaccia, forse, la
necessita di individuare un nuovo approccio alla valutazione delle opzioni, in quanto, se la
(2.27) rappresenta una soluzione chiusa alla PDE in caso di azione che non paga dividendi

(con le opportune modifiche in caso di dividendo costante e proporzionale al prezzo

19F possibile ricorrere al teorema della convergenza dominata in quanto la funzione payoff f (S) =
max(S — K,0) ¢ continua e non negativa, e inoltre, ¢ dominata da una funzione integrabile avente
aspettativa finita sotto la misura neutrale al rischio nel modello Black-Scholes.
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dell’azione), in presenza di altre politiche di dividendo ¢ inevitabile il ricorso a metodi

numerici per la risoluzione dell’equazione differenziale.

Analogamente al caso precedente, sia S; il prezzo del sottostante al tempo ¢, che sotto la

misura neutrale al rischio QQ, evolve secondo il GBM:
dS(t) =rS(t)dt +oS(t)dW(t)

la cui soluzione esplicita ¢ rappresentata dalla (2.19).

Successivamente, si procede alla generazione delle traiettorie del prezzo del sottostante,
ciascuna delle quali ne rappresenta una possibile evoluzione futura, coerentemente con il
modello stocastico ipotizzato.

Sia 7 il numero di simulazioni; per ogni 4, ...,n, si genera una variabile casuale indipen-
dente Z®) ~ N(0,1), estratta da una distribuzione normale standard. In seguito, ricor-
rendo alla soluzione analitica dell’equazione differenziale stocastica del moto browniano

geometrico, si ottiene:
. 1 ,
S$ = Sy exp {(T - 202> T + UVTZ(Z)}

Pertanto, dalla generazione di N simulazioni, si ottiene una distribuzione empirica dei
possibili prezzi a scadenza.

Una volta generata la sequenza di prezzi simulati a scadenza <S¥)>j:1, per ciascuna si-
mulazione ¢, si calcola il payoff dell’opzione in funzione del prezzo simulato Srfpi), sia esso
maX(Séf) — K,0) per una call o max(K — S(Ti), 0) per una put. Successivamente, si calcola

la media dei payoff ottenuti sulle n simulazioni:

Poiché il valore atteso del payoff ¢ riferito alla scadenza T', ¢ necessario attualizzarlo al

tempo presente utilizzando il tasso privo di rischio:
_ 17 )
Y= TP=c"T-%" p¥ (2.36)
"=

ottenendo in questo modo la stima Monte Carlo del prezzo dell’opzione.

20La pubblicazione originale di Boyle fa riferimento al metodo adottato da E.S. Schwartz nel 1977,
particolarmente efficace nella valutazione di opzioni in contesti in cui non & disponibile una soluzione
chiusa, come nel caso di politiche di dividendo complesse. Tale approccio consiste nel discretizzare il
dominio temporale e spaziale, e approssimare le derivate parziali con differenze finite, trasformando il
problema continuo in un sistema lineare risolvibile con metodi iterativi.
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La varianza della stima ¢ data da:

6—27’T )
Var(CMC) = —Var(PY)
n
e, conseguentemente, 'errore standard e pari a:

e—rT

N

dove sp indica la deviazione standard campionaria dei payoff simulati.

SE(C') =

Secondo il teorema del limite centrale, per n sufficientemente grande, la distribuzione di

CMC tende ad una normale, pertanto:

6—2rT

CyC ~ N (Co, Var(P(i))>

n
Per migliorare l'efficienza della simulazione, possono essere adottate tecniche di riduzione
della varianza, come il metodo delle variabili di controllo e delle variabili antitetiche
(Boyle, 1977); in particolare, nel primo caso, si introduce una variabile Y correlata al

payoff e al valore atteso noto, e si costruisce una nuova stima:
CSV = OMC L \(Y* —E[Y))

mentre nel caso delle variabili antitetiche, per ogni Z®, si considera anche —Z®, otte-
nendo due simulazioni accoppiare e riducendo la varianza complessiva?!. Nel caso in cui il
sottostante paghi dividendi discreti, la simulazione deve tenerne conto riducendo il prezzo

del sottostante in corrispondenza delle date di stacco.

2.4.1 Convergenza delle simulazioni Monte Carlo al modello di Black-Scholes

Cosi come per il modello di Cox-Ross-Rubinstein, € possibile mostrare che il prezzo cal-
colato tramite le simulazioni Monte Carlo converge, al crescere della numerosita dei path,
al prezzo teorico individuato dal modello di Black-Scholes-Merton. Ad ogni modo, la

dimostrazione in tal ultimo caso appare molto piu immediata rispetto al precedente.

Si riprendano le relazioni (2.27) e (2.36), che descrivono rispettivamente il prezzo di un’op-

zione call europea calcolata con Monte Carlo e Black-Scholes; appare chiaro che in entram-

21Calcolando la media dei payoff associati a ciascuna coppia (Z, —Z), si ottiene una stima che, grazie
alla covarianza negativa tra i due risultati, presenta una varianza inferiore rispetto a quella ottenuta con
due simulazioni indipendenti, con 'effetto di aumentare 'efficienza della simulazione senza incrementare
significativamente il costo computazionale.
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bi i casi, seppur mediante approcci differenti, lo scopo dei modelli sia quello di determinare

il valore atteso scontato dell’aspettativa neutrale al rischio, E@[max (S — K, 0)].

Con riferimento alla formula di Monte Carlo, si ¢ definito P®) = max(St(i) —K,0), da cui;
X; =e'PO = e max(S;Y — K,0)

La legge dei grandi numeri afferma che, se Xy, X, ..., X,, sono variabili casuali 7id, con
valore atteso finito E[X;] = pu, allora

1 & n—roo

=
e dunque, se la quantita p = E[X;] coincide con il valore atteso del payoff scontato sotto
la misura neutrale al rischio, il prezzo calcolato con il metodo Monte Carlo coincide con

quello teorico Black-Scholes
CoMY = Cpg = E%e™" max(Sy — K, 0)] (2.37)

Tale convergenza si rafforza al crescere di n, infatti la probabilita che la media campio-
naria Cy™¢ differisca significativamente dal valore atteso C'gg tende a 0 al crescere della

numerosita delle simulazioni effettuate:
Ve >0: IP<|C’(J)WC—CBS| >5) — 0 pern — o0

Assume importanza primaria effettuare, affinché si possa apprezzare il fenomeno in analisi,

m . t t . d. . 1 . .22 U 9 1. . t. d. t .
un numero sufficientemente ampio di simulazioni**. Un’applicazione pratica di quanto qui
affermato, sia con riferimento al metodo Monte Carlo che al modello CRR, sara fornita a

partire dal capitolo seguente.

2.5 Il modello di Datar-Mathews

Il metodo Datar-Mathews viene introdotto ad inizio millennio come estensione del tradi-
zionale modello del Valore Attuale Netto specificamente per la valutazione delle opzioni
reali. Si tratta di un nuovo approccio alquanto meritevole di interesse, che si serve delle
simulazioni Monte Carlo per il calcolo del payoff, troncando i risultati negativi in modo da

riflettere la facolta dell’holder di non esercitare I'opzione in condizioni ad esso sfavorevoli.

22 Ai fini operativi, si suggerisce di implementare un minimo di 10000 simulazioni, in modo tale da poter
avere un riscontro numericamente visibile della convergenza.
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2.5.1 Implementazione del modello con la simulazione Monte-Carlo

Per risalire alla struttura della formula del premio dell’opzione attraverso il modello in
analisi, si parta dalla concezione che, un progetto di investimento, in condizioni di incer-
tezza, puod generare una varieta di possibili valori attuali netti a scadenza. Risulta allora
possibile individuare il valore dell’opzione associata al progetto come il valore atteso del

massimo tra il payoff della stessa e zero:

V = E[max(NPV,0)] (2.38)

CFy
(14r)

richiede modificazioni, ma risulta necessario soffermarsi sulla distribuzione di probabilita

La formula generale per il calcolo del valore attuale netto NPV = Zthl — Iy non

delle variabili che impattano sulla struttura dei flussi si cassa C'F;.

In un contesto di incertezza, ogni variabile deve essere trattata come una variabile aleatoria
ed & imperativo assegnarle una distribuzione di probabilitd F'x(z) che ne rappresenti
adeguatamente il comportamento atteso. Le principali variabili che vengono prese in
considerazione sono il prezzo di vendita P, la quantita venduta @), il costo variabile
unitario Cyary, il costo fisso totale Cfy, ,, I'investimento iniziale I, il tasso di sconto r e

I’orizzonte temporale 1.

Per ciascuna variabile, la scelta della distribuzione di probabilita deve essere guidata dalla
natura intrinseca della variabile stessa, e pertanto il prezzo di vendita e tipicamente mo-
dellato tramite una distribuzione lognormale (P; ~ LogNorm(up,0%)), in quanto la stessa
garantisce la positivita dei prezzi e riflette la possibilita di variazioni asimmetriche e di
eventi estremi, caratteristiche che possono risultare alquanto frequenti nei mercati reali,
mentre la quantita venduta puo essere rappresentata da una distribuzione normale tronca-
ta (Q: ~ TruncNormyy o) (pq, aé)), discreta (ad esempio Poisson, per beni indivisibili), o
uniforme, a seconda della granularita dei dati e delle specificita del settore. I costi variabili
sono frequentemente modellati attraverso distribuzioni triangolari X ~ Triang(a,m,b),
in modo da poter incorporare con maggior precisione informazioni su valori minimo, mas-
simo e piu probabile, oppure, in presenza di variabilita simmetrica e ben documentata,
il ricorso ad una normale puo essere ugualmente adeguato. In rapporto ai costi fissi, la
loro stabilita rende possibile trattarli come deterministici e conseguentemente di model-
larli con una distribuzione normale a bassa varianza, in modo da poter includere possibili
shock esogeni, mentre I'investimento iniziale, anch’esso di norma considerato come deter-
ministico, puo essere rappresentato da una distribuzione discreta in presenza di scenari

alternativi di investimento.

Una volta individuate le variabili e le relative distribuzioni, si procede, per ciascuna
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simulazione 7, all’estrazione dei valori Pt(i), Qgi), C'\(,;)r,t, C’}Q per ogni ¢ secondo le rispettive
Fx(z) definite nella precedente fase di modellazione. Appare chiaro che molte di queste
variabili sono lungi dall’essere indipendenti (banalmente, il prezzo di vendita e la quantita
venduta sono generalmente correlati negativamente, oppure i costi variabili possono essere
influenzati, positivamente, dai volumi di produzione) e per tale motivo, prima di procedere
all’estrazione dei dati, si origina la necessita di rappresentare correttamente la dipendenza
tra le stesse, generando campioni che rispettino la struttura di correlazione empirica o

attesa.

Uno strumento che in una simile circostanza puo rivelarsi particolarmente utile e la decom-
posizione di Cholesky, grazie alla quale & possibile generare campioni di variabili aleatorie
multivariate con una struttura di correlazione specifica. Volendo approfondire, si consi-
deri una matrice di covarianza®® ¥, simmetrica e definita positiva. Per un sistema di N

variabili, > assume la forma:

2
01 P120102  +++ PINO1ON
2
> P120102 05 crr P2NO20N
2
_P1NU1UN P2NO20N - ON |

La tecnica in analisi consiste nel trovare una matrice triangolare inferiore L, tale che:

Y=LL"

La matrice L si calcola ricorsivamente, con gli elementi diagonali dati da:

1 k—1
Lik = — szz — Z Liijj s 1>k
kaz j=1
A questo punto, generando un vettore Z = (Zy,...,Zy)T di variabili aleatorie standard

normali indipendenti, si ottiene il vettore

X=LZ

230ppure, in presenza di variabili standardizzate, la matrice di correlazione.
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La variabile casuale X ha distribuzione multivariata normale con media nulla e matrice

di covarianza ¥, in quanto, per definizione di covarianza e linearita dell’operatore, si ha:
Cov(X) = Cov(LZ) = LCov(Z)L"

Dato che Z ¢ un vettore di variabili standard normali indipendenti, la sua matrice di

covarianza € la matrice identita I, pertanto
Cov(X)=LIL" =LL" =¥* (2.39)

Una volta impostata la decomposizione di Cholesky e generati campioni di variabili alea-
torie correlate che siano effettivamente in grado di catturare la dipendenza tra le variabili
economiche chiave, si puo procedere alla costruzione delle simulazioni dei flussi di cas-
sa, secondo una linea d’azione ormai non dissimile a quella disaminata nel precedente

paragrafo 2.4.

Nello specifico, ¢ ora possibile, per ciascuna simulazione, utilizzare i valori delle varia-
bili correlate per ogni periodo ¢, ottenuti tramite Cholesky tenuto conto delle rispettive

distribuzioni marginali e procedere al calcolo del valore attuale del progetto:

(©) ~(2) (@) ~H@) (%)
NPV('L) _ Z Pt Qt - Cvar,tQt B Cfx

2 41 — Iy. (2.40)

Rammentando dalla (2.38) che il modello in analisi interpreta il valore dell’opzione come
il valore atteso tra il payoff simulato e zero, si procede al calcolo della media dei payoff

opzionali sulle n simulazioni:

1 : 1 ,
CPM = =3 V@ = = 3 max (NPV?,0), (2.41)
nis N4
che rappresenta la stima Monte Carlo del prezzo dell’opzione reale secondo il modello
Datar-Mathews.

2.6 Il modello di Heston

Introdotto nel 1993, il modello di Heston si distingue da quelli precedentemente analizzati
in quanto considera la volatilita come una variabile casuale che segue un processo stoca-

stico, andando oltre una delle piu rilevanti assunzioni del modello di Black-Scholes.

Z4Tnoltre, poiché la trasformazione LZ & lineare e Z & gaussianamente distribuito, anche X ~ N(0,Y).
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Si consideri un asset avente distribuzione

dS(t) = pSdt + /v(t)SdZD (1)

Se la volatilitd segue un processo di Ornstein-Uhlenbeck®, allora la sua dinamica puo

essere descritta come
dY, = —BY,dt +5dW®,  B>0, § > 0%.
Utilizzando il lemma di It6 si pud mostrare che la varianza istantanea segue il processo
dv, = 2Y, dY; + (dY;)? = (8% — 2Bv,) dt + 20,/v, AW,
che, facendo ricorso al processo CIR, puo essere riscritto come
dv, = k(0 — v) dt + E/v, AW,

con identificazione

52
%7

definendo in tal modo 'ampiamente adottata notazione contestualmente al metodo in

k=28, £=2, 6=

analisi
S, = 1S, dt + \/v; Sy AW,
(2.42)
dvy = k(0 — vy) dt + 5\/v_tth(2),

con correlazione istantanea d(W® W®)), = pdt.
Ipotizzando che il tasso di interesse rimanga costante, ¢ possibile affermare che il prezzo

al tempo ¢ di un’unita del bond?” a scadenza 7 4+ t sia pari a
P(t,t+7)=¢"".

In analogia con l'argomento di copertura alla Black-Scholes, il prezzo U(S,v,t) soddisfa
la PDE

1 1
U, + 5052(]55 +p&vSUs, + 55% Up +17SUs + [m(e — ) — Av] U,—rU=0 (2.43)

soggetta ai vincoli:

P Equazione differenziale stocastica che descrive I’evoluzione dei sistemi mean-reverting.

26Si noti che il termine di rumore & additivo nel processo Y; = /¢, e diventa moltiplicativo in vy dopo
il cambio di variabile.

270 di altra attivita priva di rischio.
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e U(S,v,T) =max[0,5 — K],

. g—g(oo,v,t) =1,

o U(S,00,t) =S5,
e U(0,v,t) =0,

« 7SUs(S,0,t) + kOU,(S,0,t) — rU(S,0,) + Uy(S,0,t) = 0.

Il termine A rappresenta il costo legato alla volatilita, indipendente dallo specifico asset.
Lamoureux e Lastrapes (1993) hanno mostrato che tale valore ¢ significativamente diverso
da 0 (t-test asintotico). Richiamando ora il modello basato sul consumo di Breeden, si

afferma che

A(S, v, t)dt = yCov[dv, dc(f’]’

in cui C(t) ¢ il tasso di consumo e v indica ’avversione al rischio dell’investitore.
Si prenda ora in considerazione il processo di consumo che emerge nel modello di Cox-

Ingersoll-Ross,

dC(t) = peo(t)Cdt + ocrJo(t)CdZP (1), (2.44)

nel quale la crescita del consumo mostra una correlazione con il ritorno dell’asset. Da cio

si genera un premio proporzionale a v, con A(S,v,t) = Av,.

In accordo a quanto precedentemente appurato gia a partire dal paragrafo 2.3, per analogia
con la formula di Black-Scholes, possiamo individuare, per un’opzione call, una soluzione
della forma

C(S,v,t) =S P, — Ke "I p,,

dove il primo termine indica il valore attuale dell’asset dietro esercizio ottimale dell’op-
zione, e il secondo consta nel valore attuale del prezzo di esercizio, entrambi soddisfacenti
la PDE originale di Black-Scholes.

Puo essere conveniente scrivere i due membri in termini del logaritmo del prezzo spot,
z = In[S].

Sostituendo la soluzione appena proposta nella PDE originale, ¢ possibile constatare che

P, e P, soddisfano le equazioni differenziali parziali

1 1 )
51} ij—i—pSUPj’m%—ié’zv P; o+ (r+uv) P+ (a—bjv) P, +P;, =0, j=1,2, (2.45)
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per
_1 1
=3

Affinché il prezzo del sottostante soddisfi le condizioni terminali appena esposte, le PDE

a=k0, bi=K+A—p& by=krk+ A\

sono soggette alla condizione
Pi(z,v,T;In[K]) = 15wk

e possono pertanto essere interpretate come probabilita aggiustate per il rischio;

dz, = (1 + wvy) dt + /o, AWV, (2.46)
dvy = (a — bjvy) dt + £/vy aw?. (2.47)

dove a e b; rappresentano la definizione precedentemente fornita. La probabilita condi-

zionata che 'opzione scada I'TM e definita come
Pi(z,v, T;n[K]) =P[z(T) > In[K]|z(t) = z, v(t) =v]. (2.48)

Suddette probabilita non possono essere calcolate attraverso il ricorso ad una forma chiusa,
tuttavia, e possibile dimostrare che le funzioni caratteristiche soddisfano le PDE sopra
esposte. Nello specifico, consideriamo la funzione (doppiamente derivabile) f(x,v,t), che

presenta una buona aspettativa condizionata di x e v;

fj(xavat) = E[g(XTa VT) | Xt =, V;f = ’U] : (249)

Il Lemma di It6 mostra che;

1 1
dfj = (27] fj,:}ca: + pfv fj,zv + 5521} fj,vv + (T + UjU) fj,z + (a - ij> fj,v + fj,t) dt

F VO fi0 AW 4 /0 f dWD.
Ricorrendo alle aspettative iterate, sappiamo che f deve essere una martingala;
E[df] = 0.

Per completezza, vale la pena di notare che la densita di transizione congiunta p;(x,v,t)

soddisfa 'equazione di Fokker-Planck (forward):

op; = —&B{(r +u;v) pj} — 8v[(a —b,v) pj} + ; &m{v pj] —I—am[/)fv pj} + ; 31;@[52@ pj]- (2.50)
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Ai fini del pricing, tuttavia, ¢ di maggior interesse la funzione valore (2.49) appena definita,

la cui condizione terminale associata risulta

fi(x,0,T) = g(x,v).

Nel dettaglio, se g(x,v) = d(z — xp), la soluzione rappresenta (in senso distribuzionale)
la densita di transizione in xg, se g(z,v) = l{z>m Kk}, essa coincide con la probabilita

P

condizionata che X7 > In K, e per g(x,v) = ¢'*®, si ottiene la funzione caratteristica.

Data la natura affine della dinamica della varianza (processo CIR) e la linearita di z =
In[S;] in v;, & naturale ipotizzare che la funzione caratteristica del processo congiunto

abbia una forma esponenziale affine assimilabile a
fi(z, vt u) = exp(Cj(T, u) 4+ D;(1,u) v + iux), (2.51)
con 7 =T —t. La presente relazione soddisfa ’equazione di Kolmogorov backward
af;

dove L & l'operatore infinitesimale associato al processo (x4, vy),
1 1,
L;=(r+ujv)d, + (a —bjv)0, + Y Opz + pEV Oy + 55 0 Oy

Le derivate di f secondo I’ansatz risultano:

%f; _ —(C}(T, u) + Di(7, u) U)fja
%];j = fj,

Oh_ iy,

‘ng — Dy(r,u) f;,

%vf — Dy(r ) Sy,

3es =PI

Sostituendo l'ansatz nella (2.52) e dividendo per f; # 0, si ottiene

1 1
—(C + D) + (r 4 u;v)(iu) + (a — bjv)D; + 51}(—142) + peu(iuD;) + §£2UD]2 _0
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Raggruppando i termini costanti e quelli proporzionali a v:
C! i D D! — —u? w—b;)D; + ~2D?) =0
(— G tiur +a j>—|—v - j~|—ujzu—§u + (p&iu — b;) j+§§ 2] =0.

Poiché I'identita deve valere per ogni v, entrambi i termini devono annullarsi. Si ottengono

in tal modo le equazioni differenziali ordinarie
Ci(7,u) = tur + a Dj(7, u), (2.53)

Di(t,u) = <uj i — ;UQ) + (pfz’u - bj>Dj(T, u) + ;szj(T, u)?, (2.54)

con condizioni iniziali C;(0,u) =0, D;(0,u) = 0.

Si definisca ora la funzione caratteristica nella forma;
fi(z, v, t; @) = exp(C’j(T — 4, 9)+ D;(T —t;P) v+ i(IDx).

C; e D; soddisfano dunque certe equazioni differenziali ordinarie del tipo Riccati; nello

specifico
, a . 1 — gj(u)et®T
Ci(T,u :zur7+[b<—p§zu+dlu 7—21n< I , 2.55
() | (w) ey (2.55)
by — pliu+di(u) 11— b
Dj(t,u) = & 1= g, (w)eb (2.56)
dove:

_ by — pSiu+ dj(u)
bj — p€iu — d;(u)

dj(u) = \/(p&'u - bj)Z — &2 (2ujiu — u2>, gj(u)

Una volta adeguatamente analizzate le equazioni differenziali ordinarie, risulta piu sem-

plice calcolare il prezzo dell’opzione superando i limiti della volatilita costante del modello
di Black-Scholes.

Si esprima, mutuando la precedente notazione, il prezzo di una call europea attraverso
C(Sp,v0,T) = SpPy — Ke "' Py,

dove P ¢ una probabilita sotto misura azionaria (share measure) Q™) e P, ¢ una proba-
bilita sotto misura risk-neutral Q.

La logica secondo la quale si articolano i seguenti passaggi risiede nell’idea che

PIZQ(I)(ST>K|E); P, =Q(Sr > K | ).

47



La probabilita Q[X > In K| puo essere dunque scritta come:

eI K oz, v, b u)

du,  j=1,2, (2.57)
11U

1 1 fo
Pi(z, v, K) = 54';/0 %[

con & (u) = %, Dy (u) = P(u).

A questo punto, dato:
(Sr— K)*" = Sr g5k — K 1{s5k7,

Cy= e TR (Sr — K)* | B = e " T OE[Srlys, ok | o] - Ke " TTQ(Sr > K | F).
Definendo la misura azionaria (share measure) Q(1):

aQW e T(T-t)g

_c er
dQ Fr St 7
si ottiene
o—T(T-RQ {ST1{5T>K} | ]:t} =5,QW(Sy > K | F) =: S, Py,
Q(ST > K ‘ JT_‘t) = Pg.
Pertanto

Cy = S,P, — Ke "= p,, (2.58)
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Appendice: Processi stocastici e simulazioni Monte-

Carlo per le azioni

L’applicabilita delle simulazioni Monte Carlo in campo finanziario si estende notevolmente
oltre le opzioni, in quanto esse si rivelano di particolare utilita ogniqualvolta sussistano
scenari di incertezza nei mercati.

L’utilizzo di Monte Carlo & pertanto ampiamente adottato relativamente a problemi di
gestione del rischio e ottimizzazione dell’allocazione delle attivita in contesti di incertezza

dinamica.

L’approccio tradizionale, introdotto da Markowitz nel 1952 attraverso la teoria media-
varianza®® risulta limitato dalle sue assunzioni di normalita dei rendimenti e lineari-
ta delle relazioni tra le attivita, che spesso risultano inadeguate nel cogliere a pieno
le caratteristiche reali delle serie storiche finanziarie, quali asimmetrie, kurtosi eleva-
ta, volatilita stocastica (Cont, 2001) e rischi di coda. L’implementazione tipica della
tecnica in analisi prevede 'utilizzo di distribuzioni multivariate per i rendimenti gior-
nalieri o logaritmici dei titoli, dalle quali si estraggono molteplici traiettorie simulate

@) = {rt(i)}le, coni = 1,...,N, la cui aggregazione, tenuto conto dei pesi assegnati
al singoli asset, genera una distribuzione probabilistica del valore futuro del portafoglio.
Ricorrendo ora ad un maggior formalismo matematico, € possibile constatare che il valore

finale del portafoglio simulato per ciascuna traiettoria possa essere determinato come

lf[(1+w T )

L’aggregazione sulle N simulazioni fornisce la citata distribuzione empirica per la variabile
aleatoria V7, da cui ¢ possibile stimare diverse misure di rischio, quali, in primis, il Value
at Risk (VaR), definibile al livello di confidenza a da

VaR, = —inf{v e R: P(Vpr — Vp <v) > a}

All’interno dell’analisi a cui ¢ dedicata questa appendice, si ¢ scelto di affiancare a tal
ultimo indicatore anche I’'Expected Shortfall o Conditional VaR (CVaR), definibile
come la media delle perdite peggiori oltre il VaR stesso (Rockafellar e Uryasev, 2000), o
piu precisamente

CVaR, = E[Vy — Vp | Ve — Vi < —VaR,]

28Tale approccio prevede la minimizzazione della varianza del portafoglio dato un rendimento atteso
prefissato.
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Un punto di notevole forza di tale approccio ¢ la possibilita, grazie alla natura iterativa
e parametrica delle simulazioni, di testare diverse allocazioni, scenari economici e para-
metri di input (quali tassi risk-free, orizzonti temporali e correlazioni) in modo da poter
effettuare analisi di sensibilita approfondite.

Inoltre, tale framework ¢ compatibile con diverse metodologie di ottimizzazione robusta
e approcci bayesiani per l'aggiornamento dinamico dell’aspettativa su parametri incer-
ti (Jobson e Korkie, 1980), integrando stimoli empirici continui dalla simulazione con

valutazioni teorico-statistiche.

Poste tali premesse, anche con 'intenzione di fornire un preludio all’analisi di maggior
rilievo pratico che avra luogo successivi capitoli, si vuole qui proporre un semplice tool
sviluppato in Python concepito per la valutazione del valore futuro dei portafogli median-
te il metodo Monte Carlo.

Nello specifico, il codice, partendo dai dati storici ricavati dalla piattaforma Yahoo Finan-
ce, stima media e matrice di covarianza, genera percorsi tramite campionamento multiva-
riato e calcola diversi indicatori di performance e rischio. Infine, sono generati due grafici
che permettono meglio di valutare la stabilita numerica e consentono la visualizzazione

delle distribuzioni.

Volendo approfondire gli aspetti computazionali dello strumento oggetto di trattazione
possibile esaminare con maggior dettaglio la funzione usata per la generazione dei path

simulati.

def run_mc(stocks, weights, start, end, sims_n, T, init, rf):
df = yf.download(stocks, start=start, end=end, auto_adjust=
False, progress=False)[’Close’].ffill ()
r = df .pct_change () .dropna ()

mu, cov = r.mean(), r.cov()
simulations = np.zeros ((T, sims_n))
finals = np.zeros(sims_n)

for i in range(sims_n):
dr = np.random.multivariate_normal (mu.values,
cov.values, T)
simulations[:, i] = init*np.cumprod(l + dr.dot(weights))
finals[i] = simulations[-1, il

rets = np.log(sims[1:] / simulations[:-1]).flatten()

ann _ret = rets.mean() * 252

ann_vol = rets.std() * np.sqrt(252)

downside = rets[rets < 0]

sharpe = (ann_ret - rf) / (ann_vol + 1le-9)
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sortino = (ann_ret - rf) / (np.std(downside) x*
np.sqrt (252) + 1le-9)
sk = skew(finals); ku = kurtosis(finals, fisher=True)
cum_mean = np.cumsum(finals) / np.arange(l, sims_n + 1)
stderr = np.std(finals, ddof=1) / np.sqrt(np.arange
(1, sims n + 1))
return simulations, finmals, (cum_mean, stderr), {
"Media simulazione":cum_mean[-1], "Minimo": finals.min(),
"Massimo": finals.max(), "5 percentile (VaR)":
np.percentile(finals, 5),
"95 percentile": np.percentile(finals, 95), "CVaR 5%":
compute_cvar (finals),
"Rendimento annuo %": ann_ret * 100,
"Volatilita’ annua %": ann_vol * 100,
"Sharpe Ratio": sharpe, "Sortino Ratio": sortino,
"Skewness": sk, "Kurtosis": ku,
"StdErr media": stderr[-1], "CoeffVar": stderr[-1] /

cum_mean [-1]}

Listing 1: Funzione path Monte Carlo.

La funzione prende in input una lista di ticker azionari o di altra tipologia?®, di cui si
scaricano i dati storici dell’ultimo anno, i pesi di ciascuno di essi all’interno del portafoglio
(individuato all’interno di un array numpy la cui somma dei valori deve essere pari a 1,
pena il sollevamento di un’eccezione e la conseguente interruzione della simulazione), le
date, di inizio e fine per il periodo storico da cui estrarre o i dati in serie storica, il numero
delle simulazioni Monte Carlo da eseguire, il numero di passi temporali T (il cui valore
di default ¢ fissato a 252 giorni di trading), il valore iniziale del portafoglio e il tasso di

interesse privo di rischio.

In seguito si procede allo scaricamento dei prezzi di chiusura storici non aggiustati per
il periodo indicato da Yahoo Finance e al calcolo dei rendimenti medi giornalieri e della
matrice di covarianza dei rendimenti tra i titoli. La variabile simulations contiene la
matrice T' X sims_ n per memorizzare i valori del portafoglio simulati giorno per giorno e
per ciascuna simulazione, mentre finals ¢ un vettore di lunghezza sims_n con all’interno

il valore finale di ogni simulazione.

Il ciclo for rende possibile che per ogni simulazione 7, si generi un cammino di rendimenti

29Vengono forniti come valori di default i ticker 'META’ e 'NVDA",
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multivariati giornalieri®. I rendimenti giornalieri del portafoglio sono calcolati mediante
il prodotto vettoriale tra i rendimenti simulati di ciascun titolo e il relativo peso degli
stessi. Successivamente ¢ calcolata la sere cumulativa del valore del portafoglio simulato
mediante np.cumprod(1 + dr.dot(weights)), moltiplicata per il valore iniziale init ed infine,

I'ultimo valore di ciascun cammino simulato viene salvato nella variabile finals/i].

Attraverso la variabile rets si individuano i rendimenti logaritmici giornalieri di tutte le
simulazioni, che vengono concatenati in un vettore unidimensionale utilizzato immedia-

tamente dopo per il calcolo delle statistiche annualizzate e degli indici di performance.

Una volta eseguito il codice, all’utente ¢ fornito accesso all’interfaccia iniziale, nella quale

e possibile inserire i valori di input precedentemente menzionati.

Tickers: | AAPL, MSFT, JNJ, LDO.MI, JPM, TLT, GLD, USO
Pesi: | 0.25,0.2, 0.1, 0.1, 0.1, 0.15, 0.05, 0.05
Inizio: = 10/08/2022
Simulazioni: 10000
Giorni T: 252
Valore inizi... | 10000 ¢
Risk-free %: | 0,025 °

Esegui simulazione

Figura 6: Esempio di assegnazione valori di input.

L’accensione del pulsante Esegui simulazione attiva la funzione on_ run, tramite la

quale vengono mostrati i dati relativi alla simulazione e riportati i grafici annessi.

def on_run(_):
with out:

out.clear_output ()

tk = [t.strip() .upper () for t in tickers_w.value.split(’,
)]

w = np.array([float(x) for x in weights_w.value.split(’,’
) 1)

total_weight = w.sum()

if abs(total_weight - 1.0) > le-4:
raise ValueError(f"La somma dei pesi deve essere 1.

Somma attuale = {total_weight:.4f}")

30Pit precisamente, si tratta di un array 7' x len(stocks) estratto da una normale multivariata con
media mu e covarianza cov.
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simulations, finals, (cum _mean, stderr), stats = run_mc(
tk, w, start_w.value, dt.date.today(),

sims _w.value, T w.value, init _w.value, rf _w.value)

df = pd.DataFrame(stats.items(), columns=[’Statistica’, ’
Valore’])
sty = (df.style.format ({’Valore’: smart_val_formatl}).

background_gradient (’Blues’, subset=[’Valore’])

.set_table_styles ([{’selector’: ’th’, ’props’: [(’
background-color’, ’#003366°),

(’color’, ’white’),(’font-size’, ’14px’)]1},{’selector
’: ’td’, ’props’:

[(’padding’, ’6px’),

(’font-size’, ’13px’)]}]).set_caption("Statistiche
Monte Carlo"))

display (sty)

Listing 2: Attivazione pulsante Esegui simulazione.

Una volta verificatosi I'evento utente (i.e. 1'utilizzo del pulsante) gli input forniti dallo
stesso vengono puliti, convertiti in maiuscolo, trasformati in una lista di float e normalizza-
ti per sommare a 1. Come sopra cennato, qualora questa condizione non fosse soddisfatta,

sarebbe sollevato un ValueError che comporterebbe l'interruzione della simulazione.

I dati, ora adeguatamente pre-processati possono essere usati per la costruzione dei path
simulati, attraverso simulations, finals, (cum__mean, stderr), stats che esegue la funzione
run_mc con i relativi parametri utente. L’output restituito comprende la matrice dei
cammini simulati, il vettore dei valori finali delle simulazioni, la media cumulativa e
I'errore standard, e il dizionario delle metriche sintetiche.

Tutti i valori, formattati secondo 'apposita funzione smart_val_format

def smart_val_format (x):

return f"{x:.2e}" if abs(x) < 0.01 else f'"{x:,.2f}"

Listing 3: Funzione di formattazione dati.

sono mostrati in un DataFrame a due colonne, in cui sono indicate ciascuna statistica e

il rispettivo valore numerico.
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Statistica Valore

(=]

Media simulazione [Pagbier:!

-

Minimo | 7,364.80

P Massimo
3 5¢ percentile (VaR)
4 95° percentile
5 CVaR 5% | 9,218.62
(-l Rendimento annuo % 18.79
7 Volatilita annua % 13.08
] Sharpe Ratio 1.25
9 Sortino Ratio 211
Skewness 0.36
Kurtosis 0.16
StdErr media 15.91

Coeffvar 1.31e-03

Figura 7: Tabella riepilogativa della simulazione.

In aggiunta alla tabella, sono forniti due grafici interattivi realizzati con il ricorso alla

libreria Matplotlib, progettati per fornire un riscontro visivo dei risultati della simulazione

effettuata. Piu

precisamente i grafici visualizzano rispettivamente ’evoluzione simulata

del portafoglio nel tempo e la media cumulata dei valori finali nel corso delle simulazioni.

for

axo0.

N, b
dens

edge

norm
cmap

for

axl

kde

ye =

dens

i in range(n):

ax0.plot(simulations[:, i], color=colors[i],
alpha=0.35, 1lw=0.7)

grid(True, linestyle=’:’, linewidth=0.7, alpha=0.7)

ins, patches = axl.hist(finals, bins=30,
ity=True, orientation=’horizontal’,

color=’white’, 1lw=0.5)

= Normalize (vmin=0, vmax=N.max())
_hist = plt.get_cmap(’Blues’)
count, patch in zip(N, patches):

patch.set_facecolor (cmap_hist (norm(count)))

.tick_params (axis=’y’, labelleft=False)

= gaussian_kde(finals)
np.linspace(finals.min(), finals.max(), 1000)

= kde(ys)
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axl.plot(dens, ys, color=’#5FA8D3’, 1lw=2)

axl.axhline(finals.mean(), color=’#5FA8D3’, 1ls=’--’, 1lw
=1.5)
axl.grid(True, linestyle=’:’, linewidth=0.7, alpha=0.6)

plt.tight_layout ()
plt.show ()

Listing 4: Plot percorsi Monte Carlo.

La figura e divisa in due sotto-grafici orizzontali, in cui il primo, az0, mostra nel det-

taglio 'andamento temporale dei percorsi simulati, mentre il secondo, azi, presenta la

distribuzione marginale dei valori finali.

20000
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16000

14000 -

12000 +

10000 -

8000

T T T T T t T T
50 100 150 200 250 0.0000 0.0001 0.0002

Figura 8: Simulazione Monte Carlo del portafoglio (n = 10000).

Puo essere utile segnalare 1'utilizzo della Kernel Density Estimation (KDE) per stimare

la distribuzione dei risultati finali.

fig2, ax2 = plt.subplots(figsize=(10, 4))

fig2.canvas.header_visible = False
fig2.canvas.toolbar_visible = True
fig2.canvas.footer_visible = False

ax2.plot(cum_mean, label=’Media cumulata’, color=’navy’)
ax2.fill_between(np.arange(len(cum_mean)), cum_mean -

stderr, cum_mean + stderr,
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color=’navy’, alpha=0.2, label=’+/-1 std err’)
ax2.grid(True, linestyle=’--’, linewidth=0.6, alpha=0.7)
ax2.legend ()

fig2.tight_layout ()
plt.show ()

Listing 5: Media cumulata dei risultati simulati

Nel secondo grafico, la riga az2.plot(cum_mean, label="Media cumulata’, color="navy’)
traccia la media cumulata dei risultati simulati, a cui succesivamente viene aggiunta una

barra intorno alla curva pari a £ 1 errore standard.

—— Media cumulata
14000 4 +1 std err

13000 4

12000 + L

11000 4

10000 4

0 2000 4000 6000 8000 10000

Figura 9: Media cumulata della simulazione (n = 10000)

N

E ampiamente apprezzabile la riduzione dell’errore standard della media al crescere del
numero dei cammini. Significativo risulta anche il beneficio di un maggior numero di simu-
lazioni nei confronti del coefficiente di variazione, nell’ambito di una maggiore robustezza

dell’intero processo in presenza di un elevata numerosita di percorsi simulati.

Come precisato in apertura di sezione, il ricorso a tecniche di simulazione Monte Carlo
consente di superare i limiti del tradizionale approccio media-varianza, fondato sull’as-
sunzione di normalita dei rendimenti. Tale ipotesi, tuttavia, risulta spesso disattesa nei
mercati reali, dove le distribuzioni empiriche dei rendimenti mostrano frequenti deviazioni
dalla normalita, rendendo 1’approssimazione gaussiana inadeguata a descriverne accura-
tamente il comportamento.

Si consideri, a titolo esemplificativo, un portafoglio composto in via esclusiva ed in pari

misura dai titoli Meta e Nvidia, il cui valore di partenza ¢ fissato a $10000.
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Figura 10: Distribuzione asimmetrica dei rendimenti (META = 0.5 ; NVDA = 0.5).

La simulazione3!

mostra valori di Skewness e Kurtosis rispettivamente pari a 1.36 e 3.43,
indicando che la distribuzione presenta un’asimmetria a destra e code pesanti (e dun-
que, una non normalita statisticamente significativa®?), distaccandosi fortemente
dal modello gaussiano, come facilmente desumibile dall’immagine di cui sopra.

Inoltre, considerando lo Sharpe Ratio e il Sortino Ratio, quantificati in 0.72 e 1.19, si
coglie facilmente come considerare la deviazione standard come unica misura del rischio,
in accordo alla logica di Markowitz, porti ad una sottostima del rendimento corretto per
il rischio, o, secondo la prospettiva opposta, che contribuisca a sovrastimare il rischio ef-
fettivo percepito dall’investitore, in quanto manca della capacita di distinguere tra rischio

upside e downside.

31Effettuata in data 8 agosto 2025, 41 minuti dopo I’apertura dei mercati.
32Con la conseguente maggiore probabilita di eventi estremi, sia negativi che positivi.
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3 Applicazioni pratiche dei modelli

Il presente capitolo apre la seconda sezione dell’elaborato, incentrata sulla valutazione
empirica delle performance predittive dei modelli teorici finora discussi. In particolare, i
prezzi delle opzioni ottenuti mediante le diverse metodologie verranno confrontati con i
corrispondenti dati di mercato, al fine di verificarne ’attendibilita e la capacita di replica

delle dinamiche reali.

3.1 Introduzione all’analisi

Dopo aver delineato i principi matematici alla base dei modelli di Cox-Ross-Rubinstein,
Black-Scholes, Monte Carlo e Heston, si procede ora alla loro comparazione pratica. L’o-
biettivo e testare le ipotesi teoriche alla luce dei dati osservati, valutando la capacita di

ciascun modello di approssimare i prezzi delle opzioni effettivamente negoziati sul mercato.

3.1.1 Un programma omnicomprensivo

Nell’ottica dell’attuazione del confronto tra i diversi modelli di pricing, si fa ricorso ad un
apposito programma progettato per misurare la capacita di ciascun modelli di aderire ai

prezzi di mercato delle opzioni, misurando 'accuratezza predittiva tramite 'RMSE.

L’analisi che segue fornira una valutazione approfondita della convergenza del modello di
Cox-Ross-Rubinstein (CRR) e delle simulazioni Monte Carlo rispetto ai prezzi calcolati
mediante il modello Black-Scholes, ferma restando I'osservanza delle condizioni preliminari
stabilite. Sara inoltre proposta una valutazione esaustiva del modello di Heston, con
particolare attenzione alla sua procedura di calibrazione. Nello specifico, il modello di
Heston con salti viene calibrato utilizzando un processo di ottimizzazione numerica, che
mira a minimizzare la differenza tra i prezzi derivati dal modello e quelli osservati sul
mercato. I parametri ottimizzati includono la volatilita stocastica, la correlazione tra il
processo stocastico del sottostante e la volatilita, nonché i parametri associati ai salti nel

processo di prezzo.

Inoltre, il programma fornisce una serie di grafici interattivi generati tramite la libreria
Plotly, che permettono di visualizzare in modo intuitivo e dettagliato i risultati dell’analisi
e consentono di esplorare facilmente la performance di ciascun modello, facilitando un

confronto visivo tra i prezzi simulati e quelli di mercato.
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3.2 Capacita previsionali dei modelli

Poste le ampie premesse teoriche, ¢ possibile nell'immediato appurare la convergenza
BS-CRR-MC, i quali, posti come base di riferimento, saranno confrontati con il modello
Heston, in modo tale da poter verificare i vantaggi introdotti dall’adozione di un sistema

a volatilita stocastica.

Si prenda in analisi il test effettuato in data 28 agosto 2025 sull’option chain AAPL con
scadenza al 5 settembre dello stesso anno. In generale, le opzioni del settore tecnologico
presentano una maggiore volatilita e dunque permettono di valutare il comportamento

del modelli tradizionali in condizioni non ottimali.

T Market Heston MC_BS SQError_Heston SQError_BS SQError_CRR SQError_MC_BS Intrinsic

30.75 31.41 2977 29.77 0.4293 0.000 29.767271

1 18250 0.024 2810 2895 2727 29.05 27.27 0.7249 0.000 27.269799

2 185.00 0.024 2590 26.50 24.82 24.82 24.83 0.3575 0.367 24.772328
3 18750 0.024 2280 24.04 2227 24.05 2227 0.000 22.274856
4 190.00 0.024 2112 2159 20.01 20.01 20.03 0.2203 0.385 19.777385
5 19250 0.024 18.45 19.15 17.46 17.46 17.47 0.4948 0.327 17.279913
6 19500 0.024 16.30 16.74 1497 14.97 14.98 0.1918 0.289 14.782442
7 19750 0.024 14.30 14.37 13.24 13.24 13.25 0.0052 0.382 12.284970
8 200.00 0.024 12.03 12.09 10.77 10.77 10.78 0.0043 0.331 9.787499
9 20250 0.024 9.85 994 859 859 8.60 0.0080 0.309  7.290027
10 205.00 0.024 8.05 798 691 692 6.89 0.0052 0.320 4.792556
1 20750 0.024 6.20 6.256 519 519 5.16 0.0024 0.307 2.295084
12 210.00 0.024 470 477 384 385 3.81 0.0049 0.7313 0.7306 0.7932 0.306 0.000000
13 21250 0.024 3.55 355 285 285 2.82 0.0000 0.4949 0.4955 0.5393 0.312 0.000000
14 215.00 0.024 2.55 259 196 1.96 1.95 0.0017 0.3492 0.3487 0.3611 0.309 0.000000
15 217.50 0.024 1.85 185 140 1.40 1.40 0.0000 0.2060 0.2057 0.2003 0.317 0.000000
16 220.00 0.024 1.27 129 093 093 0.94 0.0004 0.1153 0.1153 0.1045 0.317 0.000000
17 22250 0.024 0.94 087 0.68 0.68 0.70 0.0044 0.0701 0.0702 0.0599 0.330 0.000000
18 225.00 0.024 0.66 058 0.46 0.46 0.49 0.0058 0.0383 0.0382 0.0306 0.337 0.000000
19 22750 0.024 0.49 038 034 034 0.36 0.0111 0.0220 0.0221 0.0169 0.349 0.000000
20 230.00 0.024 0.37 025 0.26 0.26 0.27 0.0149 0.0129 0.0129 0.0093 0.362 0.000000

Figura 11: Tabella riepilogativa AAPL Call 9/5/2025.

Per garantire una maggiore qualita dell’analisi, i dati riportati sono stati precedentemente
filtrati, in modo che venissero considerate solo opzioni in un intervallo dello strike compreso
tra 1'85% e il 115% del prezzo spot.

Un secondo elemento di filtraggio & rappresentato dallo spread bid/ask contro prezzo di
riferimento, il quale deve sottostare a valori inferiori al 30%. Sono inoltre considerate le
opzioni solo con valori di volatilita ragionevoli, ossia compresi tra 0.000001 e 2.5.

Infine, il prezzo di mercato deve risultare superiore al valore intrinseco dell’opzione, ma

non deve andare oltre un multiplo ragionevole del sottostante.
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Potendo ora passare alla valutazione dei risultati, si nota come, da una parte i prez-
zi calcolati dai modelli ad albero binomiale, Black-Scholes e Monte Carlo tendano a
convergere, fornendo una conferma empirica di quanto stabilito nella sezione teorica, e
dall’altra quanto, alla luce della prossimita temporale della scadenza e delle caratteristiche
intrinseche del settore in cui opera Apple, questi forniscano una stima meno accurata del

piu recente modello di Heston.

Le opzioni su titoli tecnologici presentano caratteristiche strutturali che incidono forte-
mente sulla qualita del pricing e sulla precisione di ciascun modello. In primo luogo, come
precedentemente affermato, si annovera la forte volatilita storica, che si traduce in alti
valori delle relative volatilita implicite (e dunque di superfici di volatilita piu accentuate),
specialmente nel breve termine.

E da considerare anche la forte dipendenza da eventi specifici, relativi alla singola impresa
o al pitt ampio scenario macroeconomico, dalle cui aspettative si puo originare uno skew
temporaneo.

Tali considerazioni giustificano la formazione di uno smile di volatilita e mettono in mostra
i noti limiti del modello di Black-Scholes (e, per estensione, di CRR e MC).

Nel caso in analisi si evidenzia che, su una scadenza di pochi giorni il modello di Heston
con salti fornisce la miglior aderenza ai prezzi di mercato, con un RMSE complessivo di
0.3039, contro valori maggiori di 0.80 relativi agli altri modelli.

Tuttavia, puo essere utile soffermarsi sulle caratteristiche degli errori commessi dai mo-
delli. Nello specifico, mentre per strike compresi tra 180 e 200 USD, Heston sovrastima
in modo sistematico, i modelli a volatilita costante tendono a sottostimare anche di oltre
2 USD. La superiorita di Heston diventa lampante nella regione ATM (Strike da 195 a
205 USD), dove Heston mantiene errori dell’ordine di 1073, a differenza di Black-Scholes,
CRR e Monte Carlo che mostrano errori quadratici intorno al dollaro e mezzo. Dai dati
si evince chiaramente come i salti e la volatilita stocastica siano uno strumento di grande

valore per catturare l’accelerazione dello skew di breve periodo.

Il medesimo comportamento é riscontrabile in tutte le altre opzioni del settore tech, e il mo-
dello di Heston (specialmente nella variante qui utilizzata) si presenta come un’alternativa

generalmente piu raffinata rispetto ai modelli a volatilita costante.

Spostando 'attenzione dal settore tecnologico € possibile compiere il medesimo test su

uno strumento di replica, come un ETF, su una scadenza piu lunga.
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K T Market Heston BS CRR MC_BS SQError_Heston SQError_BS SQError_CRR SQError_MC_BS \" Intrinsic
0 49500 0.083 8284 75.69 6522 6522 65.29 51.0669 310.2362 310.2940 (ACETVE 0.406 59.920157
1 500.00 0.083 77.89 71.37 60.50 60.50 60.55 42.6301 302.6853 302.6826 ALK 0.388 54.937835
2 505.00 0.083 7294 67.06 55.82 5582 55.86 34.5582 292.9091 292.9205 PANICIT:VE 0.372 49.955512
3 51000 0.083 6809 6276 5118 5118  51.20 28.4419 286.1637 286.2180 PLEROELY 0.355 44.973189
4 515.00 0.083 63.41 58.48 45.00 45.00 45.03 24.2357 338.6088 338.7283 ERVAZCEN 0.302 39.990866
5 520.00 0.083 58.53 54.22 40.37 40.37 40.39 18.56475 329.7225 329.8107 EYENLELN 0.285 35.008543
6 525.00 0.083 53.78 49.99 36.08 36.08 36.08 14.3729 313.1520 313.1569 IR CTYVE 0.275 30.026220
7 530.00 0.083 49.03 4579 3165 31.65 31.62 10.5291 302.0379 302.0730 ELEN(ZCR 0.259 25.043897
8 535.00 0.083 44.45 4162 2758 27.58 2751 7.9871 284.4210 284.4261 pLIXC N 0.248  20.061574
9 540.00 0.083 39.68 3750 23.37 23.37 23.27 47562 266.0654 266.1387 PLCREELE 0.233 15.079251
10 54100 0.083 3884 36.68 22.84 22.84 2274 46382 255.8697 255.9318 VEEREERN 0.234  14.082786
11 542.00 0.083 37.90 35.87 2195 21.95 21.84 41391 254.4197 254.4890 VAVAIEEN 0.230 13.086321
12 54300 0083 3702 3505 2128 2128 2117 3.8930 247.9771 247.9836 PAARGIEN 0.229  12.089857
13 544.00 0.083 36.09 34.24 20.44 20.44 20.33 3.4198 244.9383 245.0155 pZERACI N 0.225 11.093392
14 545.00 0.083 35.18 3343 19.69 19.69 19.568 3.0537 239.9037 239.9103 pZRXLyRE 0.223 10.096928
15 546.00 0.083 34.32 32.63 19.06 19.05 18.94 2.8671 233.0005 233.0738 PRIRYZCN 0.222 9.100463
16 547.00 0.083 33.45 31.82 18.31 18.31 18.20 2.6274 229.0022 229.0080 PAYARGN 0.220 8.103998
17 548.00 0.083 3254 31.02 1754 1754 17.42 2.2973 225.1196 225.1351 pr2 X 0.216 7107534
18 549.00 0.083 31.58 30.23 16.72 16.72 16.61 1.8287 220.7884 220.8709 Yyl 0.212 6.111069
19 550.00 0.083 30.78 29.43 16.22 16.22 16.10 1.8104 212.0310 212.0529 VALY Xyl 0.213 5.114605
20 551.00 0.083 29.88 28.64 1547 15.47 15.35 15153 207.5279 207.5674 PALRCEIYl 0.210 4.118140

Figura 12: Tabella riepilogativa QQQ ETF 9/26/2025.

Si propongono pertanto i prezzi calcolati sui primi 20 strike filtrati del’ETF offerto da
Invesco e negoziato sul Nasdaq, con scadenza fissata al 26 settembre 2025.

Anche in questo caso la modellizzazione con volatilita stocastica si mostra superiore ri-
spetto ai modelli a volatilita costante, specialmente in corrispondenza degli strike in cui
il volatility smile risulta pitu accentuato. Tuttavia, si denotano i primi segni di deteriora-
mento della stima anche in rapporto al modello di Heston, in parte a causa della qualita
dei dati offerti dalla piattaforma Yahoo Finance, che sebbene adeguati a scopi informati-
vo/divulgativi, possono risultare inadeguati per una calibrazione efficace dei parametri di
Heston, ma anche a causa delle limitazioni intrinseche del modello, anche al netto dell’im-
plementazione del termine di salto. Per tale ragione, nel capitolo successivo e¢ proposta
la derivazione di un nuovo modello della famiglia Heston, con l'intenzione di fornire una
stima del prezzo maggiormente accurata sotto le condizioni in cui il modello di Heston

tradizionale di ¢ dimostrato fallace.

3.2.1 Implementazione dei salti lognormali nel modello di Heston

Per raggiungere una stima il piti precisa possibile si ¢ scelto di dotare il modello di Heston
tradizionale di un termine che potesse tenere in considerazione gli effetti dei salti di prezzo,

sulla scia dei modelli di Bates e dei jump-diffusion di Merton.
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Nel particolare caso in analisi si combina una dinamica diffusa a varianza stocastica di tipo
CIR con un processo di Poisson indipendente che genera salti moltiplicativi del prezzo.
Sotto la misura neutrale al rischio Q, le dinamiche del prezzo del sottostante e della

varianza risultano

ds;

o = (=g =)t + Vo dW® 4 (¢! —1)dN,, (3.1)
-~
dv, = k(0 — vp) dt + /v, dW", (3.2)

dove d(Wt(S), Wt(v)> = pdt, mentre i parametri x,6,£ > 0 indicano la velocita di mean
reversion, il livello di lungo periodo e la volatilita della volatilita del processo CIR per v;.

Il termine
ky=E[e/ — 1] = eM+297 — 1 (3.3)

rappresenta il compensatore dei salti, avente funzione correttiva del drift affinché e~ ("~ 9tg,
sia una martingala sotto Q. La coppia (S;, v¢) risulta in tal modo un affine jump-diffusion
(Duffie-Pan-Singleton, 2000).

Denotando X7 = In St e x = In .S, il prezzo di una call europea puo essere ottenuto a
partire dalla funzione caratteristica p(u; T) = EQ[e?X7].

In particolare, la struttura affine implica una fattorizzazione della funzione caratteristica

in una componente diffusa (Heston) e una di salto (Merton):

o(u; T) = exp(C’(u;T)—i—D(u;T) vo+iu[x+(r—q—/\JmJ)T]) exp()\JT(emm—éf%“Q—l)).

(3.4)
La seconda esponenziale ¢ la funzione caratteristica del processo di salti lognormali alla
Merton. I coefficienti C' e D della parte Heston risolvono ODE di Riccati e ammetto-
no forma chiusa. Seguendo i lavori di Kahl & Jackle (2005) e Lord & Kahl (2010), si

introducono

N2 s ) k= pSiu—d(u)
d(u) = \/(ﬁ—pf@u) +¢£ (zu+u), g(u) = K—Z{iu%—dgu)’ Rd(u) > 0,
(3.5)
da cui
) Kb . 1 — g(u) e 4T
Cu;T) = =) l(m—pfzu—d(u))T—an( = o) >] , (3.6)
D(u;T) = A=A mdl) 1~ e (3.7)

2 I g{u) a7

Le espressioni appena descritte sono numericamente stabili per 1'uso in integrazioni di
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Fourier in forza della scelta della radice con parte reale positiva e alla normalizzazione
tramite g(u).

Con maggior dettaglio, si consideri I'ansatz affine
f(t,s,0) = E, [exp(iuXT)} = exp(A(T) + B(7) v +iulog s), r=T-t (3.38)

applicando Feynman-Kac alle dinamiche di cui alle equazioni (3.1) e (3.2) con generatore

L e sostituendo la (3.8) si ottiene

O-f = Lf=f {z’u(r —q—Asky) — 3utv + 3E0B(7)* + k(0 — v) B(T) + pfuvB(T)i}
+ £ A (Ele™]) - 1). (3.9)

Eguagliando i coefficienti in potenze di v e nei termini costanti si ricavano le ODE in 7:

B'(r) = 1&B(1)* + (ptiuv—x)B(r) — tu*,  B(0)=0, (3.10)

; 1 5 9
A(r) = iu(r—q—Myry) + K0 B(r) + )\(ew’”_ﬂ'“ - 1) LA =0, (3.11)
L’equazione (3.10) ¢ una Riccati a coefficienti costanti che si integra in forma chiusa

introducendo d(u) e g(u) come in (3.5); reinserendo B in (3.11) e integrando si ottiene A,

e complessivamente la decomposizione (3.4) con i coefficienti (3.6) e (3.7).

Come proposto da Heston (1993) e Lewis (2001), si consideri il prezzo di call espresso

nella nota forma

C(Sy, K,T) = Spe " P, — Ke "' P,

con le probabilita neutrali al rischio P;, P» definite come

1 1 00 7zulogK(p(u - ZT)
P o= - f/ d 12
! > T 7 0 ( iu(—i;T) “ (3:12)
1 1 00 —zulogK T
P— = + —/ 3%( <“ )> du, (3.13)
2 m Jo

con p(—i;T) = E[S7] = Spe=97T.

La rappresentazione per P; si ottiene mediante cambio di misura alla share measure e
normalizzazione, e in entrambe le espressioni la singolarita in © = 0 ¢ rimossa dalla quota
1 e dal fattore 1/(iu). Le trasformate (3.12) e (3.13) sono ben condizionate nel contesto
Heston/Bates, purché si impieghi la Little Heston Trap per la parte diffusiva della funzione

caratteristica.
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In particolare, la parametrizzazione LHT impone Rd(u) > 0 e |g(u)| < 1 nell’insieme di

(u, T) di interesse. Il fattore logaritmico che compare in C'(u;T) puo essere riscritto come

1— —d(u)T
2(T,u) = g(u) e = 1-g(u) e~ dWT
1—g(u) %?_)/
=: w(T,u

Poiché |g(u)] < 1 e Rd(u) > 0, si ha |w(T,u)| < 1 per ogni T" > 0, e dunque z(7,u)
rimane in un intorno controllato di 1.

Ne conseguono due limiti regolari che guidano la scelta del ramo del logaritmo; piu preci-
samente, per T'— oo si ha e7%" — 0 e quindi 2(7T,u) — 1 dall’interno del disco unitario,

eper T'— 0, z2(T,u) — 1 in modo continuo.

Pertanto, al variare di (u,T'), la traiettoria di z(7,u) non attraversa la semiretta reale
negativa (branch cut del logaritmo complesso), il numero di avvolgimento attorno all’ori-
gine ¢ nullo e Arg z(T', u) resta lontano da +m.

In termini computazionali, il termine In z(7,u) nella formula del pricing di una call ¢
valutabile sul ramo principale senza salti di fase (di valore pari a £27i) né cancellazioni
catastrofiche quando 1 — ge~9T & particolarmente ridotto. Tale normalizzazione, intro-
dotta per evitare trappole di ramo e singolarita spurie, si ¢ dimostrata particolarmente

efficace per scadenze lunghe e per valori di |u| elevati (Lord & Kahl, 2010)33.

Puo inoltre essere utile analizzare il ruolo della condizione di Feller nel garantire la stabilita
computazionale del modello.

Nello specifico suddetta condizione, definita attraverso la relazione
2k0 > &2, (3.14)

assicura che lo zero sia inaccessibile e che v; rimanga strettamente positivo con probabilita
uno. Se la condizione ¢ soddisfatta, allora /v, risulta definita lungo tutto il cammino, la
densita di v; € regolare e non emergono comportamenti patologici al bordo.

La rappresentazione affine resta valida anche quando Feller non ¢ soddisfatta, ma la

prossimita allo zero puo accrescere la sensibilita numerica nella valutazione di d(u) e del

(1—ge~?T)
(1-9)

la condizione in analisi fornisce una garanzia strutturale addizionale che si riflette in una

rapporto per orizzonti brevi. La Little Heston Trap mitiga tali instabilita, mentre

maggiore regolarita dello smile nel breve e in una riduzione del rischio di degenerazioni

33Per completezza, si osservi che una forma algebricamente equivalente ma numericamente sfavorevole
1—ge—dT

N . . . . . . . (1_g) .
puo avvicinarsi a zero lungo traiettorie che lambiscono o attraversano la branch cut, inducendo cambi
di ramo del logaritmo e una generale maggiore instabilitd. Ad ogni modo, la scelta Little Trap evita

sistematicamente simili fenomeni, e risulta pertanto in questo contesto preferibile.

sostituisce g con il suo reciproco § = 1/g (tipicamente con |g| > 1); in tal caso il fattore Z(T,u) =
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numeriche.

La valutazione degli integrali delle probabilita neutral al rischio richiede una scelta ac-
curata dello schema di integrazione numerica sull’asse reale positivo. In primo luogo, il
contributo in © = 0 ¢ trattato separando esplicitamente la quota % e la regolarizzazione
indotta dal fattore ﬁ, cosicché 'integrando ¢ ben definito al limite. Inoltre, € opportu-
no troncare l'intervallo di integrazione a [0, Upax] con Upax selezionato in funzione della
scadenza e dei parametri: in molte configurazioni pratiche un intervallo nell’ordine di
grandezza compreso tra poche decine e qualche centinaio ¢ sufficiente, mentre in presenza
di frequenze di salto elevate o varianze dei salti piu ampie € spesso necessario estendere
il dominio di integrazione per catturare 'apporto delle code. In terzo luogo, la scelta di
tolleranze assolute e relative stringenti nella quadratura adattiva consente di controllare
I’errore numerico accumulato e di evitare artefatti oscillatori; la stabilizzazione fornita
dalla Little Trap sulla parte diffusiva contribuisce a rendere l'integrando piu regolare,
migliorando la velocita di convergenza. Infine, risulta buona pratica verificare la condi-
zione di normalizzazione ¢(—i;T) = Spe" 97 come controllo interno di coerenza sulla

compensazione del drift e sulla fattorizzazione.

Per T — 0 si ha C(u;0) = D(u;0) = 0 e ¢(u;0) = €™*, come richiesto dalle condizioni
iniziali. Per T — oo, segue che ln(%) — —1In(1 — g), e che D(u;T) — %,
riflettendo 'avvicinamento al regime stazionario della varianza.

I vincoli di non arbitraggio 0 < C' < Spe™?" e la parita put-call sono preservati dall’im-
postazione per trasformata, grazie alla correzione —\;k; nel drift e alla normalizzazione

o(—i;T) = Spelr=97T.

3.2.2 Calibrazione del modello Heston-Bates

La procedura di calibrazione del modello ¢ fortemente legata alle considerazioni teoriche
appena poste. L’impiego della forma LHT costituisce un passaggio chiave per garantire

la stabilita numerica del modello.

Volendo evidenziare alcune specificita piu tecniche di suddetta procedura, si osserva in-
nanzitutto che sotto la misura di rischio neutro Q si fissa la funzione caratteristica ¢(u; T)
del log-prezzo X = log St come prodotto tra la componente diffusiva e quella di salto,

. . 1,2
con drift compensato pari a r — g — \jky, dove ky = et/ 1297 — 1.

Tale struttura e incapsulata, nel caso del programma di pricing proposto in questo elabora-
to, nella funzione interna _heston_charfun, nella quale si definiscono, oltre a d(u) e g(u), i
termini C'(u; T) e D(u; T), e si moltiplica per il fattore di Merton exp [)\JT (eiuw—%"%“Q — 1)}
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def _heston_charfun(u, T, S0, r, q, kappa, theta, vO0, xi, rho,
lambda_jump, muJ, sigmal):
i= 1]
x = np.log(S0)
= np.sqrt ((rho*xi*i*xu - kappa)**2 + (xi**2)*(i*u + ux*x*x2))
g = (kappa - rhoxxix*i*u - d) / (kappa - rhoxxix*xixu + d)
edT = np.exp(-d*T)
C = (kappa*theta/(xi**2)) x ((kappa - rhox*xixi*u - d)*T -
2.0*xnp.log((1.0 - gxedT)/(1.0 - g)))
D = ((kappa - rhoxxixi*u - d)/(xix**2)) * ((1.0 - edT)/(1.0 -
g*edT))

k_jump = np.exp(muJ + O0.5*sigmaJ*xsigmaJ) - 1.0

phi_J = np.exp(lambda_jump*T * (np.exp(i*u*muJ - 0.5*sigmalJx*
sigmaJ*u*u) - 1.0))

drift = (r - q - lambda_jump * k_jump)

return np.exp(C + D*v0 + i*u*x(x + drift*T)) * phi_J

Listing 6: Implementazione della funzione caratteristica con Little Heston Trap.

La funzione restituisce il valore atteso sotto Q dell’esponenziale complesso e™X7 (dove u €
C indica la variabile di Fourier. Con maggiore dettaglio, I'input v viene immediatamente
convertito in array di tipo complesso per garantire compatibilita con operazioni vettoriali
e complesse.

Successivamente, si definisce I'unita immaginaria ¢ = 15 e si calcola il logaritmo del prezzo

iniziale (che rappresenta lo stato iniziale del processo).

La parte diffusiva e gestita attraverso la soluzione analitica del modello di Heston, con sta-
bilizzazione numerica ottenuta tramite il metodo Little Heston Trap; si calcola il termine
d(u), dipendente dai parametri di mean-reversion, e successivamente g(u), il quale rappre-
senta una trasformazione razionale di d(u) e consente di evitare instabilita nei logaritmi.

L’esponenziale di —dt viene precomputato per semplificare i calcoli successivi.

In seguito, si determinano i coefficienti C(u;7T) e D(u;T); nuovamente, il primo rap-
presenta la parte deterministica della funzione caratteristica, mentre il secondo modula

I'effetto della variabile iniziale vy.

Con riferimento alla componente di salto, modellata come un processo di Poisson con
ampiezze lognormali, e calcolato il compensatore k;, che rappresenta il valore atteso del

salto e corregge la deriva del processo. La funzione caratteristica dei salti, ®;(u),
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determinata secondo la relazione sopra definita immediatamente dopo .

Infine, il drift del processo del log-prezzo viene compensato nella modalita precedente-
mente illustrata. Il valore della funzione caratteristica risulta cosi pari al prodotto tra la

parte diffusiva e quella di salto, rispettando la relazione fornita alla 3.4.

A partire da ¢, il prezzo dell’opzione call C'(Sy, K, T) ¢ ottenuto mediante il ricorso ai noti
integrali di Lewis-Heston. Si prenda in analisi la funzione _Pj_heston_cf, in cui viene

calcolato il valore delle probabilita di esercizio dell’opzione P; e Ps, gia definite come

1 1 %) —iulog K — T 1 1 00 —iulog K -T
Pi=s+- [ R pu=iD)) y, P=g+— [TR( )Y g,
2 wlo iwp(—i;T) 2 wJo iu

La funzione riceve come input il parametro j, un indice che determina quale delle due

probabilita viene calcolata.

def _Pj_heston_cf(j, K, T, SO, r, q, kappa, theta, vO, xi, rho,
lambda_jump, muJ, sigmaJ, abs_tol=1e-8, rel_tol=1le-6, max_eval
=200) :
logK = np.log(K)
i=1j

if j == 2:
def integrand(u):
u = float (u)
if uw == 0.0:
return 0.0
phi_u = _heston_charfun(u, T, SO, r, q, kappa, theta,
vO, xi, rho, lambda_jump, muJ, sigmalJ)
val = np.exp(-i*xu*xlogK) * (phi_u / (i*u))
return np.real(val)
I, _ = quad(integrand, 0.0, np.inf, epsabs=abs_tol,
epsrel=rel_tol, limit=max_eval)

return 0.5 + I/np.pi

Listing 7: Calcolo della probabilita neutrale al rischio P.

Nel presente caso in cui j = 2, si definisce un integrando che valuta la funzione caratteri-
efiu log K

stica p(u) per u € R*, moltiplicata per il fattore “—-

elif j == 1:
phi_minus_i = SO * np.exp((r - q) * T)
def integrand(u):
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u = float (u)
if u == 0.0:
return 0.0
phi_shift = _heston_charfun(u - 1j, T, SO0, r, q, kappa,
theta, vO, xi, rho, lambda_jump, muJ, sigmal)
val = np.exp(-i*u*xlogK) * (phi_shift / (i*u * phi_minus_i
))
return np.real(val)
I, _ = quad(integrand, 0.0, np.inf, epsabs=abs_tol, epsrel=
rel_tol, limit=max_eval)

return 0.5 + I/np.pi

Listing 8: Calcolo della probabilita neutrale al rischio P;.

Con j = 1, si utilizza una variante della funzione caratteristica valutata in u—1¢, che corri-
sponde ad uno spostamento nel piano complesso necessario per ottenere P;. In questo caso,
si introduce anche il termine ¢(—i), che nel modello di Bates ha forma chiusa e corrisponde

al valore atteso del prezzo sotto la misura di rischio neutro (ovvero Spe(™=97)34,

Entrambe le integrazioni sono eseguite tramite la funzione quad di SciPy. Qualora j fosse
diverso da 1 o 2, la funzione solleverebbe un ValueError, segnalando un uso non valido®.
Il wrapper call_price_heston_cf coordina le due valutazioni, mentre heston_price_vectorized
realizza la versione vettoriale su una griglia di strike, controllando tolleranze assolu-
te e relative tramite i parametri abs_tol, rel tol e max_eval passati al processo di

quadratura.

def heston_price_vectorized(SO, strikes, T, r, kappa, theta, vO,
xi, rho, lambda_jump, muJ, sigmaJ, q=0.0, option_type=’call’,
abs_tol=1e-8, rel tol=1e-6, max_eval=200):
strikes = np.asarray(strikes, float)

out = np.empty_like(strikes, dtype=float)

if isinstance (option_type, str):

option_types = [option_typel] * len(strikes)

else:

option_types = np.asarray(option_type)

34F proprio a seguito di questa normalizzazione che la relazione per il calcolo della probabilitd assume
la forma descritta alla 3.12.

35Procedure di debug come questa sono molto diffuse all’interno del programma, in modo da supportare
una piu rapida individuazione e correzione degli errori.
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for j, (K, opt_type) in enumerate(zip(strikes, option_types))

call_price = call_price_heston_cf (S0, float(K), T, r, q,
kappa, theta, vO, xi, rho, lambda_jump, muJ, sigmal,

abs_tol=abs_tol, rel_tol=rel_tol, max_eval=max_eval)

if opt_type.lower () == ’call’:
out[j] = call_price
elif opt_type.lower() == ’put’:

out[j] = call_price - SO*np.exp(-q*T) + K*np.exp(-r*T
)
else:
raise ValueError ("option_type deve essere ’call’ o ’
put’")

return out

Listing 9: Vettorizzazione e controllo delle valutazioni.

Sulla base di quanto illustrato finora, € possibile comprendere come 1'utilizzo della forma
LHT nella costruzione di ¢ renda regolare I'integrando in (u,T"), riducendo in tal modo

fenomeni di branch switching®® e cancellazioni numeriche?”.

La funzione obiettivo obj_heston ricopre un ruolo di primaria importanza nella procedura
di calibrazione; essa definisce un target di ottimizzazione per calibrare i parametri del

modello utilizzando la trasformata di Fourier.

def obj_heston(p, S, strikes, market_prices, T, r, q=0.0,
option_types=None, w=None, penalty=None, abs_tol=1e-8, rel_tol
=1e-6, max_eval=200):
kappa, theta, vO, xi, rho, lambda_jump, muJ, sigmaJ = map(
float, p)

Listing 10: Definizione e input della funzione obiettivo.

I parametri oggetto di calibrazione, racchiusi nel vettore p, vengono dapprima convertiti
in float e assegnati alle variabili che rappresentano le componenti fondamentali del mo-

dello, ossia mean reversion k, livello medio di varianza 6, varianza iniziale vy, volatilita

36Cambiamento del ramo della funzione quando il parametro complesso attraversa una discontinuita o
un taglio di ramo.

37Cio risulta necessario, in quanto nei modelli come Heston-Bates, 'integrando pud contenere termini
oscillanti o esponenziali che si annullano parzialmente, rendendo difficile ottenere una stima precisa del
prezzo dell’opzione.
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della volatilita &, correlazione tra sottostante e varianza p, intensita dei salti A;, media e

deviazione dei salti (p;,0)%.

model = heston_price_vectorized(S, strikes, T, r, kappa, theta,
vO, xi, rho, lambda_jump, muJ, sigmaJ, q=q, option_type=
option_types, abs_tol=abs_tol, rel_tol=rel_tol, max_eval=

max_eval)

market = np.asarray(market_prices, float)
if w is None:

w = np.ones_like (market)
w = np.asarray(w, float)

w =w / (w.mean() + 1le-12)

mse np.mean(w * (model - market) **2)

reg = 0.0

Listing 11: Calcolo dei prezzi teorici.

Viene quindi la funzione obj_heston_jump_cf, utilizzando i parametri del modello e
controllando la precisione numerica tramite le tolleranze assolute e relative e il numero

massimo di valutazioni nel processo di quadratura.

if isinstance(penalty, dict):
reg += float(penalty.get(’w_rho’, 0.0))*rhox*2
reg += float(penalty.get(’w_sigmaJ’, 0.0))*sigmalJ**2
reg += float(penalty.get(’w_lambda’, 0.0))*lambda_jump**2
reg += float(penalty.get(’w_xi’, 0.0))*xix**2

return float(mse + reg)

Listing 12: Creazione del vettore dei prezzi di mercato.

I prezzi di mercato vengono convertiti in array NumPy e, se non vengono forniti pesi
espliciti, si procede ad una pesatura uniforme. I pesi vengono normalizzati rispetto alla
loro media per evitare distorsioni numeriche.

In seguito, si calcola 'errore quadratico medio tra i prezzi teorici e quelli osservati, a
cui si aggiunge un termine di penalizzazione che consente di regolarizzare la calibrazione
introducendo pesi sui parametri piu sensibili o instabili, quali rho, sigmaJ, lambda_jump

e xi.

38 Anche con riferimento alla funzione obiettivo, qualora non fosse specificata la tipologia di opzione, si
imposta di default il pricing di una call.
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Il valore finale restituito dalla funzione ¢ la somma tra l'errore quadratico medio e il
termine di penalizzazione, fornendo cosi una misura scalare da minimizzare durante il

processo di calibrazione.

Ricorrendo ad un maggior formalismo, si denota che la funzione obiettivo riceve il vettore
dei parametri
p=(k,0,v0,&,p,Ass 17, 07),
genera i prezzi modello C’(Ki;p) mediante heston_price_vectorized, e calcola
n

> wi (C(ip) — )+ R(p)

=1

1
L(p) =—
)=
dove C;"™"* sono i prezzi osservati, n il ¢ il numero si strike e @; indica la versione normaliz-
zata dei pesi positivi forniti in input. Il pricing e eseguito in forma vettoriale sugli strike,
e si individua in una formulazione che, per quanto essenziale, si e mostrata fortemente

efficace nel mitigare fenomeni di overfitting e preservare la trattabilita del nucleo affine.

La strategia numerica segue una pipeline a due stadi con meccanismo di fallback; nello
specifico, il primo stadio adotta la Differential Evolution per un’esplorazione globale e

non derivativa dell’ambiente di £, con vincoli di scatola su ciascun parametro.

A tal proposito, viene definita la funzione calibrate_heston_jump_cf_by_data, che si
serve del ricorso ad un ObjectiveRecorder per registrare l'ultima valutazione e facilitare

la diagnostica, nonché una callback che produce log periodici dell’avanzamento”

class ObjectiveRecorder:

def __init__(self, func):

self.func = func
self.last_x = None
self.last_f = None
def __call__(self, x, *args, **xkwargs):
f = self.func(x, *args, **xkwargs)
self.last_x = None if x is None else np.array(x, copy

=True)

]
'_h

self.last_f£

return f

Listing 13: Funzione di registrazione dell’ultima valutazione.

39Nei casi in cui la calibrazione puo richiedere tempistiche maggiormente prolungate, puo essere utile
un’indicazione del progresso della stessa nel log.
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it_de = {"k": 0}
def _cb_de(xk, conv):
it_de["k"] += 1
if dev and (dev_logger is not None) and (rec_coarse.
last_f is not None) and (it_de["k"] % 3 == 0):
dev_logger .write(f" [Bates-CF] DE step {it_del[’k’]}: £
(x) = {rec_coarse.last_f:.6g}")
return False
de_opts = dict(maxiter=(40 if dev else 60), popsize=(12 if
dev else 18), mutation=(0.6, 1.0), ecombination=0.9, polish
=False, disp=False, seed=42)
de_res = differential_evolution(rec_coarse, bounds, args=
args_coarse, callback=_cb_de, updating=’deferred’, workers=
crn_map, **de_opts)

Xx_start = np.array(de_res.x, dtype=float)

Listing 14: Utilizzo di Differential Evolution nella calibrazione (Stadio 1).

Dopo che lo stadio DE fornisce un valido punto di partenza, viene eseguita una rifinitura

locale tramite L-BFGS-B partendo da p®, con gradienti approssimati iterativamente

dall’algoritmo e nel rispetto dei vincoli di scatola definiti in precedenza®.

it_1b = {"k": 0%}
def _cb_1b(xk):
it_1b["k"] += 1
if dev and (dev_logger is not None) and (rec_fine.last_f
is not None) and (it_1b["k"] % 5 == 0):
dev_logger .write(f" [Bates-CF] L-BFGS iter {it_1b[’k
’1}: £(x) = {rec_fine.last_f:.6g}t")

lb_opts = dict(maxiter=120, disp=False, maxls=60, ftol=1e-8,
gtol=1e-5, eps=1e-8)
res_lb = minimize(rec_fine, x0=x0, args=args, bounds=bounds,

method="L-BFGS-B’, options=1b_opts, callback=_cb_1b)

if res_1lb.success and np.all(np.isfinite(res_1b.x)):

return np.array(res_lb.x, float)

Listing 15: Rifinitura con L-BFGS-B (Stadio 2).

40Vincoli concepiti con il principale intento di assicurare che £ resti positiva e p non esca da un dominio
ragionevolmente ammissibile.
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Qualora la rifinitura non converga ad una soluzione numericamente stabile o resti intrap-
polata in un altopiano (diagnosticato da messaggi di arresto o mancanza di miglioramento

di L), si attiva un ripiego (Powell) senza 1'uso di derivate da p(©).

if dev and dev_logger is not None:
msg = getattr(res_lb, "message", "n/a")
dev_logger.write(f"[Bates-CF] L-BFGS-B non riuscito ({msg
}). Provo Powell...")

res_pw = minimize(rec_fine, x0=x0, args=args, bounds=bounds,

method=’Powell’, options={’maxiter’: 200, ’disp’: Falsel})

def _val(x):
return float(rec_fine(np.array(x, float), *args))
candidates = []
try: candidates.append ((’DE’, x0, _val(x0)))
except: pass
if res_1b.success and np.all(np.isfinite(res_1b.x)):
try: candidates.append ((’LBFGS’, res_lb.x, _val(res_1lb.x)
))
except: pass
if res_pw.success and np.all(np.isfinite(res_pw.x)):
try: candidates.append ((’POWELL’, res_pw.x, _val(res_pw.x
)))

except: pass

if not candidates:
raise RuntimeError("Calibrazione Bates-CF: nessuna

soluzione valida.")

Listing 16: Fallback Powell.

La funzione di calibrazione seleziona, infine, fra i candidati, quello con il valore obiettivo

piu basso.

best = min(candidates, key=lambda t: t[2]) [1]
if dev and dev_logger is not None:
dev_logger .write(f" [Bates-CF] Selezionata soluzione
fallback con f(x)={_val(best):.6g}t")

return np.array(best, float)

Listing 17: Scelta del candidato.
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Gli aspetti numerici della valutazione per trasformata sono curati in maniera esplicita
all’interno delle funzioni di prezzo.

Come precedentemente cennato, la regolarizzazione in v = 0 avviene separando la quota

1
2

definito al limite. L’intervallo di integrazione ¢ troncato a [0, Upgs|, con U,e, scelto in

nelle definizioni di P; e P» e introducendo il fattore i, s1 da rendere l'integrando ben

funzione dell’orizzonte T e dell'intensita (e dispersione) dei salti*!.

Le tolleranze abs_tol e rel _tol sono pensate per regolare 'accuratezza della quadra-
tura adattiva. L’utilizzo della Little Heston Trap nella costruzione di C' e D ha portato
ad un significativo miglioramento nella velocita di convergenza e nella riduzione della

suscettibilita ad oscillazioni spurie.

La neutralitd al rischio & monitorata imponendo internamente p(—i;T) = Spe™ 97 e
il drift compensato nella parte diffusiva. Sono proprio tali verifiche, congiuntamente
al controllo di non arbitraggio sui prezzi ricostruiti, a fornire una diagnostica di base
dell’'implementazione.

Nel flusso applicativo, i log prodotti da ObjectiveRecorder nelle fasi DE e L-BFGS-B
documentano la traiettoria di £ e consentono di individuare tempestivamente eventuali

criticita di tolleranza o di quadratura.

4 All’aumentare di Ay o o7, & opportuno estendere U,,q, al fine di catturare adeguatamente le code
della distribuzione.
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4 Formalizzazione di un approccio alternativo

Il modello di Heston, arricchito dalla componente di salto e per mezzo della procedura di
calibrazione appena descritta, propone un metodo di prezzaggio sistematicamente supe-
riore agli altri analizzati.

Esso risulta di valore non soltanto per la mera introduzione del concetto di volatilita sto-
castica, ma poiché e stato in grado di gettare le basi di un nuovo formalismo e di una linea
di pensiero che ha plasmato la successiva ricerca sulla teoria delle opzioni. Ciononostante,
come ogni prodotto frutto della ricerca, puod essere migliorato, le sue assunzioni superate

e 1 limiti valicati.

Nell’'ultima sezione di questo documento si propone una nuova metodologia di pricing a
volatilita stocastica a stato transitorio; un modello stocastico riconducibile alla famiglia

Heston con termine di feedback retroattivo e Schrodinger bridge.

4.1 Riflessioni sull’implementazione del modello Heston-Bates

In sede di implementazione e test del modello di pricing proposto nel capitolo precedente,
si sono manifestate diverse criticita strutturali e numeriche (gia ampiamente discusse dal-
la letteratura negli ultimi decenni) aventi effetto limitativo dell’efficacia operativa dello
stesso.

Sul fronte statistico-strutturale, I'integrazione tra parametri diffusivi (i.e. £, p, #) e com-
ponenti di salto genera collinearita e problemi di identificabilita, specialmente quando,
come nel caso in analisi, 'obiettivo di calibrazione ¢ 'RMSE sui prezzi*?. Inoltre, I'ipotesi
di parametri costanti nel tempo e di salti i.i.d. fatica a sostenere una term-structure dello
skew coerente tra scadenze e regimi, mentre il ricorso esclusivamente ai salti gaussiani e
alla correlazione tende a sottostimare skew estremi e smile di brevissimo termine, dando
vita all’esigenza, divenuta ormai prassi, di introdurre arricchimenti non gaussiani nei salti

per governare code e asimmetrie.

Sul piano numerico, i metodi a trasformata (e.g. FFT, Carr-Madan e affini) mostrano
sensibilita alla scelta di finestra, passo di griglia e damping, con aliasing e troncamenti

che impattano sistematicamente le code della smile e gli strike lontani.

42La scelta effettuata si presta ad accentuare valli piatte e molteplicitd di minimi locali, portando ad
una conseguente instabilita delle soluzioni e una marcata variabilitd cross-expiry (Sahalia & Kimmel,
2007).
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4.2 Proposta di un correttivo alla struttura tradizionale dei

modelli Heston-type

E a seguito della valutazione di tali limitazioni che si intende proporre un nuovo modello
di pricing della famiglia Heston che inserisce, accanto a salti asimmetrici nel sottostante
(e, ove necessario, salti nella varianza), un canale endogeno di feedback prezzo-
varianza concepito con l'intenzione di rendere la risposta di v; immediata e non lineare

agli shock e alleviando la pressione identificativa su £ e p.

Sul piano operativo, lo schema QE di Andersen assicura una simulazione stabile ed effi-
ciente del fattore di varianza con meccanismo di switching numerico controllato, rendendo

la calibrazione Monte Carlo piu robusta rispetto agli schemi naive.

4.2.1 Quadro di riferimento

Riprendendo in parte quanto cennato in sede di introduzione della sezione, il modello SEV
(Stochastic Feedback and Volatility) si presenta come un’estensione dei paradigmi affini di
Heston e Bates proponendo "utilizzo di salti DEJD (double-exponential) sul log-prezzo del
sottostante in stile Kou, salti spettro positivi sul termine di volatilita v; e introducendo
un termine di feedback istantaneo, il quale fornisce un elemento di novita rispetto al

tradizionale approccio fondato sull’esclusivo ricorso alla correlazione browniana.

L’obiettivo e catturare skew molto ripidi e wings estremi su scadenze brevi, nonché spikes
di volatilita successivi event-driven, mantenendo al contempo stabilita numerica tramite
una calibrazione regolarizzata (Schrodinger Bridge, Martingale Optimal Transport). 11
riferimento di partenza rimane il paradigma affine; Heston ottiene la funzione caratteri-
stica in chiuso per un modello SV diffuso, mentre Bates aggiunge salti sul prezzo restando
in ambito affine, consentendo calcolo rapido via integrali di Fourier (Heston, 1993; Bates,
1996).

4.2.2 Specificazione probabilistica del modello

Siano (€, F, Fy>0, P) uno spazio di probabilita filtrato con le usuali, W;° e W due moti
browniani con correlazione p (W, WV, = p,t), e u°(dt, dy) e u?(dt, dz) misure di Poisson
che descrivono rispettivamente i salti nel log-prezzo (y € R) e nella varianza (z > 0), con

misure compensatrici v°(dy), dt e v*(dz), dt.
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Si denotino con g°(dt,dy) = p(dt,dy) — v°(dy),dt (e analogamente ji) le misure di

Poisson compensate.

Il modello e definito da due equazioni differenziali stocastiche descriventi rispettivamente

le dinamiche del prezzo del sottostante e della varianza;

dsS
= pdt + S dWS + / (eV = 1) @) (dt, dy), (4.1)
St_ R
dvy = k(0 — v)dt + £/ v dW) + vd X7 + /]R zpt(dt, dz). (4.2)
+

E interessante notare come i salti sul log-prezzo Y seguono una doppia-esponenziale

asimmetrica (Kou, 2002), con densita

Ty (y) = pme ™™ Lysoy + (1 — p)nae™ 1y <0,

conn >1,m>0epe(0,1).

La distribuzione Double-Exponential Jump Diffusion permette di offrire un controllo indi-
pendente della coda destra (y > 0) e sinistra (y < 0) del processo di salto, garantendo allo
stesso tempo una buona tracciabilita analitica per trasformate e payoff path-dependent
(Kou & Wang, 2004). In particolare, la pesantezza delle code & parametrizzata da n; ed
12, € dunque code piu pesanti possono essere ottenute attraverso la scelta di un valore

piccolo di 7, senza alterare la coda destra, e viceversa.

Tutti i momenti di Y sono finiti, mentre la funzione generatrice My (u) = E[e*Y] & finita
per u in un intorno di 0 determinato dai tassi di decadimento*?; nello specifico, 7, assicura
che My (1) abbia valore finito, condizione necessaria per costruire la misura risk-neutral

tramite tilt di Esscher, come sara esposto nei prossimi punti della trattazione.

Per catturare i bruschi incrementi di volatilita c.d. event-driven, si include in dv; una
componente compound Poisson con salti positivi di ampiezza z. Si assume inoltre un’in-
tensita costante A\ e una distribuzione delle ampiezze con momenti finiti (un’esponenziale
troncata o una lognormale positiva) in modo da evitare esplosioni della varianza.

I salti di v sono indipendenti da quelli di S e introducono discontinuita nella varianza
analoghe a quelle proposte in contesti affini da Bates, pur non sussistendo nel caso qui

proposto un indissolubile vincolo alla struttura affine classica.

Il termine ~, dX; fornisce un leverage effect istantaneo e non lineare; ad ogni variazione
continua del log-prezzo, la varianza subisce un aggiustamento immediato proporzionale a

v, con il risultato di introdurre un accoppiamento diretto non affine tra S e v, addizionale

43Precisamente, My (u) < oo per u € (—n2,1m1)-
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rispetto alla correlazione p presente nei modelli affini standard.
Pertanto, un movimento improvviso (ma continuo) del prezzo influenza istantaneamente
la varianza, permettendo di riprodurre empiricamente spikes di volatilita piu intensi e

asimmetrici di quanto ottenibile con la sola correlazione**.

Assunzioni di ben positura. Per garantire che il sistema di cui le (4.1) e (4.2) abbia
soluzioni uniche e positive, si assumono le seguenti condizioni (che non si differenziano in
modo particolare dalle condizioni di ben-posedness tipiche per le SDE con salti): £ > 0,
0 >0,&>0ev(t) un processo deterministico limitato da crescita al piu lineare.

Si richiede inoltre che la distribuzione dei salti di Kou ammetta momenti esponenziali
in un intorno dell’unita, e dunque, come sopra menzionato, 3¢ > 0 | My (1 + ¢€) <

o0 A My (1 —€) < oo, e che i salti di v abbiano momenti finiti. E proprio in forza

delle citate condizioni che ¢ possible garantire sia la positivita delle soluzioni®®, sia la
praticabilita dei cambi di misura martingala.
4.2.3 Costruzione della misura neutrale al rischio
t
Dato il numéraire B; = efords, si vuole trovare Q ~ P tale che il processo scontato

— [(r—q)ds
0

e = S5; sia una martingala.

In base al primo teorema fondamentale dell’asset pricing, la condizione di non arbitraggio
equivale all’esistenza di una misura martingala equivalente Q (Delbaen & Schachermayer,
1994). Per effettuare il cambio di misura, si costruisce la densita di Radon-Nikodym
Zy = %Q; 7, come I’esponente di Doléans contenente uno shift sui termini browniani e un
tilt sulle misure di salto. Nello specifico, si puo definire

t 1 gt t
Zy = exp {—/ N dWE — 7/ N ds + // log ns(y) (us(ds, dy) — v°(dy) ds)} , (4.3
0 2 Jo 0J/R

dove M\t >0 ¢ un processo prevedibile che regola lo shift del moto browniano W?* e
n:(y)t > 0 & un processo positivo che effettua un tilt*® sul compensatore dei salti di S.
L’intuizione alla base ¢ che A; modifichi il drift diffuso del sottostante, mentre 7;(y) inter-
venga sui salti.

Sotto condizioni sufficienti di integrabilita (criteri di Novikov/Kazamaki estesi ai salti,

44Gu come questa estensione rompa la struttura affine classica dei coefficiente e sulle relative
implicazioni, si discutera in seguito.

45Infatti, i processi di Cox-Ingersoll-Ross non esplodono sotto Feller, e i salti solo positivi non violano
la barriera dello 0.

46Cambio di misura essenzialmente esponenziale.
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ossia E[exp (1 [ A2ds)] < oo e integrabilita esponenziale delle code di salto), Z; ¢ una

vera martingala e quindi definisce una misura Q valida (Cheridito, Filipovié¢ & Yor, 2005).

La scelta naturale per preservare la famiglia a doppia esponenziale dei salti di Kou ¢ un tilt
di Esscher costante, e dunque, ponendo 7;(y) = exp Jy, con ¢ parametro da determinare,
la distribuzione di Y sotto Q rimane invariata.

Imporre la condizione di martingalita sul prezzo scontato equivale allora a richiedere che

il log-generatore cumulante dei momenti dei salti soddisfi
kP +1) = k(W) =r —q, (4.4)

in cui k”'(u) = logE[e*Y] indica il log-CGF di Y sotto P. Tale relazione determina il
parametro ¢ dell’Esscher tilt e assicura che E%[e¥ — 1] = 0, eliminando il contributo
medio dei salti al drift del prezzo scontato (Gerber & Shiu, 1994).

Dato che x”(u) ¢ esplicito e continuo in u, con n; > 1 si ha la garanzia che esista una

soluzione in ¥ € (—nq, 1 — 1) per la (4.4).

Per quanto concerne la parte diffusa, ¢ necessario scegliere il processo di deriva A; in
modo da eliminare anche il drift continuo residuo, pertanto, osservando che sotto P il

drift istantaneo scontato ¢ (u — (r — q) — AsEF[e¥ — 1]), si impone

) (e =1)(ny) — 1) v(dy)
t — \/U_t )

r—q)—pu—AsEF [e¥ —1]
N
diventi nullo. Attraverso questa scelta si trasforma W in un nuovo browniano W

ossia \; = ( nel caso stazionario, in modo che il drift del prezzo scontato

sotto Q (Girsanov per la parte continua), tuttavia, un rilevante effetto collaterale e che,
a causa del termine di feedback vd Xy in dv, lo shift \; introduce anche una modifica nel
drift della varianza sotto Q.

In particolare, emerge un termine additivo A~(¢,v;) nel drift che sintetizza 'effetto del

cambio di misura sulla componente di feedback.

Sotto la misura neutrale al rischio si assume, per semplicita, che l'intensita dei salti

rimanga \,*". In tal caso, la dinamica risk-neutral del modello risulta

ds,

G = (=t WD [ (e = 1)t dy), (45)
t—

47Si rammenti che i salti di varianza non influenzano direttamente la martingalitd e possono essere
lasciati invariati, purché si controlli la loro integrabilita.
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dvn = [K(0 = v0) + B (vt + /oW +9dXg + [ 2prQ(dt dz). (46)
+

Qui v*%(dy) = n,v%(dy) & il nuovo compensatore per i salti di S (tiltato secondo (4.4)),
mentre ¢ e p%@ sono le misure di salto sotto la misura di rischio neutro (compensata

per S, non compensata per v).

Il termine A~y(¢,v;) rappresenta lo shift extra nel drift di v indotto dal cambio di misura
(la sua espressione esplicita puo essere ottenuta mediante applicazione della formula di
Girsanov e dipende linearmente da 7 e A;). Nei limiti speciali v — 0, Ag — 0, A\, — 0,
il modello sotto @ si riduce esattamente alla soluzione affine di Heston (senza salti né
feedback), mentre per v — 0 e Ag > 0 (salti nel prezzo ma niente feedback) si ottiene
il classico modello di Bates affine (Heston con salti sul sottostante), entrambi casi noti

trattabili in chiuso.

4.2.4 Appartenenza alla famiglia Affine Jump-Diffusion

Al livello base (ovvero ponendo v = 0, e trascurando dunque il termine di feedback), il
modello proposto rientra pienamente nella famiglia degli Affine Jump-Diffusion in con-
formita a quanto descritto da Duffie, Pan e Singleton (2000). In tal caso, il vettore di
stato (X, vy), con X; = log S;, segue una dinamica a coefficienti affini, dove il drift di v,
¢ k(0 — vy), la sua diffusivita £,/v; (varianza istantanea vy, affine in v;), e anche il drift
del log-prezzo risulta affine in v, (paria r —q — %vt — )\gE@ [e¥ — 1], il quale si compone
di una costante incrementata di un termine proporzionale a v;).

Le intensita di Poisson Ag, A, sono costanti (affini come caso particolare di funzione costan-
te) e le distribuzioni di salto non dipendono dallo stato. Inoltre, la matrice di covarianza

del rumore browniano € costante e data (in forma correlata) da

dw; @ 1 p
Cov = dt,
dwe p 1
per cui l'intensita istantanea di varianza di (dW*, dW?) risulta Var(dX;) = v;, dt, Var(dv,) =
vy, dt e Cov(dXy, dvy) = Ep, vy, dt, coerentemente alla definizione di processo affine a due
dimensioni.
E in virth di detta affinitd, che il processo ammette una funzione caratteristica in forma

esponenziale affine e I'utilizzo di tecniche di trasformata (Fourier o Laplace) standard per
il pricing (Bakshi & Madan, 2000).

Nel caso completo di v # 0, invece, la presenza del termine di feedback dX; rompe la

struttura affine, in quanto la deriva della varianza istantanea dipende anche dal processo
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del log-prezzo in modo non lineare, e conseguentemente, la CF non ¢ piu risolvibile me-
diante il ricordo alle equazioni Riccati disaccoppiate, come illustrato nella sezione 2.6, ed

in generale, non esiste una soluzione chiusa per la trasformata di X,*.

4.2.5 Positivita della varianza e condizione di Feller

Nonostante 'esistenza di un termine non affine, il processo della varianza rimane non
negativo se i parametri rispettano una condizione di Feller adeguata. Nel dettaglio, poiché
sotto la misura di rischio neutro i browniani W@ e W%@ sono correlati con coefficiente
p, € possibile trovare un singolo moto browniano W, tale che una combinazione lineare

riproduca entrambi, ovvero
EAWN 4y dWSR = ogdW,, ok =€+ 97+ 20, (4.7)

La parte diffusiva di dv; puo quindi essere vista come un processo di tipo CIR con para-
metro di volatilita o.g al posto di €. I risultati classici per i processi CIR garantiscono
dunque che, se

260 > o, (4.8)

allora la varianza resta quasi certamente non-negativa per ogni t (e se 2x0 > o2, lo zero
non & raggiungibile partendo da vy > 0, assicurando positivita stretta), analogamente a
quanto avviene nel modello di Heston standard con condizione di Feller 2k6 > £2. Inoltre,

essendo i salti in v spettro-positivi, non possono mai spingere la volatilita sotto zero.

4.2.6 Estensione non affine e implicazioni sulla calibrabilita

In assenza di formule chiuse, la calibrazione del modello puo essere riformulata come un
problema variazionale di matching distributivo. Un modus operandi certamente degno
di interesse consiste nel vedere la calibrazione come un problema di Schrodinger bridge
entropico o, in linguaggio affine al settore finanziario, di Martingale Optimal Transport
in tempo continuo. L’idea chiave e di considerare il modello affine di partenza come
dinamica di riferimento @Q, con le sue distribuzioni di transizione note, e di cercare tra

tutte le misure Q*, quella che minimizza la distanza dalla misura di riferimento.

In termini matematici, si tratta di risolvere un problema di ottimizzazione sotto vincoli

di misura. Quindi, data Q come legge del processo sotto il modello affine non calibrato,

48Sebbene si avra modo di illustrare ampiamente il trade-off tra chiudibilita analitica e maggiore
flessibilita nel fit di mercato.
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lo scopo da preporsi e quello di trovare la misura calibrata Q* che soddisfi, ad esempio, i
vincoli E?' [H;(X7)] = P™ per una collezione di payoff H; al tempo finale T, replicando
esattamente i prezzi P osservati e minimizzando al contempo la divergenza entropica

rispetto a Q. Un esempio di caso ideale risulta certamente

Q* :=arg 5;1<1<Ié2 {H(Q' | Q) ‘ E? [H;(X7)] = P™*, Vi, e Q" & una misura martingala} :
dove H(Q' | Q) denota l'entropia relativa (Kullback-Leibler) di Q' rispetto a Q. Il vincolo
di martingala, discusso piu avanti, assicura che Q* rispetti I'assenza di arbitraggio (in
particolare, che il prezzo scontato dell’asset sottostante resti una martingala sotto Q).
Il problema qui proposto & essenzialmente un Schrodinger bridge vincolato; pertanto,
tra tutte le traiettorie probabilistiche che partono dalla legge iniziale implicita in Q e
arrivano alle distribuzioni coerenti coi prezzi di mercato, troviamo quella con minima

entropia relativa.

Il caso classico dello Schrodinger bridge considera solo vincoli sulle distribuzioni iniziale
e finale, ma qui includiamo i vincoli di martingala (da cui la denominazione martinga-
le Schrodinger bridge) e altri eventuali vincoli di prezzo intermedi, tipici del Martingale

t19. In letteratura recente, Henry-Labordeére (2019) ha mostrato come

Optimal Transpor
seguire la costruzione dello Schrodinger bridge porti a una nuova classe di modelli di vo-
latilita stocastica esattamente calibrati agli strumenti di mercato, interpretandoli proprio
come versioni martingale dello Schrodinger bridge. Analogamente, Guo, Loeper & Wang
(2022) hanno formulato la calibrazione di modelli locali-stocastici come un problema di
trasporto ottimale per semimartingale, risolvendo un problema convesso vincolato dai
prezzi europei senza approssimazione entropica, ma inquadrandolo comunque come un

problema di matching distributivo sotto vincolo di martingala.

Questa riformulazione probabilistica presenta due vantaggi cruciali, in quanto permette
di trasformare il problema di calibrazione (tipicamente non lineare) in un problema di
minimizzazione convessa (in particolare minimizzazione di entropia), garantendo unicita
e stabilita della soluzione calibrata Q*, ed inoltre, sfruttando il riferimento affine, la
soluzione eredita in buona parte la trattabilita computazionale del modello di partenza,
poiché ottenuta tramite una leggera deformazione (i.e., un tilt) di Q, non richiedendo di

conseguenza la ricostruzione di un modello ex-novo.

Pertanto, il modello calibrato avra le stesse sorgenti di casualita di quello affine originale

e differira solo per la presenza di un termine di deriva aggiuntivo che rafforza 1’accordo

4971 MOT & un’estensione del classico optimal transport di Kantorovich al caso in cui le misure di
margine iniziale e finale devono essere collegate da una misura con vincolo di Martingala (che preserva
quindi Pordine convesso).
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con i prezzi di mercato, e proprio questo drift risulta legato alla densita ottima del tilt

entropico e puo essere calcolato mediante metodi variazionali.

4.2.7 Formulazione variazionale e densita tiltata

Per formalizzare il problema di Schrodinger bridge martingala, si definisca innanzitutto

I'entropia relativa Kulback-Leibler) di una generica Q' rispetto a Q;

d@] (4.9)

H(Q | Q) = Eo|In s

nella quale CC% rappresenta la derivata di Radon-Nikodym di Q' rispetto alla misura di

riferimento.

Q puo essere visto come la legge del processo X; sotto il modello SF'V affine non calibrato,
e Q" come la legge cercata calibrata; il problema variazionale consiste quindi nel mini-
mizzare H(Q* | Q) soggetto ai vincoli di calibrazione (vincoli lineari in Q*, come attese
di payoff) e ai vincoli di martingala. Introducendo moltiplicatori di Lagrange associati ai
vincoli (in particolare, A; per ogni vincolo di prezzo H; e un opportuno potenziale per il

vincolo di martingala), si puo scrivere la funzione Lagrangiana estesa:

K-1
L(Q N 0) = HQ | Q)+ h(Ee [Hi(Xr)| - M)+ Y Eqlar(Sy,) (S~ 1245, )
Z . (4.10)
in cui i termini aggiuntivi garantiranno E¥ [X7] = X, (0 analoghi, se il tasso ¢ non nullo) e
pit in generale la proprieta di martingala. Minimizzando £ rispetto a Q' (e massimizzando
rispetto ai moltiplicatori) si ottengono le condizioni di ottimalita. In particolare, per ogni
vincolo lineare si ottiene una condizione di primo ordine che implica che la densita ottima

dQ* . . . .
g © esponenziale nei payoff vincolati.

Nello specifico, imponendo vincoli solo sulla distribuzione finale X7 ~ t4arget € sul vincolo

di martingala, la soluzione ha la forma classica delle soluzioni di Schrédinger:

dQ*
dQ

L eXp{ _ <I>(XT)}, (4.11)

dove ®(x) & un potenziale (funzione di penalita) tale che forzando questa forma, la legge
marginale di X7 sotto Q* diventa proprio viareet. Pitl in generale, per vincoli multipli, ®(z)
sarebbe una combinazione lineare dei payoff (ossia ®(z) = 3=, \;G;(x) per opportuni G;)

piu eventualmente un termine dipendente da x che aggiusta la condizione di martingala.

83



Un modo equivalente e piu illuminante di rappresentare la soluzione e tramite un processo
hy tiltante (Doob h-transform). Definiamo la densita martingala:
dQ*

o[22

ft]7

che per t = T soddisfa hy = %‘f ein t =0 vale hg = EQ[dQ*/dQ] = 1 (per conserva-
T

zione della probabilita). Per costruzione h; ¢ un processo F-martingala sotto Q, positivo,

spesso chiamato doob density o h-process. Allora la nuova misura Q* calibrata si puo

esprimere in forma tiltata rispetto a Q tramite h, ossia:

dQ*

Ft
per ogni t (in particolare al tempo finale recuperiamo dQ*|zr = hpdQ | Fr). Que-
sta espressione mostra che Q* & assolutamente continua rispetto a Q (come richiesto) e

individua esplicitamente la densita del cambiamento di misura fino al tempo t.

L’introduzione di h; risulta molto utile perché permette di caratterizzare direttamente la
dinamica sotto la misura calibrata Q*. In particolare, se sotto Q il processo X; soddisfa
dX, = b(X,),dt+0(X;),dW2 (dinamica di riferimento), allora sotto Q* valgono le formule
di Girsanov

AW, Y = dw,? — 6,dt, (4.13)

con 6, definito come il processo di market price of risk indotto dalla densita h;. In
effetti, differenziando h; si trova che h; soddisfa una SDE la cui parte di martingala e
proporzionale a hy, 0] thQ. Da questo, la drift correction sul processo X si determina

come o(X};)0; (componentwise). Piu precisamente, la dinamica di X; sotto Q* risulta:

dX, = b(X,),dt + o(X,),dWT + o(X,), 0" (Xy), Vo In hy(X,), dt, (4.14)

drift di feedback

dove il termine finale rappresenta ’extra-drift indotto dal tilt A.

Quest’ultimo e proprio il termine di feedback non affine precedentemente introdotto
ora analizzato con maggior formalismo, e che puo essere rigorosamente identificato con
v = 0(X;), 0" (Xy), Ve Inhy(X;), che quindi dipende sia dal tempo sia dallo stato (e in-
direttamente dagli obiettivi di calibrazione impostati tramite h). E chiaro che questo
drift aggiuntivo, derivato dalla densita entropica ottima, non possa risultare affine in X,
(tranne casi degeneri), confermando pertanto che Q* appartiene a una classe di modelli

non affini.
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Tuttavia, tale drift € costruito in modo molto strutturato, e garantisce che Q* rispetti tut-
ti 1 vincoli di calibrazione impostati ed in particolare, agisce per forzare il log-prezzo sulle

distribuzioni target e correggere la tendenza del processo affinché rimanga una martingala.

4.2.8 Vincolo di martingala e struttura dell’h-processo

Un aspetto cruciale nella costruzione sopra ¢ il vincolo di martingala. In un contesto di
pricing risk-neutral, questo vincolo assicura che il processo scontato del sottostante (o

dell’indice considerato) rimanga una martingala sotto la nuova misura calibrata Q*.

Dal punto di vista dei vincoli di misura, cio implica che le leggi marginali di X; debbano
rispettare la condizione di coerenza martingala, tipicamente espressa come un vincolo sul

T in presenza

momento primo: EQ [Xr | Xy = 2] = z (in assenza di tasso, oppure = xe"
di tasso r costante).

Nel caso di calibrazione a piu scadenze o a prodotti dipendenti dal tempo, occorre ga-
rantire I’assenza di arbitraggio non solo marginalmente, ma lungo l'intero term-structure
di distribuzioni calibrate. In termini di MOT, questo equivale a richiedere che le misu-
re margine calibrate (ug, fi7,...) soddisfino le relazioni di ordine convesso necessarie e

sufficienti affinché esista un processo martingala con quelle distribuzioni

Nella formulazione entropica, il vincolo di martingala entra naturalmente attraverso la
scelta del tilt, infatti, se ci limitassimo a imporre vincoli sulle distribuzioni marginali fina-
li senza pero curarci della martingalita, potremmo trovare una misura Q* che riproduce
tali margini, ma che non e risk-neutral.

Alcuni lavori precedenti alla formalizzazione del vincolo di martingala incorsero in questo
problema; ad esempio, riprendendo la precedente citazione, Henry-Labordere noto che ap-
procci di calibrazione basati su ponti stocastici senza il vincolo di martingala producessero

drift incoerenti (diversi dal tasso privo di rischio) e dunque modelli con arbitraggio.

Per evitare cio, nel problema variazionale qui esposto si € imposta esplicitamente la con-
dizione che Q* preservi la martingala. Operativamente, cio corrisponde ad aggiungere
alla Lagrangiana un termine di vincolo (o una penalita) che imponga E¥ [X7] = E¢[X ]
(e analoghi su eventuali scadenze intermedie).

Nel contesto dell’h-processo, questa condizione si riflette nelle proprieta della funzione
h;: in particolare, h; deve essere scelta in modo da non alterare il drift “risk-neutral”
del sottostante. Nel caso semplice in cui calibrassimo solo la distribuzione finale, que-
sto si tradurrebbe nel vincolo di normalizzazione su hy, EQ[X7phy] = EQX], il quale

garantirebbe per Q* la condizione E¥ [X] = Xj,.
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Piu in generale, la struttura dell’h-processo calibrato deve quindi risultare tale che il
Radon-Nikodym % abbia media condizionata 1 non solo al tempo finale ma lungo tut-
to il percorso, proprieta che risulta automaticamente soddisfatta se h; € definito come
EQ[dQ*/dQ | F;], sebbene si debba prestare attenzione a come i vincoli multipli vadano

a determinare hp.

Analizzando 'equazione del drift sotto Q*, si noti come il vincolo di martingala impone
che o(X;)o " (X;)V, In hy(X;) sia pari al gradiente di un potenziale armonico.

Pertanto, in altri termini, affinché X resti una martingala, la funzione h(t,z) introdotta
deve soddisfare una particolare equazione alle derivate parziali legata all’operatore genera-
tore L di X sotto @, tipicamente una equazione di Poisson o di Hamilton-Jacobi-Bellman

associata al problema duale di calibrazione.

Nella costruzione dello Schrodinger bridge, suddetta condizione si manifesta come par-
te del sistema di Schrodinger, e quindi accanto all’equazione di Kolmogorov forward
per la densita, compare un’equazione backward per il potenziale h tale che il prodotto
©(t, z)1(t, x) fornisce la densita ottima e ¢, soddisfano equazioni di tipo HJB accop-
piate. Imporre il vincolo di martingala significa che tali equazioni includono termini di
correzione per la deriva assenti nel caso standard. Ad esempio, Guyon (2022) mostra
che, nel caso di calibrazione congiunta di SPX e VIX, I'extra-drift nella volatilita risulta
path-dependent e puo essere calcolato esplicitamente tramite la soluzione di equazioni di
HJB duali, la cui derivata fornisce esattamente la differenza tra prezzi di mercato e di

modello.

4.2.9 Procedura di calibrazione con regolarizzazione entropica

Con riferimento all'implementazione computazionale del modello in analisi, la calibrazione
viene impostata come un problema variazionale che combina fitting ai prezzi/IV con un
vincolo distribuzionale espresso tramite trasporto ottimale entropico (nello specifico, ci
si serve di un algoritmo di Sinkhorn) tra la legge terminale simulata del sottostante e.
la risk-neutral density ricostruita dallo smile, a cui si addizionano i vincoli strutturali

(condizioni di martingalita e Feller) e la regolarizzazione parametrica.

Si definiscano il vettore dei parametri © e I'insieme delle scadenze calibrate 7, in accordo

ai quali la funzione obiettivo puo essere scritta come

E(@) = Z RMSEmkt(@) + )\SK Z $5<7T(®T), ﬁ(T))
TeT TeT

+v Y (Bo[Sr] — Fr)* + & (0% — 2x0) + 1|0 — ©©)
TeT

(4.15)

2
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con 02 = &2 + %+ 2p€~.50 il termine S. ¢ calcolato con iterazione di Sinkhorn su griglie
1D in z = logS, con kernel K = exp(—C/e) e costo Cy; = (z; — x;)?; la convergenza
esponenziale dello scaling entropico nel quadro EMOT (Entropic MOT) assicura stabilita
della proiezione multi-marginale (Joseph, Loeper & Obloj, 2024).

Data una griglia z(¥) = (zg),_, e due istogrammi p,q € A, (rispettivamente, la legge

empirica del log-prezzo simulato e la RND target), il costo empirico risulta pari a

Se(p, ¢; @); :;Hgéinﬂm { ZHij; Cij+5ZHij(logHij_1)H1 =q¢ ' = p}, Cyj = (xi_xj)2>
+ ,J 1,5

(4.16)

la cui soluzione ha forma
IT* = diag(u) K diag(v), K = exp (—C/e),

con (u,v) ottenuti per scaling alternato (u «+ p/(Kv),v + ¢q/(K"u). Il vincolo di

martingala entra nella 4.15 come

Eo[Sr] — Fr\’

Mart(@) = Y (GJ[T]T> , (4.17)
TeT Fr

che forza E4 ~ Fr a livello numerico, mentre la condizione di Feller penalizza le violazioni

della positivita del canale v;.

Infine, la regolarizzazione Tikhonov stabilizza i parametri collineari (in primis v, As e Ay ).

Volendo trattare con maggior dettaglio tecnico 'implementazione computazionale della
procedura di calibrazione qui descritta, si premette che essa segue, almeno in prima bat-
tuta, il medesimo modus operandi adottato per il modello di Heston tradizionale (alla cui
descrizione si richiama la sezione precedente), in accordo al quale si imposta una calibra-
zione globale (Differential Evolution), seguita da un polishing locale L-BFGS-B, con pesi

vega e di liquidita nella loss sui prezzi e sulla volatilita implicita.

Per ogni scadenza, la procedura seleziona gli strike in banda ATM, calcola la IV di

mercato, e costruisce i pesi

w_vega = 1.0 / (vega + 1e-8)
w_1liq = np.sqrt(oi + vol + 1.0)
w_pre = normalize(w_vega * w_liq)

Listing 18: Calcolo dei pesi finali per MSE.

50Si precisa che in tale contesto ¢ si riferisce al peso di penalizzazione, e non alla vol-of-vol come nel
)
capitolo precedente.
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Questa ponderazione (vega x liquidita) stabilizza il fitting penalizzando meno gli stri-
ke OTM a bassa sensibilita e rumorosi. L’attivazione della regolarizzazione entropica

permetterebbe, per ciascun 7', di ricostruire #(7) sulla griglia unidimensionale in x.

x_grid, pi_hat = build_rnd_target_from_smile(slc, bins=
sinkhorn_bins, space=’logS’)

slc[’rnd_grid’] = x_grid

slc[’rnd_target’] = pi_hat

Listing 19: Costruzione RND target.

In rapporto alla funzione obiettivo obj_sfv, si puo notare come, per ogni scadenza, essa si-
muli St attraverso simulator, il wrapper della funzione di pricing sfv_simulate_paths_vectorized,

e successivamente calcoli i prezzi vanilla

ST = simulator (theta, T=T, M=M_paths, dt=min(dt_min, T/256), crn=
crn)
Pmod = pricer (ST, K, r=r, q=q, T=T)
loss_price += np.mean(w_pre * (Pmod - Pmkt) **2)
if use_iv and pricer_iv:
IVmod = pricer_iv(Pmod, K, F_T, T)

loss_iv += np.mean(w_pre * (IVmod - IVmkt) *x*2)

Listing 20: Calcolo dei prezzi per scadenza.

Successivamente, se la risk neutral density target ¢ disponibile nello slice e la variabile
sinkhorn_scale assume valori maggiori di 0, la funzione costruisce I'istogramma empirico

sulla griglia rnd_grid, normalizza il target e chiama la funzione anonima _sinkhorn_distance_1d

if sinkhorn_scale > 0.0 and ’rnd_grid’ in slc and ’rnd_target’ in

slc:

x_grid = slc[’rnd_grid’]

pi_tgt = slc[’rnd_target’] / (slc[’rnd_target’].sum() + le
-16)

x_samp = np.log(np.maximum (ST, 1e-300)) if sinkhorn_space==’

logS’ else ST
19 -G

loss_sinkhorn += _sinkhorn_distance_1d(p_emp, pi_tgt, x_grid,

_hist_from_samples (x_samp, x_grid, density=True)

eps=sinkhorn_eps, n_iter=500, tol=1e-9)

Listing 21: Costruzione della griglia unidimensionale.
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E proprio _sinkhorn distance 1d ad implementare lo scaling di Sinkhorn con il (gia
definito) kernel K = exp(—C/e),Ci; = (z; — x;)?, restituendo il costo entropico S., o, in
altri termini, realizzando I’ancora distribuzionale dello Schrodinger bridge®. Assume par-
ticolare rilevanza il rispetto della citata condizione di Feller (definita soft, per distinguerla

dalla tradizionale forma adottata in rapporto al caso di Heston classico)

pars = param_extract (theta)

kappa, th, xi, gamma = pars[’kappa’], pars[’theta’], pars[’xi’],
pars [’ gamma’]

sigma_eff2 = xi*xi + gamma**2 + 2.0*rho*xi*gamma

feller_soft = max(0.0, sigma_eff2 - 2.0*kappa*th)

Listing 22: Condizione di Feller

Infine, tutti i contributi qui descritti, vengono combinati per mezzo della variabile total.

Per quanto concerne la calibrazione in senso stretto, la funzione calibrate_sfv, analo-
gamente al caso precedente, costruisce un callable sull’obiettivo e lo ottimizza con 1'uso
di Differential Evolution, per attuare un’esplorazione globale su bound prefissati, ed in
seguito rifinisce localmente attraverso L-BFGS-B. Anche in questo caso, e previsto il

meccanismo di fallback basato su Powell.

4.2.10 Analisi dei risultati

In prossimita della conclusione di questo elaborato, si vuole fornire una dimostrazione sul
campo di quelle che possono essere le capacita predittive del modello, in uno scenario nel

quale e possibile dimostrare la sua maggiore precisione.

Nello specifico si e scelto di riportare qui 'esito del test effettuato in data 15 settembre
2025 sull’opzione call TSLA con scadenza fissata al 19 dello stesso mese (dunque, si noti,
una scadenza particolarmente ravvicinata e un sottostante fortemente volatile, e dunque

uno skew reattivo e code pronunciate).

Si precisa che, anche in questo caso viene adottato il meccanismo di filtraggio dei risultati
di cui alla sezione 3.2, i cui aspetti fondanti sono gia stati descritti in suddetta sezione,

alla quale si rimanda.

5LE, grazie ai risultati EMOT, fornisce stabilita e assicura la convergenza dello scaling.
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SELECTED strikes — RMSE | Heston: 0.2543 - SFV: 0.1938 - BS: 2.0187 - CRR: 2.0186 - MC_BS: 2.0174

K T Market Heston SFV BS CRR MC_BS SQError_Heston SQError_SFV SQError_BS SQError_CRR SQError_MC_BS v Intrinsic

0 360.00 0.020 62.08 6212 6229 63.01 63.01 63.03 0.0018 0.0443 0.8675 0.8658 0.9152 0.718 62.030433
1 36250 0.020 5962 5965 59.80 60.60 60.60 60.63 0.0006 0.0310 0.9534 0.9516 1.0045 0.707 59.532540
2 365.00 0.020 57.33 5719 57.32 58.47 58.47 58.51 0.0183 0.0000 1.3195 1.3199 1.3986 0.730 57.034648
3 36750 0.020 55.15 5474 54.86 56.54 56.54 56.58 0.1659 0.0857 1.9203 1.9215 2.0368 0.766 54.536755
4 370.00 0.020 52.65 52.31 52.40 54.02 54.02 54.06 0.1153 0.0623 1.8765 1.8762 19878 0.736 52.038862
5 37250 0.020 49.90 49.90 49.96 51.07 51.07 51.11 0.0000 0.0037 1.3714 1.3707 1.4538 0.661 49.540969
6 375.00 0.020 4747 4750 4754 4869 4869 4872 0.0008 0.0048 1.4691 1.4679 15567 0.646 47.043077
7 37750 0.020 45.15 4514 4516 46.47 46.47  46.50 0.0001 0.0000 1.7303 1.7302 1.8239 0.646 44.545184
8 380.00 0.020 43.02 42.80 42.80 4454 4454 4458 0.0495 0.0517 2.3074 2.3075 24033 0.668 42.047291
9 38250 0.020 4060 40.50 40.48 4213 4213 42.16 0.0094 0.0151 2.3557 2.3518 24460 0.645 39.549398
10 38500 0.020 3833 3824 3820 39.95 39.95 39.97 0.0064 0.0154 26293 2.6311 27177 0.639 37.051506
11 38750 0.020 36.38 36.03 3598 38.21 38.21 38.23 0.1168 01577 3.3791 3.381 3.4554 0662 34.553613
12 390.00 0.020 3410 3387 3381 3599 3599 36.00 0.0512 0.0831 3.5648 3.5648 3.6222 0.647 32.055720
13 39250 0.020 3222 3177 3170 34.30 34.30 34.31 0.2052 0.2719 0.663 29.557827
14 395.00 0.020 30.00 2973 29.66 3211 3211 321 0.0712 0.1129 0.646 27.059935
15 39750 0.020 28.20 2776 27.69 30.47 3047 3046 0.1916 0.2592 0.657 24.562042
16 400.00 0.020 2593 2586 2579 2818 2818 2817 0.0037 0.0172 0.631 22.064149
17 40250 0.020 2388 24.04 2398 26.17 2617 26.15 0.0280 0.0104 0.618 19.566256
18 405.00 0.020 2232 2230 22.24 2477 2477 2473 0.0006 0.0079 0.633 17.068364
19 410.00 0.020 18.98 19.07 19.01 2155 2155 21.50 0.0086 0.0015 0.631 12.072578
20 415.00 0.020 16.10 1618 16.13 18.80 18.80 18.75 0.0060 0.0012 0.638 7.076793
21 420.00 0.020 13.65 1363 1359 16.44 16.44 16.38 0.0003 0.0036 0.651 2.081007

Figura 13: Test su TSLA Call 19/09/2025 (primi 21 strike).

Nel test in analisi emerge con chiarezza una gerarchia predittiva, in accordo alla quale il
modello a volatilita stocastica con feedback ottiene 'RMSE medio piu basso (= 0.1938),
seguito da Heston (= 0.2543), mentre i modelli a volatilita costante (BS, CRR e MC)
rimangono staccati di un ordine di grandezza (= 2.02), segnale inequivocabile dell’inca-
pacita della volatilita piatta di riprodurre la pendenza dello smile e la curvatura nelle
ali in prossimita di scadenze corte. Limitatamente a questi tre modelli, si denota lo svi-
luppo della citata convergenza, localizzata nello specifico su una crescita monotonica nel

frattempo che ci si allontana dalla zona ATM.

Il confronto SF'V vs Heston e piu sottile e interessante. Qui la riduzione del’RMSE di
SFV rispetto a Heston & nell’ordine del 24%, ma soprattutto si osserva una struttura degli
errori per strike coerente con le rispettive meccaniche. Specificamente, nelle righe centrali
(near-ATM) i due modelli sono spesso comparabili, con scarti quadratici dell’ordine di
1073 — 1072, e piccoli vantaggi locali che talvolta premiano Heston (per esempio negli
strike 392.5 e 395), sintomo che il solo meccanismo leverage-correlazione (p < 0) ¢ talora

sufficiente a catturare micro-asimmetrie del sorriso a strike ravvicinati.

Tuttavia, spostandosi verso zone ITM/OTM, le componenti di feedback e salto dello SE'V,
forniscono un adattamento sistematicamente migliore delle ali, come dimostrano gli errori
quadratici del modello proposto, i quali rimangono contenuti e piu stabili, mentre quelli

di Heston mostrano una deriva graduale, tipica dei processi affini lisci quando devono
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spiegare payoffs dominati da grandi deviazioni in orizzonti corti.

In rapporto ai livelli di prezzo, le colonne Market-Heston-SFV rivelano un bias moderato
e omogeneo su diverse righe (errori assoluti radice ~ 0.1 — 0.5) e, cosa importante per
la previsione OOS, assenza di overshoot sistematico per SFV nelle ali. Infatti, laddove
BS/CRR/MC-BS sottoprezzano in massa (per via della IV piatta), SFV mantiene devia-
zioni quadratiche di ordine unitario minore e non accumula errore con la stessa velocita

su K crescenti.

La colonna IV, elevata e leggermente decrescente da 0.72 a 0.65 (approssimativamente),
conferma un contesto event-driven a volatilita realizzata attesa alta, in cui la forma dello
smile e cruciale. Qui Heston beneficia della correlazione negativa per generare skew, ma
SE'V aggiunge gradi di liberta dinamici che migliorano la reattivita locale dello smile e la

curtosi risk-neutral a breve, traducendosi in un vantaggio predittivo medio consistente.
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INFORMAZIONI AGGIUNTIVE: Il codice completo utilizzato per l'analisi dei dati e

disponibile presso la repository GitHub dedicata.
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https://github.com/francescopinna03/Options
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