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Introduction 

 

 

 

“Hey, one single observation, OK, can destroy thousands of years of 

confirmation” 

Nassim Nicholas Taleb 

The above quotation summarizes the aim of this dissertation. 

If we take a look at the past, many strange events occurred over a short period of 

time. 

In 1711, after a war which left Britain with a 10 million pound debt, the 

Government proposed a deal to a financial institution, the South Sea Company, 

where Britain’s debt would be financed in return for 6% interest. With this 

operation many illusions of richness came about increasing ten times the asset 

price of the Company. But in August 1720 the price fell by 80%. 

In addition, in the USA the XIX century was characterized by many speculative 

bubbles which alternated every twenty or thirty years. When the Revolution took 

place, all the infrastructural projects were financed by issuing money without a 

concrete gold reserve and were coined by everyone. Everything collapsed in 

1873. 

Moreover, the XX century began with the worst crisis, the so-called Great 

Depression, which hit hard cities all around the world. 

We can continue to report other crisis until today, mentioning the latest 

regarding the subprime mortgage. 
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Therefore, we could think that a crisis is a physiological aspect of the economy, 

and if so, why don’t economists take into consideration this aspect when 

creating their models? 

For centuries people have used an easy statistical tool, the Gaussian “bell curve”, 

to model financial theories. But the Gaussian world is where extreme events 

could occur with a probability close to zero, so in case of a financial crash or not, 

like the daily fall in Dow Jones’s stock prices by 22%1, has a chance of occurrence 

of       , practically zero. 

So, one of the two aims of this work is to present an alternative to the “bell 

curve”, introducing the  -stable non-Gaussian distributions. These are concerned 

with a more general concept, where the fractal geometry is regarded the 

revolution of all the sciences existing in our world. It is a new geometric 

language, which studies different aspects of diverse subjects, either 

mathematical or natural, that are not smooth, but rough and fragmented to the 

same degree at all scales. In fact, scaling plays an important role, that is, 

invariance under dilations and contractions. As we can see, by considering daily, 

weekly and monthly financial data, we realize that their plots are really similar 

upon different scale. This is not the only characteristic of a financial series, but 

we can observe that also the continuity is no longer acceptable. A crash allows us 

to introduce discontinuity which is intimately connected with concentration and 

cyclicity. 

 

A central role in this dissertation is played by the 

works of Benoit B. Mandelbrot (in figure), a brilliant 

mathematician, who has dedicated part of his life in 

studying nature in an empirical way, and applying 

his research to finance. He is considered “the father 

of fractals”. 

                                                           
1
 The Black Thursday, October 19, 1987. 
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While Chapter 1 is dedicated to the presentation of the most taught and used 

classic financial models, Chapter 2 presents this fractal geometry in a fascinating 

manner, introducing some wonderful shapes which emerge from a simple 

iterative function with a useful power in several fields of research. 

Chapter 3 introduces a detailed mathematical and statistical presentation of the 

 -stable non-Gaussian distribution, showing the Mandelbrot’s three states of 

randomness and how to make the extreme events more probable, concluding by 

testing empirically the scaling property. 

Moreover, we deal with another empirical observation, where asset returns 

show a long-run dependence, so every process of independent random variables, 

used to simulate the asset price movements, does not represent well the reality. 

So, Chapter 4 introduces the alternative to the pure Wiener Brownian motion, 

that is, the self-similar fractional Brownian motion with respect to the Hurst 

exponent  . It is constrained between   and  , and based on a different market 

hypothesis, the Fractal Market Hypothesis which differs from the Efficient one. 

The last two chapters are an application of the previous theories. 

Our purpose is concerned with two aspects: portfolio selection according to  -

stable non-Gaussian distribution (Chapter 5) and option pricing with respect to 

the fractional Brownian motion (Chapter 6). 

They both give us excellent results which are based on a more realistic 

hypothesis, where a stable efficient frontier is more risk preserving than the 

Gaussian one for a given value, expected return or scale parameter. And an 

option pricing taking into consideration the empirical long-run dependence 

included naturally in the data.      
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  var-covariance matrix (for    ) or dispersion matrix (for      ) 



Copyright ©2010 Gerardo Manzo 
 

XIII 
 

            covariation between two jointly symmetric  -stable random variables 

     another way to indicate the scale parameter of the asset   

    rate of convergence of the empirical matrix    to the unknown matrix   

       elements of the dispersion matrix 

     stability index of the  -th asset 

       CAPM coefficient 

       Earning Before Interest and Tax 

       Earning Before Interest, Tax, Depreciation and Amortization 

       Net Operating Profit After Tax 

       Operating Cash Flow or Unlevered Cash Flow 

       Available Cash Flow or Levered Cash Flow 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Copyright ©2010 Gerardo Manzo 
 

 
 

Chapter 1 

 

THE EDIFICE OF MODERN FINANCE 

 

 

 

Taking a look at the past, many “rare” events occurred during the last century in 

the economic world. So a spontaneous question comes to mind: are these events 

really rare? Or rather, what makes us define an event so rare? The economic and 

financial literature is full of models that were born to forecast the future values 

of some fundamental economic variables and to price financial assets. We can 

give a list of those models but they all have in common the Gaussian bell curve, a 

statistical distribution which puts us in a symmetric world where the “rare” 

events may occur every 100000 years, defining it as a “peaceful world”. 

How many crisis have occurred in the last century? We could mention many 

drastic events, that is, the Great Depression considered the longest, most 

widespread, and deepest depression of the 20th century. It originated in the 

United States, starting with the stock market crash on October 29, 1929 (known 

as Black Tuesday), and quickly spreading to almost every country in the world. 

And the Black Monday? On 19 October 1987 stock markets around the world 

crashed, shedding a huge value in a very short time; indeed, the Dow Jones 

Industrial Average (DJIA) dropped by 508 points to 1738.74 (22.61%) in one day. 

Moreover,   the Russian financial crisis (also called Ruble crisis) hit Russia on 17 
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August 1998 and triggered by the Asian financial crisis. A crisis which started in 

July 1997, where petroleum, natural gas, metals, and timber accounted for more 

than 80% of Russian exports, leaving the country vulnerable to swings in world 

prices. Oil was also a major source of government tax revenue. Furthermore, the 

burst of the dot-com bubble (or sometimes the I.T. bubble), was a speculative 

bubble covering roughly the period from 1998 to 2001 (with a climax on March 

10, 2000), where stock markets in Western nations saw their equity value rise 

rapidly latest in the more recent Internet sector and related fields. Besides, the 

latest crisis is the deepest of the 21st century, still lasting and involving a 

significant loss of jobs, money and investments. 

So these crisis prove that our economy is not stable and as symmetric as we 

wish, because a revolution could occur in economics and finance, so a careful 

regulation in several fields is necessary but it’s not our last hope; we have to 

review the most important economic and financial models taught and used in 

the whole world by economists and analysts. After reading the Mandelbrot’s 

studies, one could wonder why, in the universities around the world, lectures 

continue to teach these incorrect models. Instead of answering this question, this 

chapter tries to show the most used models in economics and finance and their 

weaknesses, while their alternatives are presented in the next chapters. 

Therefore, before repairing the edifice, its foundations must be reconstructed.  

 

1.1 The ancient vision 

The risk can be studied in several ways and one of the easiest is the 

“fundamental analysis” which consists in researches the cause of a price 

variation to forecast its successive trend. For example, if the dollar falls down 

because of an imminent war, it drives up the oil price. It’s only a subjective 

problem, indeed, reading a newspaper, we can fall into what N.N. Taleb defines 

narrative fallacy to indicate the unbridled and fruitless search of the causes 

made by journalists, only to publish an article. But it’s not so easy. In the real 
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world the causes are not so clear and sometimes the relevant information is 

ignored, unknown or even hidden. Also their interpretations can be wrong. So to 

avoid these weaknesses, financial engineering developed other instruments. The 

latest is the “technical analysis” which deals with searching structures, 

configurations and schemes through a careful empirical analysis of charts of 

several historical price series. Many graphic models are used, like double-

minimum, double-max, head-and-shoulders model, and others2. Afterwards,  

“Modern Finance” was born and it is based on mathematics of uncertainty and 

statistics. The main concept is that the prices are not forecasted but their 

variations can be described by certain mathematic laws. Therefore, we can 

manage and measure the risk. But this is a true orthodoxy. The research in this 

field began in 1900, when a young French mathematician, Louis Bachelier, 

studied financial market in a period when no “true” mathematicians dealt with 

money. Bachelier created the foundations for the next big wave in the field of 

probability theory, invented by Pascal and Fermat in the XVII century (whose 

“last theorem” required 350 years to be demonstrated) to help some aristocrats 

with the game of chance. His main model is called Random Walk and is similar to 

the one by Pascal and Fermat. The concept is that prices have the same 

probability of variation up or down, as a fair coin may show one or the other 

side. In fact, for him, the negotiations on a trading floor is equal to a static 

discharge, a White Noise. The majority of price variations, 68 percent, is due to 

little positive or negative gap from the average, for an amount lower than one 

standard deviation; in 95 percent of the cases, the gap is lower than two times 

the standard deviation, while in 98 percent of the cases, it is lower than three 

times the standard deviation; finally, the conspicuous variations are little 

probable. If we line up all these variations on a graph paper, we may see a bell 

                                                           
2
 For a review of these models, see the first part of Statistical Analysis of Mondadori Risk, G. 

Manzo, 2007. 
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curve which is called Gaussian distribution deriving from the name of the 

German mathematician Carl Friedrich Gauss.  

Therefore, why does N.N. Taleb talk about the “fraud of the bell curve”? We can 

show this through an example3. The average height of the US adult male 

population is about 178 cm, with a standard deviation of about 5 cm. This means 

that 68 per cent of the US men have a height between 173 and 183 cm, 98 per 

cent with a height between 168 and 188 cm and, 99 per cent between 163 and 

193 cm. The bell curve does not exclude either a 3 meters tall man or a man with 

a under average height, but their respective probabilities are so rare that nobody 

expects to encounter them in real life. The same is true of gains and losses, so 

when we take into consideration the average of many data, we may expect to 

find an average height and gains equal to zero. This does not mean that the 

fundamental or exogenous factors are unimportant as they are very significant, 

however, we aren’t able to forecast all these events, conseguently, we can rely 

on probability theory. 

The generalization of Bachelier is thought is due to Eugene F. Fama of the 

University of Chicago, a PhD student of Mandelbrot, who asserted in his thesis 

the Efficient Market Hypothesis, according to which, in an ideal market all 

information is already included in the current price of assets. So, in his opinion, 

every price variation is independent, and it isn’t influenced by the past data and 

does not influence the future ones; therefore, no one can forecast anything.  

Based on these theories, many economists have built several models to analyze 

markets, to measure volatility and beta-coefficient of different assets and to 

classify investment portfolio on their risk probability. So we can say that the 

ancient vision of economics and finance is based on two of Bachelier’s pillars: the 

statistical independence of price variation and their normal distribution. 

                                                           
3
 This example is taken from The (Mis)Behavior of Markets, Benoit B. Mandelbrot, 2005 
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What we want to show in the next chapters is the empirical studies conducted by 

Mandelbrot and others from the 1960s to now, showing the long-run 

dependence of price variations and their non-Gaussian distribution. 

 

1.2 Focus on Bachelier  

Let a man get drunk and put him on his way home. We can defy anyone to 

predict the trajectory of his steps. It seems to be very difficult, almost impossible, 

and this is more or less the idea behind the model of Bachelier. Past data are 

insignificant to forecast the future: two steps on the right, one on the left, other 

four on the right. Moreover we don’t know if he reaches his house. This is the 

“Random Walk on the street”.  

The first reference to the concept of random walk appeared in 1905, in an open 

letter published by the British scientific journal Nature, entitled The Problem of 

Random Walk. Professor Karl Pearson, a member of the Royal Society, asked if 

any readers can provide a solution to the following problem:  

 

a man begins his walk from a certain point   for   meters and walks straight, then turns a corner 

and walks for another   meters, again in a straight line. He repeats the process   times. I would 

like to know the probability that after   strokes is at a distance of between   and    from the 

point of departure  . 

 

The answer came from a distinguished scientist, Lord Rayleigh, to whom Pearson 

said: “Lord Rayleigh’s solution shows that in an open place, where it is more 

likely to find a drunken man, barely able to stand on his feet, is close to the point 

where he started”. 

Randomness is an intrinsically difficult idea that seems to clash in finance with 

instances of clear casualty, economic rationality and perhaps even with free-

will4. What does random mean? In everyday language, a fair coin is called 

                                                           
4
 Mandelbrot’s idea exposed in Fractals and Scaling in Finance, 1997, with whom who is writing is 

agreed. 
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random, but not a coin that shows head more often than tail. A coin that keeps a 

memory of its own record of heads and tails is viewed as even less random. 

 

1.2.1 Wiener Brownian motion 

Some models assume that prices change at random and each price change is 

statistically independent  of all past ones. Random walk variations proceed in 

equal steps, up or down, equally spaced in time. Other models assume that asset 

returns follow the Gaussian distribution. Here we present the graphic version of 

random walk, also called Brownian motion, the name of the Scottish botanist 

Robert Brown5, where the word walk denotes a motion that proceeds in steps, 

while the alternative presented afterwards, proceeds in jumps. 

 

FIGURE 1-C1. Graph of a sample of Brownian motion (top), and its white noise 
increments in unit of 1 standard deviation (bottom). 

                                                           
5
 R. Brown studied the seemingly random movement of particles suspended in a fluid (i.e. a liquid 

or gas) closed in a tube on both sides. 
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Figure 1-C1 shows the simulation of Weiner Brownian motion (WBm),     , with 

a sample of 1000 data and its increments of the first order. This motion is also 

called Wiener because Bachelier’s discovery of Brownian motion in financial 

speculation occurred years before physicists discovered it in the motion of small 

particles, and decades before a mathematical theory of      was provided by 

Norbert Wiener. 

The main property of WBm are best listed in two categories, as follow. It’s 

important to define its invariance, indeed. A line, place or space, and the 

homogeneous distribution on them are invariant under both displacement and 

change of scale. Therefore, they are both stationary and scaling6. 

Both properties are extended to WBm:  

a) Statistical stationarity of increments of price. Series of a stationary time 

are those whose statistical properties such as mean, variance, 

autocorrelation, etc. are all constant over time. Samples of increments of 

WBm taken over equal time can be superimposed in a statistical sense. 

However, equal parts of a straight line can be precisely superimposed in 

each other, but this is not possible for the parts of a random process. 

b) Price scaling. Parts of a sample of WBM corresponding to the increments 

of non-overlapping time of different duration can be suitably rescaled so 

they can also superimposed in a statistical sense. This key property 

implements the principle of scaling, a concept which will be dealt with in 

details afterwards. 

But stationary and scaling aren’t sufficient to determine the Brownian motion, a 

motion which also has the following properties: 

a) Independence of price increments. The past data are insignificant to 

forecast the future. 

                                                           
6
 That of Mandelbrot is a different concept of scaling we will explain in successive chapters. 
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b) Continuity of price variation. A sample of Brownian motion is a 

continuous curve, even though it has no derivation from anywhere. This 

property can be associated with liquid and depth markets where the 

price changes between transactions are relatively slight; so each trade 

results in a minimal price changes, as if the proceeding price continued 

through the next transaction. 

c) Rough evenness of asset returns. A record of Wiener Brownian asset 

returns, in increments over equal time,   , is a sequence of independent 

Gaussian variables, called White Noise process. Mandelbrot shows us an 

empirical analysis of processes, claiming that “the eye and ear are more 

sensitive to records of changes than of actual values; indeed, the ear 

hears it [white noise] like the hum on a low-fidelity radio not tuned to 

any station. The eye sees it as a kind of evenly spread “grass” that sticks 

out nowhere”… as is showed by Figure 1-C1. 

d) Absence of clustering in the time locations of the large changes. 

e) Absence of cyclic behavior.  

 

Now it’s time to show the analytic view of WBM. 

Wiener processes represent a particular type of Markov processes, with zero 

mean and variance equal to 1. 

Formally, we can say that a variable   follows the Wiener process if it satisfies 

these two properties: 

 

PROPERTY 1. The variation    in a small interval    is 

           where                                         

so also            

 

PROPERTY 2.    values in each intervals are independent.  

So   follows the Markov process. 
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Summarizing this process, we can write it with a drift rate and a variance rate, 

which measure respectively, the average rate at which a value increases in a 

stochastic process and the variance of changes, for example a change equals to 

1, the variance of changes of   in an interval of length   is    . 

Therefore, the “Generalized Wiener Process” is 

 

                                                            

 

where   and   are constant, and through simple steps, we can show that the 

drift rate is   and the variance rate is   . 

Defining      as being a random process with Gaussian increments, or Brownian 

motion, we can show this “Fickian”7 diffusion rule: 

For all   and  ,                    and                     

       

A Fickian variance is an automatic consequence if the increments are considered 

independent, while Fickian variance guarantees the orthogonality of the 

increments. In a Gaussian world, orthogonality is independence and successively 

on these hypothesis we will present the Fractional Brownian motion. 

Another stochastic process is It  ’s process, where the previous parameters   and 

  depends on the underlining variable,  , and on the time, , so that we can write 

 

                               

 

Therefore, the stochastic process for the prices of the assets can be written as 

follows: 

                                                           
7
 Only for intellectual curiosity. Fick’s law relates the diffusive flux to the concentration field, by 

postulating that the flux goes from regions of high concentration to regions of low concentration, 
with a magnitude that is proportional to the concentration gradient. They were derived by Adolf 
Fick in the year 1855.  
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Where   is the spot price of an asset,   is the average,   is the standard 

deviation and    follows the Wiener process     . 

 

1.2.2 Bachelier’s Theory of Speculation and its discrepancies 

Louis Bachelier’s PhD thesis in 1900 Théorie de la Spéculation introduced 

mathematical finance to the world and also provided a kind of agenda for 

probability theory and stochastic analysis for the next 65 years or so. The agenda 

was carried out by the best mathematician and physicists of the 20th century, but 

the economic side of Bachelier’s work was completely ignored until it was taken 

into consideration by Paul Samuelson, who introduced the quoted geometric 

Brownian motion in the 1960s. 

Based on these hypothesis, Bachelier built his Theory of Speculation, which is 

presented here. 

Consider a series of price in time,     , and also consider its logarithmic relative 

by        

 

                       

 

This model, the simplest and most important assumes that successive 

differences of the form             are independent Gaussian random 

variables, with zero mean and with variance proportional to the several intervals 

 . Indeed, it implicitly assumes that the variance of the differences        

     is independent of the level of     . So we may expect that the standard 

deviation of       will be proportional to the price level, which is why many 

authors suggest that the original assumption of independent increments of      
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will be replaced by the assumption of the independent and Gaussian increments 

of       . 

 

Summing up, the basic model of price variation assumes that successive 

increments        are (a) random, (b) statistically independent, (c) identically 

distributed and (d) Gaussian with zero mean, so that is why it is called “stationary 

Gaussian random walk” or ”Brownian motion”. 

But this model contradicts the evidence in at least two ways: Firstly, the sample 

variance of        varies in time and the histogram is fatter than in the Gaussian 

case. Secondly, no reasonable mixture of Gaussian distributions can account for 

the largest price changes, so owning to this, they are treated as “outliers”. 

According to Mandelbrot, it was Bachelier who noted this discrepancies. 

Other important evidences also show that considering the assumption of 

statistical independence of successive        is only a simplification of reality. 

But simplification may mean the loss of money in finance, especially if we move 

too much from reality. In fact, independence implies that no investor can use his 

knowledge of past data to increase his expected profit. But there are processes 

where the expected profit vanishes, but dependence is extremely long term. In 

this case, knowledge of the past may be profitable to these investors whose 

utility function differs from the market’s. This type of process is called 

Martingale and will be treated in the next section. 

Moreover, also the stationarity of the series of prices series is clearly 

contradicted. Figure 2-C1 shows a sample second moment of the daily change of  

      , where      is the spot price of The Coca-Cola Co. 
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Figure 2-C1. The graph represents the variation of a sample second moment of 
Coca-Cola price changes. The horizontal scale represents time in weeks, with 

origins    on January 12, 2009. 
 

In fact, the tails of the distributions of asset returns are so extraordinary long 

that the sample second moment typically varies in an erratic trend. For example, 

the second moment reproduced in Figure 2-C1 does not seem to tend to any 

limit even though the sample size is enormous by economic standards. 

Therefore, we can make a list of discrepancies between Brownian motion and 

the facts. See Figure 3-C1. It comes spontaneous to ask anyeone what is the 

“true” graph among those shown. It may be easier if we also show their price 

changes respectively as follows in Figure 4-C1. 

 

 

 

 

 

Figure 3-C1. Which is the true graph? 

 

0 5 10 15 20 25
0

0.5

1

1.5

2
x 10

-3



Copyright ©2010 Gerardo Manzo 
 

13 
 

See Figure 3-C1, it is difficult to establish what is true and false, but if we add 

respectively the increments of the first order, it will become easier to 

differentiate them.  

 

 

 

Figure 4-C1. Both graphs represent the increments of the first order of the series 
of the price showed in Figure 3-C1 respectively. 

 

What we want to put in evidence is that a careful observer should perceive the 

rift between the two graphs. While the upper graph represents the continous 

process of the white noise, without any shadow of discontinuity, the real graph 

concerning the change of price of Coca-Cola Co., presents some discontinuities 

due to several events which occurred during the last century, that is, what N.N. 

Taleb defines the “black swans”. 

Now we are able to make the list of discrepancies previously quoted as follow: 

 Apparent non-stationarity of the underlying rules. The diagram in Figure 

3-C1 is an actual record of prices. Different pieces look dissimilar to such 

an extend that one is tempted not to credit them to a generating 

process that remains constant in time. While a record of Brownian 

motion changes look like a kind of “grass”8, a record of actual price 

                                                           
8
 This is a metaphor used by Mandelbrot in Fractals and Scaling in Finance, 1997. 
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changes looks like an irregular alteration of quiet periods and bursts of 

volatility that stand out from the grass; 

 Repeated instances of discontinuous change. In the graph of Figure 3-C1, 

the discontinuities appear as sharp “peaks” rising from the “grass”; 

 Clear-cut concentration. The “peaks” rising from the “grass” are not 

isolated, but bunched together; 

 Conspicuously cyclic, but non periodic, behavior; 

 The long-tailed character of the distribution of price changes 

(leptokurtic); 

 The existence of long-term dependence. 

Some of these concepts have been previously explained, but the last ones, 

leptokurtic and long-run dependence, will be treated in details afterwards.  

 

1.2.3 Martingale 

Bachelier introduced      as the easiest example he had known among a 

broader class of processes now called martingales, which embodies the notion of 

“efficient market” and successful arbitraging. This term was first used to describe 

a type of wagering in which the bet is doubled or halved after a loss or win, 

respectively. The concept of martingales is due to Lévy, and it was developed 

extensively by Doob. 

 

Prices follow a martingale process if they somehow have the following desirable 

property: whether the past is known in full, in part, or not at all, price changes 

over all future time spans have zero mean as expectation. 

The analytical view. 

In the probability theory, martingale is a stochastic process (i.e., a sequence of 

variables at random) where we have the conditional expected value of an 

observation at some time  , given all the observations up to some earlier time  , 
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and equal to the observation at that earlier time  . Precise definitions are given 

below. 

A sequence of variables at random          with finite means about the 

conditional expectation of      given              , is equal to   , i.e., 

                       . 

A one-dimensional random walk with steps equally likely in either direction 

          is an example of a martingale.  

This concept remains attractive, but raises serious difficulties. 

The first one is this. A positive martingale always converges; that is, it eventually 

settles down and ceases to vary randomly9. Conversely, a martingale that 

continues to vary randomly must eventually became negative. For example, a 

random walk eventually becomes negative. In fact, it can be postulated that it is 

the logarithm of price that is Brownian, or at least a martingale. So, with this 

transformation, the price itself cannot become negative, but ceases to be a 

martingale. Moreover, the justification of the “efficient market” for martingales 

disappears. 

A second difficulty is more serious. While a martingale implements an efficient 

market as ideal, it is not possible to implement it by arbitraging. Mandelbrot 

postulated that non-arbitraged price follows Fractional Brownian motion, a 

generalization of      will be discussed in Chapter 4. 

 

1.2.4 The Efficient Market Hypothesis 

The name of Bachelier was known, in economics only in 1965, after being 

ignored for many years, in the thesis of a student of Paul Samuelson, a MIT 

economist10, and then in that of Fama’s one.  

                                                           
9
 Samuelson, P. A. 1965. Proof that properly anticipated prices fluctuate randomly, Industrial 

Management Review. 
10

 Doctoral student of Samuelson was Richard J. Kruizenga; his thesis is entitled Put and Call 
Options: A Theoretical and Market Analysis. 
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The Efficient Market Hypothesis (EMH) is an academic concept of study 

developed in the early 1960s by Eugene F. Fama, Mandelbrot’s PhD student, and 

now professor at the University of Chicago Booth School of Business. EMH 

asserts that financial markets are efficient in the sense of information, or that the 

prices on traded assets (e.g., stocks, bonds, or property) already reflect all known 

information, and instantly change to reflect new information. Therefore, 

according to this theory, it is impossible to outperform consistently the market 

by using any information already known by the market, except for a stroke of 

luck. Information or news in the EMH is defined as anything that may affect 

prices unknown in the present and appearing randomly in the future. 

So the reader can understand the link between the concepts explained in the 

previous sections. In fact, after having assimilated all possible information, a 

price fluctuates until reaching the “new equilibrium” between buyers and sellers, 

so that the next variation has the same probability to go up or down. Hence, one 

we relax without trying to search new information because it is only a waste of 

time and money. For this reason Samuelson was in favour of the hypothesis that 

“[…] the major part of the fund manager should abandon the business and repair 

plumping or teach ancient Greek or contribute to GDP as corporate managers”11.  

This is a nihilist message, but as Mandelbrot wrote, the main characteristic of 

Wall Street is the flexibility and so what could be its epitaph became a war cry, 

that is, the development of Bachelier’s thesis which takes a character of 

orthodoxy. But, what we are demonstrating is based on a structure built on sand.     

 

1.3 Focus on Black, Scholes and Merton 

At the beginning of the 1970s, Fisher Black, Myron Scholes and Robert Merton 

gave a fundamental contribution to Option Pricing Theory, developing the Black 

& Scholes-Merton model (B&S-m). This model is already used by many traders to 

                                                           
11

 These words were publicized on The Journal of Portfolio Management in 1974. 
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price derivatives and to make hedging. In 1997, three authors received the Nobel 

prize for economics for having created this model.  

The model adopted by Black & Scholes and Merton to describe price variations of 

an asset is the one we have developed in Section 1.3, defining it as It  ’s process.  

Before introducing B&S-m, we have to present It  ’s Lemma. 

 

1.3.1 It  ’s Lemma 

According to Lemma, the price of any derivatives is a function of the stochastic 

underlying variables and time. 

Supposing that a variable   follows the It  ’s process: 

 

                               

 

where    is the Wiener’s process and   and   are functions of   and  . The 

variable   has a drift rate   and a variance rate   . On the base of It  ’s Lemma, 

the function   of   and   follows the process: 

 

    
  

  
  

  

  
 

 

 

   

   
      

  

  
                                   

 

where    is the same Wiener’s process of the equation 1.6. Therefore, also   

follows It  ’s process. Here, the rigorous demonstration of It  ’s Lemma is beyond 

the goal of this work. 

In Section 1.3 we have already shown that   

 

                       

 

with   and   constants, is a model of price variations. Based on It  ’s Lemma, the 

process followed by a function   of   and   is  
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Note that both   and   are influenced by the same uncertain source,   . 

 

1.3.2 Black & Scholes-Merton model 

The model adopted by Black, Scholes and Merton to describe the price trend of 

assets is the one we have presented in Section 1.3.1. 

The rate of changes in stock price at times    has mean   and standard deviation 

    . So  

 

  

 
                                                              

 

where    is the stock price change at times    and        indicates a Gaussian 

distribution with mean   and standard deviation  . Considering the log-normal 

price, that is, the function          and developing it with It  ’s Lemma, we 

find that the process follows by   is 

 

      
  

 
                                                    

 

that is, The Wiener’s process with the drift rate        and the constant 

variance rate   . Therefore, we can write 

 

                   
  

 
                                     

 

and 
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that shows that        in normal, so    is log-normal. 

 

Leaving out the analytic part for a moment, now we present a list of 

assumptions, underlying the easier version of the B&S-m: 

 it is possible to borrow and lend cash at a known constant risk-free 

interest rate; 

 the price follows a geometric Brownian motion with constant drift and 

volatility; 

 there are no transaction costs; 

 the stock does not pay a dividend (but there are some extensions to 

handle dividend payments); 

 all securities are perfectly divisible (i.e. it is possible to buy any fraction of 

a share); 

 there are no restrictions on short selling; 

 there is no arbitrage opportunity. 

 

So we can assume that the underlying spot price of a share follows the process of 

the equation (1.8). 

The payoff of an option        at maturity is known. To find out its value at an 

earlier time we need to know how   evolves as a function of S and T. By It  ’s 

Lemma with two variables we have 
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where both    of the equations (1.8) and (1.14) are the same, so the Wiener’s 

process can be eliminated. 

Now we have to consider a trading strategy under which the appropriate 

portfolio is composed by 

 

 
              

 
  

  
        

  

 

or a short-position on one derivative and long-position on       shares. At time 

 , the value   of these holdings will be 

 

     
  

  
                                                         

 

The composition of this portfolio, called the delta-hedge portfolio, will vary from 

step to step. Denoting    as the accumulated profit or loss by following this 

strategy, over a period         , the instantaneous profit or loss is 

 

       
  

  
                                                     

 

By substituting the equations above we have 

 

     
  

  
 

 

 

   

   
                                            

 

This equation contains no    term, and it is completely riskless (delta neutral). 

Black and Scholes’ claim that in an ideal condition, the rate of return on this 

portfolio must be always equal to the rate of return on any other riskless 

situation; otherwise, there would be opportunities for arbitrage: 
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where   is risk-free interest rate. By substituting the values   and    of the 

equations (1.15) and (1.17) we obtain 

  

  
  

  
 

 

 

   

   
            

  

  
                              

 

and so 

 

  

  
   

  

  
 

 

 
    

   

   
                                           

 

The equation (1.20) is the differential equation of Black-Scholes-Merton. It has 

many solutions, one for each derivatives depending on    The particular solution 

obtained is based upon the boundary conditions defining the derivative’s value 

on a range of extreme values of   and  .  

In the case of a European Call, the main boundary condition is 

 

             

 

while for a European Put is 

 

             

 

when     and where   and   represent the spot price and the strike price, 

respectively. 
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But the current value of the portfolio   is not permanently risk-free, that is, only 

at a small infinitesimal time, so the hedging should be reviewed after each price 

change. 

Finally, we can present the assessment of Black and Scholes formula. The values 

of European call   and put   of a share at time zero which does not pay dividends 

are 

 

                                                                      

  

                                                                  

 

where 

 

   
                  

   
 

 

   
                  

   
        

 

     is a Gaussian distribution with zero mean and standard deviation equal to 

1, that is, the probability that a normal standardized variable assumed a value 

less than  . Then,    is the spot price at zero time,   the strike price,   risk-free 

interest rate,   the volatility and   the maturity of the derivative. 

 

After this analytic part, a careful reader could be aware that everything is based 

on a large pillar, the Gaussian distribution. But asset returns do not follow the 

“bell curve”, and this is demonstrated by graph. In fact if we look at Figure 5-C1, 

the daily price changes of the Dow Jones Industrial Average from 1916 to 2003 

do not have a bell curve. The extreme values are too many. Based on this theory, 

the days when the variations are more than 3.49% should be 58; but they are 



Copyright ©2010 Gerardo Manzo 
 

23 
 

effectively 1,001. The theory forecasts 6 days with a variation more than 4.5%, 

but in reality, they are 366. Besides, increments of more than 7% occur once 

every 300,000 years; but they occurred 48 times in the XX century. 

According to this theory, the probability to see a financial collapse like that of 19 

October 1987 is about       , or 0.000 000 000 000 000 000 000 000 000 000 

000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 

000 000 000 000 00001%. Hence, it’s almost unlikely! We could think that there’s 

something wrong in those used instruments. Pricing an option assuming that 

price changes follow a Gaussian distribution is only a simplification of the reality, 

so we agree with Taleb when he talks about the double-ball, the derivatives’ 

mispricing of probabilities and profits. 

 

1.4 Focus on Markowitz and Sharpe 

Strong applications of Bachelier’s ideas were made by Harry Markowitz, who 

achieved a PhD at the University of Chicago with a thesis on the Modern Portfolio 

Theory, and by Sharpe, an American economist who idealized an important 

model of asset pricing, CAPM, at the beginning of the 1970s, and by Black & 

Scholes-Merton, who we have dealt with in the previous Section. 

 

1.4.1 Markowitz’s Modern Portfolio Theory 

In 1950 when Markowitz presented his work to obtain a doctorate, in that 

period, the main opinion about shares, was to choose their best asset allocation. 

But nothing was written on that argument in details until Markowitz wrote his 

work. He thought that investors do not consider only their potential profits, 

because if so, they would buy only one share waiting for the arrival of gains. 

Instead, they also think of diversifying their investments, choosing carefully 

different risk-based assets, creating a portfolio.  

Showing this theory, we can focus our attention on the usage of some concepts 

typical of Gaussian distribution, mean and variance.  
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Having a first idea of Markowitz’s Modern Portfolio Theory (MPT), we present 

what he wrote to introduce his work, then a Nobel lecture, as follows: 

The process of selecting a portfolio may be divided into two stages. The first 

stage starts with observation and experience, ending with beliefs about the 

future performances of available securities. The second stage starts with the 

relevant beliefs about future performances and ends with the choice of portfolio. 

This part is concerned with the second stage. We first consider the rule that the 

investor does (or should) maximize discounted, expected or anticipated, returns. 

This rule is rejected both as a hypothesis (to explain), and as a maximum to guide 

investment behavior. Next we have to take into consideration the rule that the 

investor does (or should) consider expected return a desirable thing and variance 

of return an undesirable thing. This rule has many sound points, both as a maxim 

and hypothesis on investment behavior. We want to illustrate geometrically 

relations between beliefs and choice of portfolio according to the "expected 

returns-variance of returns" rule.  

One type of rule concerning the choice of portfolio is that the investor does (or 

should) maximize the discounted (or capitalized) value of future returns. As the 

future is not known with certainty, so the future must be “expected” or 

“anticipated” returns which we discount. Variations of this type of rule can be 

suggested. Following Hicks, we must considered that "anticipated" returns 

should include an allowance for risk, or, we could let the rate at which we 

capitalize the returns from particular securities vary with risk.  

The hypothesis (or maxim) that the investor does (or should) maximize 

discounted return must be rejected. If we ignore market imperfections the 

foregoing rule never implies that there is a diversified portfolio which is 

preferable to all non-diversified portfolios. Diversification is both observed and 

sensible; a rule of behavior which does not imply the superiority of 

diversification must be rejected both as a hypothesis and as a maxim. 
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The fundamental concept behind MPT is that the assets in an investment 

portfolio cannot be selected individually, each on their own merits. Rather, it is 

important to consider how each asset changes in price relative to how every 

other assets in the portfolio changes in price. 

MPT assumes that investors are risk averse, meaning that given two assets that 

offer the same expected return, investors will prefer the less risky one. So, an 

investor will take on increased risk only if compensated by higher expected 

returns. Conversely, an investor who wants higher returns must accept more 

risk12. The exact trade-off will differ by investors based on individual risk aversion 

characteristics. The implication is that a rational investor will not invest in a 

portfolio if a second portfolio exists with a more favorable risk-return profile – 

i.e., if for that level of risk an alternative portfolio exists which has better 

expected returns. 

This theory uses a parameter, volatility, as a proxy for risk, while return is an 

expectation on the future. This is in line with the EMH. 

Therefore, under the model, portfolio return    is the proportion-weighted 

combination of the constituent assets' returns, while portfolio volatility    is a 

function of the correlation   of the component assets. The change in volatility is 

non-linear as the weighting of the component assets changes. In formulas: 

                                

                         

 

   

                                           

 

where    is return of asset  , and   is the weighting of component asset  . 

                                   

  
     

 

 

   

  
         

 

   

              

 

   

     

 

   
           

                                                           
12

 The trade-off between return and risk will be formalized some years after by Tobin in his 
Separation Theorem. 
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where     and for    ,       

 

                              
             

 

1.4.1.1 Diversification strategy 

Diversification is used to reduce risk and it is based on the correlation parameter 

constrained between    and  . See the several cases when we have only two 

assets   and  . 

 

When       , we get 

 

      
     

   
           

                  

                 
 
 

 

end                        

 

the portfolio variance and hence volatility is less than the sum of the individual 

asset volatilities, so there’s a perfect diversification. 

 

When      , we get 

 

      
     

   
           

                  

                 
 
 

 

and                       
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that is, there’s no volatility combinations able to reduce portfolio risk. 

In the case      , all the assets are completely uncorrelated, hence the 

portfolio variance is the sum of the individual asset weights squared times the 

individual asset variance (and the standard deviation is the square root of this 

sum): 

 

      
     

   
           

  

 

1.4.1.2    asset case 

Consider   assets, we have a matrix form as follows: 

Let    be the vector of   assets and let    and   be respectively vector yields and 

variance-covariance matrix: 

 

    

  

  

 
  

       

     

     
 

     

      

 
 
 
 

   
     

      

     
   

      

 
     

 
     

  
     

 
 
 

 

 

So that, portfolio return and portfolio variance are severally: 

 

                        

 

                      

Moreover, let    be the vector of a different combination of the   assets: 

    

  

  

 
  

  

So that portfolio covariance is  
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After this analytic explanation we will show the Efficient Frontier. 

 

1.4.1.3 The Efficient Frontier 

Every possible asset combination can be plotted in risk-return space, and the 

collection of all such possible portfolios defines a region in this space. 

A Markowitz Efficient Portfolio is one where no added diversification can lower 

the portfolio's risk for a given return expectation, alternately, no additional 

expected return can be gained without increasing the risk of the portfolio. The 

Markowitz Efficient Frontier is the set of all portfolios that will give the lowest 

expected risk for each given level of expected return. 

Therefore, the bonded optimization problem can assume two alternative ways: 

 

   
  

          

                   

                  

         

 

or  

 

   
  

            

                   

                

         

 

where               times.  
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Considering a portfolio composed of ten assets, and their log-returns from 

5/1/2004 to 30/12/2008, a sample of 1274 data and putting in practice the 

equations’ set (1.29), we obtain the whole frontier (on the left of Figure 5-C1) 

while the efficient one (on the right of Figure 5-C1) begins from the point of 

minimum variance. 

 

 

Figure 5-C1. Both graphs represent the whole frontier (left side) and the efficient 
one (right side). Optimal portfolio is composed by the shares of ten companies: 
Mondadori Inc., Fastweb, Eni, Enel, A2A, MPS, Saipem, Pirelli, Erg and Tenaris. 

 

The efficient frontier is convex because the risk-return characteristics of a 

portfolio change in a non-linear trend as its component weightings are changed. 

Indeed, portfolio risk is a function of the correlation of the component assets 

showed by the equation (1.27), and the changes in a non-linear trend as the 

weighting of component assets changes. The efficient frontier is a parabola 

(hyperbola) when expected returns are plotted against standard deviations. 

The region above the frontier is unachievable by holding risky assets alone. No 

portfolios can be constructed corresponding to the points in this region. The 

points below the frontier are suboptimal. A rational investor will hold a portfolio 

only on the frontier. 
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1.4.2 Sharpe’s CAPM 

Other contributes to Markowitz’s theory was due to William F. Sharpe. He was 

one of the founders of the Capital Asset Pricing Model (CAPM) who created the 

Sharpe ratio for risk-adjusted investment performance analysis and contributed 

to the development of the binomial method for the valuation of options. It is the 

gradient method for asset allocation optimization, and returns-based style 

analysis for evaluating the style and performance of investment funds. 

 

In his pricing model, CAPM, he found out that one would buy a share only if he 

forecasts profits more than Treasury bills’ ones. This “more” is proportional to 

the accuracy with which the share reflects the performance of the market on the 

whole. This concept is summarized in the so-called expected  -return 

relationship, according to which the expected rate of return on an investment is 

directly proportional to its risk premium, as signified by its   coefficient.  

In formulas, let       be the expected return of the asset  , let       be the 

market performance and let    be free-risk interest rate, we have: 

 

                               

 

where                      . 

Even in this case, we exploit the properties of the Gaussian bell curve, mean, 

variance and covariance, so this construction holds well only if the returns follow 

the Gaussian distribution. 

Moreover, these approximations are not the only ones. In fact, according to two 

works by Fama and French13, there are evident inconsistencies with Sharpe’s 

model. Their works have received a great deal of attention, both in academic 

circles and in the popular press, with newspaper articles displaying headlines 

                                                           
13 Eugene F. Fama and Kenneth R. French, The Cross-Section of Expected Stock Returns,  Journal 

of Finance 47 (1992), pp. 427–66, and E. F. Fama and K. R. French, Common Risk Factors in the 
Returns on Stocks and Bonds,  Journal of Financial Economics 17 (1993), pp. 3–56 

http://en.wikipedia.org/wiki/Capital_Asset_Pricing_Model
http://en.wikipedia.org/wiki/Sharpe_ratio
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such as “Beta Is Dead!”. The two main points of these papers are: firstly after, 

analyzing two sets of historical data from 1941 to 1990 and from 1963 to 1990, 

they concluded that, over the first period, the relationship between expected 

return and beta is weak, while, over the second one, it is virtually nonexistent; 

Secondly, they argue that the expected returns are negatively related to both the 

firm’s price-earning (   ) ratio and the firm’s market-to-book (   ) ratio. 

These debates damage CAPM which states that the average return on stocks 

should be related only to  , and not to other factors such as     and    14. 

 

1.5 The monstrous logical link 

 The edifice of modern finance stands – on condition that you can prove the 

correctness of Bachelier and his successors. According to Markowitz, variance 

and the standard deviations are the best substitute for risk – on condition that 

price changes follow exactly the Gaussian bell curve.   coefficient and CAPM 

make sense – on condition that Markowitz is right and Bachelier too. The Black & 

Scholes-Merton’s formula is correct – on the condition that price changes are 

described by the Gaussian distribution and are continuous. 

Therefore, as Mandelbrot asserts, this intellectual edifice is an extraordinary 

testimony of human genius, but the entire set is not stronger than its weakest15. 

  

1.5.1 And now? 

In 2004, Mandelbrot, talking about his model of Fractional Brownian motion 

based on his fractal theory, which we will deal with in the next chapters, asserted 

that his results are not yet used to choose shares, to negotiate derivatives or to 

price them; only time, and other researches, could be decisive.  

                                                           
14 But also these critique are questioning, for example,      and     are merely two of an 

infinite number of possible factors. 
15

 Benoit B. Mandelbrot, Richard L. Hudson, The (Mis)Behavior of Market. A Fractal View of Risk, 
Ruin and Reward, 2004 
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So, after five years, we can present some fundamental works in the last part of 

this thesis, which could be a revolution for the whole finance world, dealing with 

one of the new theory of portfolio selection and the option pricing in a fractional 

Brownian market, using the power of Fractal Geometry. 

Before moving to the next chapter, we are able to understand some empirical 

principles which will be inserted in the models we present. 

Five behavioral rules of markets: 

 

 Markets are risky 

Extreme asset returns are an intrinsic rule, they often happen, so one 

cannot exclude them using the Gaussian bell curve, because in our world 

“normal” does not mean symmetric, lack of improbable variations, 

everything could occur, so an exact forecast is impossible, there’s always 

something which completely slips the human mind and genius. But 

knowing the violent and wild market turbulence is already useful; 

 Troubles never come alone 

The turbulence concentrations tend to cluster. So a bull tendency could 

continue for a short or long period, but we must know that it could 

suddenly stop and collapse, becoming a bear one. 

Hence, price changes are discontinuous; 

 Markets have a personality  

Traders must not operate in the markets only focusing attention on the 

exogenous factors like news and other people, because prices are formed 

also by endogenous factors which are typical of the intern market 

functioning. According to Mandelbrot, wars begin, peace comes back, 

firms fail, everything that influences prices comes and goes, but the 

fundamental process by which prices react to news does not change; 

 Markets deceive 
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No one is able to forecast everything only thanks to past data. Here the 

metaphor of the turkey, exposed by Taleb in The Black Swan, sounds 

good. What is the faith’s tendency of a turkey which is fed everyday by a 

human hand? We can think it is bull one, increasing daily, but a man is 

not a turkey, he has a brain for thinking and anything could happen, that 

there could be a day in which everything vanishes.  Hence only past data 

are insufficient to forecast future, because the turkey may appreciate the 

human goodness, but what happens to the bull trend when the turkey is 

killed? Of course, faith vanishes; 

 Market time is relative 

Mandelbrot has introduced a new concept of time. A trader must focus 

attention not only on the clock time, but also on the trading time, a 

different time from the linear one of our normal way of thinking. This 

time speed up the time clock during periods of high volatility and slows 

during periods of stability.  

 

After all, we let the readers interpret the meaning of Taleb’s phrase stated 

during an interview: “Hey, one single observation, OK, can destroy thousands of 

years of confirmation”16.  

 

 

 

 

 

 

 

 

                                                           
16

 Report, Top Theorists Examine Rippling Economic Turbulence, , 21 October 2001, moderating 
by Paul Solman, guests N.N. Taleb and B.B. Mandelbrot. See Section “Interview” for the complete 
interview. 
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Chapter 2  

 

FRACTAL GEOMETRY: FASCINATING CHAPTER 

 

 

 

Fractal Geometry is the central issue of this work and it is the revolution of all 

sciences existing in our world. Instead of writing a summarized definition of 

Fractal Geometry, we prefer to present Mandelbrot’s definition written in a 

paper 198917, as follows:  

 

Fractal geometry is a workable geometric middle ground between the excessive geometric order 
of Euclid and the geometric chaos of general mathematics. It is based on a form of symmetry that 
had previously underused, namely invariance under contraction or dilation. Fractal geometry is 
conveniently viewed as a language that has proven its value by its uses. Its uses in art and pure 
mathematics, being without ‘practical’ application, can be said to be poetic. Its uses in various 
areas of the study of materials and of other areas of engineering are examples of practical prose. 
Its uses in physical theory, especially in conjunction with the basic equations of mathematical 
physics, combine poetry and high prose. Several of the problems that fractal geometry tackles 
involve old mysteries, some of them already known to primitive man, others mentioned in the 
Bible, and others familiar to every landscape artist. 

 

Hence, a ground named fractal geometry, which is a middle between the 

extremes of linear and organized geometric order and orderly geometric chaos.  

Standard geometry has long proved to be effective in sciences. Yet there’s no 

question that Nature fails to be locally linear. But, on the other side, complete 

                                                           
17

 Benoit B. Mandelbrot, Fractal Geometry: what is it, and what does it do?, Yale University, 1989. 
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chaos could not conceivably lead to a science. The monstrous beauty of this 

geometry is its astonishing results that often seem to involve structures of great 

richness, generated by algorithms of extraordinarily shortness and simplicity.  

We can assert that fractal geometry is a new geometric language, which studies 

different aspects of different objects, either mathematical or natural, that are 

not smooth, but rough and fragmented to the same degree of all scales. The 

concept scaling is intimately connected with the main characteristic of fractals, 

the so-called symmetry, that is, “invariance under dilations and contractions”, 

but it will be showed in the next sections.  

A goal of science is to describe nature quantitatively. To see is a skill that we 

must learn, and that we must learn what to measure. Therefore, the eye plays an 

important role to analyze nature first. The Elements of Euclid is the oldest treaty 

based on an almost modern mathematical thought, which is concentrated on 

regularity. Lines, planes and spheres best represent the reality, but we do not 

live in Plato’s World of Ideas, just look around. In 1982, Mandelbrot, in his 

manifest The Geometry of Nature, asserted that: “Why is geometry often 

described as 'cold' and 'dry'? One reason lies in its inability to describe the shape 

of a cloud, a mountain, a coastline or a tree. Clouds are not spheres, mountains 

are not cones, coastlines are not circles, and bark is not smooth, nor does 

lightning travel in a straight line”. 

 

The scope of this chapter is to provide a detailed explanation of everything 

concerning fractals, in a fascinating way, showing in part, the specific 

mathematical terms whose tools has proved to be attractive and fruitful, but by 

no means easy. 
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2.1 Preliminary studies on the irregularity 

Fractalists’ mathematical language keeps on evolving and expanding with each 

new use. Their straightness must be seen with their own eyes, observing reality 

and experiencing.  

The main assumption based on Gauss and Legendre is to consider the deviation 

of reality from an ideal form, when they introduced the Ordinary Least Square. 

But we cannot consider irregularity as an imperfection, a mere gap from an ideal 

world. It is the essence of nature, and of finance too, and it will be showed in the 

last part of this chapter. The fundamental point of fractal geometry is to set 

regularity in what irregularity is, that is, the basic structure of what amorphous 

is. Mathematics has always tried to research the so-called invariances, or 

symmetries, the main properties that do not change from an object of study to 

another. These “invariances under dilations and contractions” link a set with its 

parts: each part is a linear geometric reduction of the whole, with the same 

reduction ratios in all directions. 

Fractal geometry is the instrument used to individualize these repeated 

configurations, to analyze, quantify and manipulate them. Having an idea of a 

fractal, you might see a Roman broccoli, which is a fascinating natural fractal. 

 

2.1.1 How to construct a fractal 

The simplest fractals are constructed by starting from a classic geometric object 

like a triangle, a straight line, a spherical solid, which is called initiator. Moreover, 

it is necessary also a generator, a shape, which is a simple geometric form: a zig 

zag line, a wavy curve, or as we shall see for the diagram of prices, a bullish or 

bearish sequence of prices of few dollars. Hence, the first construction stage 

replaces each side of the initiator by an appropriately rescaled, translated and 

rotated version of the generator. Then, a second stage repeats the same 

construction with more broken line obtained at the first stage and so on, so that 

the process follows a recursive rule.  
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See Figure 1-C2 to have an idea on how to construct a fractal. 

 

                                                    

Figure 1-C2.  Sierpinski gasket. The initiator is a black triangle, while the first of 
the six triangles on the left (side) is the generator. The others show the recursive 

process. 
 

One of the most popular examples of this phenomenon was invented by the 

Polish mathematician Waclaw Sierpinski. Any triangle can be cut into four 

congruent triangles, and the first step in creating Sierpinski's figure is to remove 

the middle triangle. The next step is to remove the middle of each of the 

remaining triangles. Repeating this over and over again it creates what is known 

as the Sierpinski gasket. This object has the remarkable property that doubling its 

size produces a figure composed of three copies of the original figure. If we 

double the size of one-dimension object, we obtain two copies of the original; if 

we double the size of two-dimension object, we obtain four copies of the 

original. The Sierpinski gasket has such a dimension similar to raising two to that 

exponent, so that we obtain three. There is no whole number with this property, 

so the dimension of the Sierpinski gasket lies somewhere between one and two. 

Specifically, it is the logarithm of three to the base of two. 

Another figure is created by such an infinite process is the Koch snowflake. The 

snowflake starts with an equilateral triangle. On each of the 3 edges of that 
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triangle, we erect a triangle one-third larger. Then we erect a triangle one-ninth 

larger than the original on each of 12 edges of the previous figure. So each of 

these edges is replaced by four smaller edges one-third longer than the original. 

It follows that the total perimeter is multiplied by     at each stage. Leading this 

process to its limit, we have Koch's snowflake as follows in Figure 2-C2. 

 

 

Figure 2-C2. Koch snowflake. The initiator is a black triangle in the upper left, 
while the second of the four triangles is the generator. The graph below is a side 

of Koch snowflake which is on the right. 
 

Continuing to expose fractals, we close this graphical presentation of the 

“beauty” showing two more, Cantor dust and Mandelbrot set. 

Cantor dust (or Cantor set), introduced by German mathematician Georg Cantor 

in 1883, is a set of points lying on a single line segment that has a number of 

remarkable and deep properties. Consider a line segment of unit length. Remove 

its middle third. Now remove the middle thirds from the remaining two 

segments; then the middle thirds from the remaining four segments and so on. If 

we can continue this construction infinitely, what remains is a remarkable subset 

of the real numbers called the Cantor set, as shows in Figure 3-C2. 
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Figure 3-C2. Cantor dust. It starts from a simple straight line and the generator is 
the same line. The result is the disappearance of any solid line, in fact, remains 

only a sprinkle of points. 
 

The example which concludes this section is the picturesque Mandelbrot set, so 

named not by Mandelbrot himself but by his colleagues. This set illustrates the 

deep link between fractal geometry and chaos theory. Using a very simple 

algorithms:         , where    is the starting point of the recursive process,   

is a constant constrained between 3 and 4 and    is the first output. To construct 

this, we can assign a pixel on the monitor, coloring it. The surprise is that if we 

observe it on a smaller and smaller scale, we will discover that the graph became 

more and more complicate, as it is shown in Figure 4-C2. 

 

 

Figure 4-C2. Mandelbrot set (a). (b) and (c) are zoomed. 

 

Except for the last graph of Figure 4-C2, the other fractals seem to come out 

from simple processes. But if we can repeat it more times with more details, it 

could become more complicated, for example, transforming the quoted zig zag 
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line in a jugged curve, or shuffling at random the segment of a generator. Many 

fractals do exist, and all have in common the same characteristic: the scaling. 

Here each part recalls the whole under a specific ratio, and it is due to this if the 

fractals are defined self-similar and self-affine.  Before continuing this analysis, 

it’s important to say that we will show the mathematical approach of scaling 

distributions and other methods in details in the next chapter, so what we 

present below will be developed later. 

 

2.1.2 Self-similarity and self-affinity 

We have asserted that the main fractal characteristic is what we call scaling18, 

meaning that each part recalls the whole under a specific ratio. When this ratio is 

the same in all directions, we can define a fractal self-similar. They are similer to 

the zoom of a camera which enlarges or reduces everything framing in the same 

size, showing at different focal lengths, something similar. Moreover, we must be 

careful not to confuse similarity with identity, because we refer to the fact that 

each part is similar to the whole, but not necessarily identical to the whole. A 

classic example of self-similarity by Mandelbrot is the coastline of Britain19, 

which looks jagged from a satellite views, so if you zoom in to 10,000 feet, it 

looks pretty similarly jagged. If you zoom in to 5,000 feet, the coastline looks 

similarly jagged yet again, and so on. The concept of self similarity doesn't 

require exactly the same view from each altitude, but only that it is similar in its 

texture, irregularity, or coarseness. See Figure 5-C2 for an example of self-similar 

fractal. 

                                                           
18

 As we shall see, according to Mandelbrot, scaling is one of the two invariance principles in 
economics. The other is stationarity.  
19

 B. B. Mandelbrot, How long is the coast of Britain? Statistical self-similarity and fractional 
dimension, Science, 1967. 
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Figure 5-C2. The tree is a black-and-white digital artwork graphically constructed 
by iterating an arrangement of a small portion of a photograph of a rosebush 

(Copyright 2007 Robert Fathauer)20. 
 

Furthermore, when the quoted ratio changes from a direction to another, as we 

shall see in Bachelier’s graphs or in the graphs of asset returns, the fractals are 

defined self-affine. Hence, while self-similar fractal structures have symmetrical 

properties that not only depend on the direction (they scale isotropically) but 

also depend on the direction in space, a self-affine fractal does not look similar if 

it is viewed from a closer distance. It looks similar only if one of the space 

coordinates is rescaled appropriately. 

The roughness of self-affine fractals can be quantified by means of the Hurst 

exponent,  , ranging from   to  . A large part of Chapter 4 is dedicated to this 

exponent, but in Appendix  we will show its estimation methods. See Figure 6-C2 

for an example of self-affine fractal. 

 

                                                           
20

 We are grateful with Robert Fathauer to have given permission to use this image. 
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Figure 6-C2. The pieces are scaled by different amounts in the   and   directions. 

 

We invite the reader to pay attention to the difference in meaning of the two 

last concepts, because, unfortunately, many probabilists persist in using self-

similar when they really mean self-affine. 

 

2.1.3 Multifractality 

If fractals follow different factors of scale in several point of enlargement or 

reduction, they are called multifractals and their properties are more 

complicated and powerful. Many patterns that seem fractal in a first 

approximation prove, on a second look seem to be multifractals. What we will 

show afterwards is that the most general category of graphs allows the 

generator to include diagonal boxes with different values of the exponent  , 

which is constrained between        and         . So these graphs are 

necessarily multibox. In other words, multifractality allows some generator 

intervals to be axial, hence includes graphs that combine continuous variation 

with jumps. 

 

2.2 Fractal dimension    

According to Mandelbrot, the main notable characteristic of fractal geometry is 

the particular way to conceive the dimension. For Euclid a point does not have a 
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dimension, a line has two and our world three, while Einstein added another 

one, the time.  

To have a good idea of what we want to demonstrate when we talk about fractal 

dimension, try to imagine a cotton ball. From a great distance, it is almost visible; 

effectively it is a dot, without dimension according to Euclid. If we put it in our 

hands, it will become a three-dimensional object. Observing it in details, we 

realize that it is a tangle of fibers in one-dimensional space. If we look it more 

closely, the fibers are three-dimensional filaments. Proceeding with a 

microscope, we find again points without dimension. Therefore, it’s natural to 

ask how many dimensions a cotton ball has? Zero, one or three?  

It is important to consider such dimension an instrument of measure. Indeed, 

fractal dimension is a statistical concept that measures how a fractal fills the 

space as we zoom down to smaller and smaller scale. Mandelbrot realized that 

the coast of Britain has a fractal dimension of about 1.25. Does this make sense? 

The answer is yes because we must consider that the fractal dimension of a line 

is 1, while that of a square is 2, so an irregular coast is more complicated than a 

line, but it may never fill a bi-dimensional space like a square. Another example: 

if we measure the surface of a lung, we can realize that it has a big surface 

similar to that of tennis court, but its fractal dimension is near 3, so its nature is 

almost three-dimensional. Hence, a fractal dimension is the first instrument to 

measure how a thing is convoluted, twisted. 

 

2.2.1 And what about the definition on fractal dimension? 

Having presented literally what we mean by fractal dimension, now we present 

some of the most used definition of it, mentioning names such Rényi and 

Hausdorff. Furthermore, practically, the box-counting dimension and correlation 

dimension are widely used, partly due to their ease of implementation. 

For some classical fractals, all these dimensions coincide, but in general they are 

not equivalent. Consider fractal in Figure 2-C2, the Koch snowflake, a careful 



Copyright ©2010 Gerardo Manzo 
 

45 
 

observer should note that the same ratio,    , is always repeated. It means that 

in the first recursive step and so in the others, there are four broken line on a 

straight line long one third of the lenght of the object. But the lenght of the curve 

between any two points on the Koch Snowflake is infinite.  

There are two main approaches to generate a fractal structure. One is to grow 

from a unit object, and the other is to construct the subsequent divisions of an 

original structure, like the Sierpinski triangle in Figure 1-C2. Follow the second 

approach. 

 

2.2.2 Similarity dimension  

Consider an object with a linear size equal to 1 residing in Euclidean dimension 

 . Reducing its linear size by the factor     in each spatial direction, it takes 

     number of self-similar objects to cover the original one. In this case, 

when the ratio of enlargement or reduction is the same, fractal dimension 

coincides with similarity dimension,   , so that 

 

   
     

       
                                                             

 

where   is the ratio of enlargement or reduction and   is the number of self-

similar objects to cover the original one. In the Koch case,       and    , so 

that                        which is more or less the Hausdorff 

dimension.   

 

2.2.3 Dimension based on box counting 

As the name implies, this dimension is obtained by counting the numbers of 

boxes of several largeness as necessary to cover a fractal form. Consider again 

the Koch curve, we can see that three boxes of one third-length are necessary to 

cover the curve, as follows in Figure 7-C2. 
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Figure 7-C2. Fractal dimension of Koch curve based on box counting. 

 

Continuing the process in Figure 7-C2, we could find that the fractal dimension 

becomes 

 

      
    

       

        
                                                       

 

where       is the number of boxes of radius    necessary. So the dimension is 

again                           Moreover, for the Sierpinski triangle 

in Figure 1-C2, it is                         

 

2.2.4 Other dimensions 

Similarity and box counting dimensions are two of a multitude of variation on the 

notion of dimension. 

The mass dimension is based on the idea of how the mass of an object scales 

with the size of the object, assuming unchanged density. Locating a dot   inside 

the object, near the middle and denoting by      the amount of mass of the 

object inside the circle of radius   and centered at  , if the power law relation 
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         holds over some range of   values, then the mass dimension 

    . 

Furthermore, when self-similar objects are described by a power law21 like     , 

Hausdorff dimension is defined by             , that is, the dimension of 

the scaling law. However, in general, the proper dimension to use turns out to be 

the Minkowski-Bouligand dimension,    . Let      be the area traced out by a 

small circle with radius   following a fractal curve, then 

 

       
   

      

    
                                                   

 

allowing that, for all strictly self-similar fractals, the Minkowski-Bouligand 

dimension is equal to the Hausdorff one. Otherwise,      . 

Hence, this is an instrument used to measure every kind of phenomena, also the 

variability of a financial diagram. 

 

2.3 Fractals in finance 

In finance, fractals have followed a tortuous route. In 1987, after the quoted 

crash22, Wall Street was finding new ideas so fractals became a trend. More and 

more researchers dealt with them so, from then on, fractals are becoming an 

alternative to the obsolete financial and economic models. 

Fractals in finance are used to make prediction as to the risk involved for 

particular stocks. To discover them, one must be a careful empiricist. Indeed, 

many real data seem to exhibit both global dependence and long tails, the main 

characteristics of financial data which have contributed to the collapse of the 

edifice of modern finance. It is important to dedicate some chapters only to this 

particular topic because of its central role played beyond the goal of this work, 

                                                           
21

 For a detailed close examination see Chapter 3.  
22

 See Section 1.1 of Chapter 1. 
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mentioning revolutionary instruments such as Fractional Brownian motion and 

Lévy distributions’ family.  

Naturally, the fact that price changes follow the Gaussian distribution is not the 

only pillar which modern finance is based on. Another pillar is their 

independence. For many years financial analysts and researchers have inquired 

into the short-run dependence, asserting that in a small time interval price 

variations influence each other, also conjecturing the so-called thrust effect, that 

is, when a price starts to raise, an increase is more probable than a decrease. 

Conversely, in the middle-run, from three to eight years, what seems to happen 

is exactly the contrary; a share which has increased over some years has a 

greater probability of decrease rather than an increase.  

Other economists have also conjectured the effect of passenger mania, that is, 

for years, investors could be in favour of a firm, so sales increase earnings too, 

but suddenly everything could change and a reverse trend could occur. 

Chapter 4 will present another concept of dependence, the long-run one, which 

has an infinite effect.  

Finally, we can assert that markets are not those conjectured by the recent 

theories, but are more turbulent and dangerous, so a new mathematical and 

statistical baggage must be introduced. 

 

2.4 After all 

Fractals can seem at random. It is often difficult to classify them on the basis of 

the classical geometry and analysis. They are frequently irregular and 

unpredictable, but the most important point is that they have a simple 

beginning. Every fractal is the logical expression of a simple idea, rule or 

mathematical relation.  

The code to construct a fractal is composed of three letters, initiator, generator 

and recursive rule, similar to the genetic alphabet DNA. Remember that the 
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beauty of Mandelbrot set, Figure 4-C2, comes out from a simple but powerful 

expression.  

Fractal geometry has its roots in several fields. In 1733 the poet Jonathan Swift 

wrote: 

 

So, Nat’ralists observe, a Flea 
Hath smaller Fleas that on him prey, 
And these have smaller Fleas to bit’em, 
And so proceed ad infinitum.

23 

 

Hence, some poets had anticipated this phenomenon.  

At the beginning, fractals were presented as paradoxes. Indeed, Giuseppe Peano 

showed how a one-dimensional line can fill the space which is bi-dimensional, 

the so-called space-filling curve24. In 1918 both Fatou and Julia worked on what 

we would think of as the more standard types of fractals, creating a shape which 

nowadays can be designed by the computer25. Furthermore, some of the modern 

interests in fractals among the people comes from the computer-assisted work 

of the IBM fractal project and 20th century mathematicians like Benoit 

Mandelbrot after whom the Mandelbrot, set is named. Pictures of this set are 

quite fascinating and show surprising features at every level of detail. Until the 

introduction of the computer, very little from this area of mathematics was in 

the form of graphics. IBM's fractal project added the pictures to what is 

inherently an incredibly visual field of mathematics. This added dimension of the 

field in turn gave rise to new discoveries and incarnations of fractals, such as 

mountains and clouds. 

We conclude this chapter showing the last two fractals, Peano curve and Julia 

set, in Figure 8-C2. 

 

                                                           
23

 J. Swift, On Poetry, a Raphsody, 1733, vv. 337-40 
24

 See Mandelbrot B.B., “Ch. 7: Harnessing the Peano Monster Curves", The Fractal Geometry of 
Nature, W. H. Freeman, 1982 or Sagan, Hans (1994), Space-Filling Curves, Springer-Verlag. 
25

 See Evgeny Demidov, The Mandelbrot and Julia sets Anatomy, 2003 



Copyright ©2010 Gerardo Manzo 
 

50 
 

 

Figure 8-C2. Peano space-filling curve on the left and Julia set on the right. 

 

What we will show in the next chapter is the beauty of the powerful 

Mandelbrot’s discover on the new statistical methods that contribute in 

introducing more precision and stronger realism in financial models.  
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Chapter 3 

 

MARKET TURBULENCE: DISCONTINUITY AND 
SCALING 

 

 

 

For years on end, many great banks have picked up information from their 

operations room. But what is all this if EMH is valid? According to EMH, if 

information is available on the markets, it is already included in prices, so there’s 

no opportunity of arbitraging. But why does the collect information center exist 

in a financial intermediary? “We do not believe in efficient markets, so we collect 

information”, this is a declaration of a financial analyst during an interview. 

Indeed analysts spend part of their work-life collecting and analyzing 

information, studying the mutable “volatility surface” of markets. In the B&S-m, 

this surface should not be interesting, it should be flat. Actually, it is turbulent 

and wild, from which derives the major part of intermediaries’ profits.  

Hence, markets are turbulent, not as peaceful as the majority of the models 

shown, also for the non-rationality of investors who often operate without a 

logical scheme, without a theoretical utility function. Nowadays there’s an 

important research field, which is trying to confute this secular theory, called 
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behavioral finance26, whose treatment is beyond the aim of this work. Besides, 

all investors are not equal, homogeneous, as the classical theory foresees, having 

different time horizons, different approaches to shares, bonds, derivatives and 

others financial instruments. Moreover, another wrong assumption is the 

continuity of asset returns. All financial graphs show signs of discontinuity. Now 

we are in a époque where the motto Natura non facit saltum of the text 

Principles of Economics of Alfred Marshall, 1890, is no longer valid. Price jumps 

are sometimes significant and sometimes unimportant. Discontinuity is the most 

important ingredient of financial markets, so it must be introduced in the 

models. A result of this leads us not to support the Wiener Brownian motion 

showed in the Section 1.3.1 of Chapter 1. 

 

Therefore, the fractal approach to finance and economics is based on two 

features: the first is the importance of invariances and the possibility of 

identifying stationary and scaling as invariance principles in economics; the 

second is the recognition that the probability theory is really versatile, and 

capable to define three states of randomness. 

In a way, this chapter will show an important concept, recognized but always 

neglected by economists in their models, that is, discontinuity which is intimately 

connected with concentration and cyclicity. Moreover, we present a detailed 

mathematical presentation on stable non-Gaussian random processes, 

introducing Lévy’s processes. 

 

 

 

                                                           
26

 This particular analysis applies scientific research on human and social, cognitive and emotional 
factors to better understand economic decisions by consumers, borrowers, investors, and how 
they affect market prices, returns and the allocation of resources. See D. Kahneman, A. Tversky 
(1979), Prospect Theory: An Analysis of Decision under Risk, Econometrica 47 (2): 263–291. 
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3.1 Market turbulence and randomness 

Asserting that the track of settlements and diagram of prices, can be described 

as random processes is not the same to say that is irrational rather than 

unpredictable. Financial prices are unpredictable and uncontrollable. The best 

thing we can do is to evaluate the probability that a certain event happens. 

Probability is the only instrument we have at our disposal in financial markets 

which are faster and faster, more and more variable. A posteriori it’s simple, easy 

and manic to explain the link between causes and effects, as everyone can do 

this, but it is too late, in the meanwhile one could gain or lose money. The 

central aim of Section 3.2 is to present the three states of randomness, which, 

according to Mandelbrot, correspond to three well-known distributions: the 

Gaussian, the log-normal and the scaling with infinite variance. They differ 

deeply from one another, from the viewpoint of the addition of independent 

addends in small or large numbers. The three states are: mild, slow and wild.  

 

3.1.1 States of Randomness: the probabilistic approach 

Why must we consider three states of randomness? When we face with a new 

phenomenon of fresh dataset, the first step is to identify its state of randomness. 

Mandelbrot’s states of randomness come from some physical concepts, that is, 

he recalls that gases, liquids and solids are distinguished through two criteria: 

flowing versus non-flowing, and having a fixed or variable volume. Therefore, the 

three states of randomness are also defined by two mathematical criteria. Given 

a sum of   independent and identically distributed random variables, those 

criteria depend on two notions: portioning and concentration. 

Take the random variables   defined by the tail probabilities,         

    , where   is a cutoff, portioning concerns the relative contribution of the 

addends    to the sum    
 
 . Moreover, we must consider also the 

concentration ratio of the largest addend to the sum, that is, concentration is the 

situation that prevails when this ratio is high. Conversely, the situation that 
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prevails when no addend predominates is called evenness. Hence, the contrast 

between concentration and evenness leads to three principal categories: 

 

 Mild randomness corresponds to short- and long-run dependence; 

 Slow randomness corresponds to short-run concentration and long-

evenness; 

 Wild randomness corresponds to short- and long-run concentration. 

 

Consider these in details.  

Long-run,    , is enough to distinguish between the “wild” state of 

randomness and the remaining states, called pre-Gaussian. An example of long-

run portioning is the largest daily price which increases over a significant long 

period of time. Pre-Gaussian yields approximate equality in the limit, expressing 

that the largest addend is relatively negligible. On the contrary, wild randomness 

yields an increasing concentration, so the largest addend remains non-negligible. 

Hence, we can summarize the main idea in this way: the portioning in the long-

run can take two different forms: even, with concentration converging to 0 as 

    and concentration with the largest addend remaining of the order of 

magnitude of the sum.  

On the opposite, short-run,     or “a few”, concerns with the case where, 

given two independent and identically random variables    and    , we must 

understand whether these parts of   (       ) are more or less equal or 

dissimilar. Consider the example on page 124 of Fractal and Scaling in Finance: 

 

Suppose you find out that the annual incomes of two strangers on the street add up to 
$2,000,000. It is natural and legitimate to infer that the portioning is concentrated, that is, there 
is a high probability that the bulk belongs to one or the other stranger. The $2,000,000 total 
restricts the other person’s income to be less than $2,000,000, which says close to nothing. The 
possibility of each unrelated strangers having an income of about $1,000,000 strikes everyone as 
extraordinarily unlikely, though perhaps less unlikely that if the total were not known to be 
$2,000,000. 
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And about the last case, the middle-run? According to Mandelbrot, an economic 

long-run only matters when it approximates the middle-run reasonably, or at 

least provides a convenient basis for corrective terms leading to a good middle-

run description. 

Furthermore, the state of randomness differs according to how fast the 

generalized inverse function27     decreases as its argument tends to 0, that is, 

according to how fast the moments    increase as    28. Hence if the tails 

are very heavy, the value of a variable is very large in absolute value, and if the 

longer tails are heavy, less and less moments do exist.      

Trying to define pre-Gaussian randomness, its fluctuation is averaging, so the law 

of a large number (LLN) shows that sample averages converge asymptotically to 

population expectations; its fluctuation is Gaussian, that is, the central limit 

theorem (CLT) shows that the fluctuations are asymptotically Gaussian; its 

fluctuation is Fickian, that is, the central limit theorem also shows that they are 

proportional to   . The last result will be useful when we talk about the pure 

Brownian motion because of its equal distance in time which is independent29. 

All these properties fail when we deal with distributions that have an infinite 

population variance and where the dependence is not short-range or local but 

long-range or global. This is the case of the scaling distribution with    , called 

 -stable, which deserves a particular treatment because of their complexity. 

Besides, they are not pre-Gaussian but define the wild state of randomness. 

And what about the non-Gaussian limit? Each value     defines the domain of 

attraction, that is, if    is in the domain of universality of    , the limit is a 

random variable called L-stable. Indeed, in contrast to the width of the domain of 

the Gaussian, each of those domains is extremely narrow and reduces the 

variable for which                , where      is logarithmic or slowly 
                                                           
27

 The inverse probability function is the quantile function, that is, the function that, for each 
value constrained between 0 and 1, gives the x-axes where the distribution has that value. 
28

 Mandelbrot, B. Benoit, Fractals and Scaling in Finance, 1997. 
29

 We consider both LLN and CLT because long-run deals with the behavior of a distribution as   
increases. 
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varying in the sense that for all  ,                   . Let us make an 

analytical clarification: we take a sequential sum    
 
  for a sequence of 

independent and identically distributed random variables   , with      . It 

is possible to choose the sequence    and    so that       
 
      

converges to two distinct limits, random and non-random, that are: 

 

 If we chose        and     , for LLN the limit is     , that is non-

random; 

 If we chose         and         , for CLT the limit is Gaussian, 

and so random. 

 

Those two ways define the pre-Gaussian behavior. 

But in the absence of a varying term     , the choice of    is         for all 

 , therefore    
 
  is asymptotically of the order of     . Then, the choice of    

is       when      , and   when      .  

 

&&& Pre-Gaussian category &&&  

To understand better what concentration and portioning mean, we must refer to 

detailed concept of probability theory. The quoted residual pre-Gaussian 

category30 can be subdivided into two categories: the first is based on 

concentration in mode and the second is based on asymptotic concentration in 

probability, which will lead to the “tail-preservation” relation            . 

The last relation comes from a simple concept: let us consider the random 

variables   , with      , independent and identically distributed, with the 

tail probability     , and        is the tail probability of             , so 

                   and, in the tail,       . The concept of concentration 

is related to that of location of the most probable value called “modes”. Those 

                                                           
30

 We define this as residual because of the characteristic of the wild state, that is, concentration 
long-run portioning.   
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locations lead to a criterion based on the convexity of        , which will serve 

to define “concentration versus evenness in mode”31. Indeed, let us consider the 

probability density of the variables    and    ,      and their convolution32 

denoted by                    , when   is known, the conditional 

probability density of    is given by the so-called portioning ratio: 

 

            

     
                                                      

 

where the denominator is a constant and it remains to study the numerator, 

whose integral is dominated by values that the conditional density takes in 

intervals near the modes. Leaving out all analytical demonstrations, we can write 

that  

 

 when the graph of         is cup-convex,  , the portioning ratio is 

maximum for        and portioning is even in terms of the mode; 

 when the graph of         is cap-convex,  , the portioning ratio is 

minimum for        and portioning is concentrated in terms of the 

mode; 

 the last case, when the graph of         is straight, the addend are 

exponential, and the portioning ratio is a constant. 

 

But, according to Mandelbrot, these implications have many flaws. Moreover, if 

there’s concentration in mode, that is,              is maximum for    near   

and    near  , apart from    near    , and considering the following 

convolution’s partition (given a value of    that satisfy       ) : 

 

                                                           
31

 Mandelbrot, B.B., Fractals and Scaling in Finance, 1997, page 131 
32

 In statistics, probability distribution of the sum of two independent and identically distributed 
variables is  the convolution of each distributions.  
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we can define short-run concentration in probability if the middle interval 

          has the following properties as    : 

 the relative probability in the middle interval          tends to  ; 

 the relative length of the middle interval          does not tend to  . 

 

Moreover, short-run concentration in probability prevails when         is slow 

to vary, to decrease and cap-convex, its derivative            tends to   as 

   . Therefore, the tail-preservation concept is related to the fact that, being 

     and       respectively the tail probabilities of   and of a sum of   

variables with the same distribution, we obtain: 

 

                                                                 

 

 

&&& Extreme randomness &&& 

Wild randomness means that the largest of many addends is of the same order 

of magnitude as their sum. Hence, we must consider the moments of the quoted 

probability density: 

 

               
 

 

                                               

 

which have a global maximum for some value     defined by the equation 
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where the dependence of     on   is ruled by the convexity of        .  

Consider the following three cases: 

 when         is rectilinear, the     are uniformely spaced; 

 when         is cap-convex,       is decreasing; 

 when         is cup-convex,       is increasing. 

 

But, knowing the     is not enough, we must also know that        is in the 

neighborhood of    , and this distribution is approximated to Gaussian’s as 

follows: 

 

                                       
 
   

     

 

so the moments       are in the interval                   , and Gaussian’s 

moment are characterized by delocalization, which means that its q-intervals 

overlap for all the values of  . Moreover, the log-normal’s moments are 

uniformly localized because of its non-overlapping of the q-intervals, when it is 

skew. In addition, these moments are asymptotically localized when the q-

intervals cease to overlap for a high q.  

 

3.1.2 States of Randomness: the seven based on the probabilistic approach 

To understand better how to identify a state of randomness, we present from 

Mandelbrot’s list seven states of randomness, which help us to classify them 

thanks to the concepts exposed in the last section. 

We have mentioned that we can discover them through a careful attention to 

the moments’ probability distribution and its inverse function. 

Therefore, the rate of increase as function of   of the moments       or the 

scale factor            are the most important instruments. 

Note the following classification from mild to wild state of randomness: 
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 Proper mild randomness. Evenness of the short-run portioning for   

 ,     increases near     no faster than       , or            

increases near     no faster than  . [Example: the Gaussian]; 

 Borderline mild randomness. Concentrated short-run portioning for 

   , but even beyond a finite cutoff. [Example: the exponential 

        , which is the limit case of a particular function called 

Gamma33, for    ]; 

 Slow randomness with finite and delocalized moments.     increases 

faster than       , but no faster than          , with    , or 

           increases faster than   but no faster than a power     . 

[Example:              , with    ]. 

 Slow randomness with finite and localized moments.     increases 

faster than any power          , but less rapidly than any function of 

the form             , with    , or            increases faster than 

any power of   but remains finite. [Example: the log-normal and 

                  , with    ] 

 Pre-wild randomness.     increases more rapidly than any function of 

the form             , with    , but less rapidly than      , or 

           is infinite when      . [Example: the scaling      

   , with    . The power    becomes a wild random variable if 

     . ]  

 Wild randomness. It is characterized by infinite variance        , but 

        for small    . [Example: the scaling         , with 

   ]. 

 Extreme randomness. It is characterized by         for all    . 

[Example:            , whose concentration converges to   as 

   ] 

                                                           
33

 For a complex number  , with positive real part, the Gamma function is defined by      
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The last state is never encountered in practice, therefore, the Section 3.2 is 

dedicated to the scaling distributions called,  -stable, which are the best 

approximation of reality when they are applied in finance and represent better 

the last but one state, the wild one. 

 

3.1.3 States of Randomness: from an extreme to another 

This section represents a summary of the three states of randomness in a more 

literal way.  

&&& Mild Gaussian world &&& 

If we take a coin and play heads or tails dividing this game in sets, the amount of 

money which we can win or lose, varies a lot over the sets, but it is often equal to 

zero. If we construct a diagram  to indicate the number of times we win, the 

diagram will have the form of a curve, where the smaller winnings are around 

the mean, zero, while the rare ones are at the extremes. This distribution is 

described by only two parameters, mean   and variance   , or standard 

deviation   and has the characteristic function,      , shown in the equation 

(3.1) 

 

     
 

    
     

      

   
                                          

 

where   is the variable in point, like a height or a Intellective Quotient. So   

determinates in what curve’s point we are. If we are around the mean, the 

probability is very high, conversely, it is very low, and the standard deviation 

measures the tails’ thickness. Mean and standard deviation are the only 

parameters necessary to know everything about the population. So we can 

understand that a single throwing is insignificant for the bell curve, contradicting 
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the already cited Taleb’s phrase, that is, one single observation can destroy 

thousands of years of confirmation. 

 

&&& Slow Log-normal world &&& 

This world is characterized by a slow randomness. In finance, the logarithmic 

transformation of prices is always used because a logarithm changes the scale of 

a number so that, instead of concentrating on the size of the number, we can 

easily compare it with the other closed numbers. For example, a price jump of 

one dollar, from 10 to 11, or from 1000 to 1001, is the same on the dollar scale, 

but the logarithmic scale shows that the first is more important than the second. 

Accordingly, in probability theory, a log-normal distribution is a probability of a 

random variables whose logarithm is normally distributed. So if   is the random 

normally distributed variable, then          has a log-normal distribution; 

likewise, if   is log-normally distributed, then      is normally distributed. Many 

economists and analysts deal with log-normal because of its simple properties. In 

fact, a variable might be modelled as log-normal if it can be thought of as the 

multiplicative product of many independent random variables each of which is 

positive. In finance, a long-term discount factor can be derived from the product 

of short-term discount factors. 

Its probability density is shown by the equation (3.6). 

 

     
 

     
     

        

   
                                   

 

where     

 

&&& Wild Cauchy world &&& 

Augustin-Louis Cauchy, a French mathematician of the 19th century, conceived a 

new way to observe the world totally opposite to Gaussian’s. According to 
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Mandelbrot, to imagine this world. We should think of a patched archer who is 

going to shoot an arrow at the target placed on the wall in front of him. His 

patched eyes allow him to shoot in a random way. For many times he doesn’t hit 

the target, of course. Besides, in fifty per cent of the cases, he does not hit the 

wall. Supposing that he continues to shoot for many sets and that we register his 

shot, for any set we can calculate the error average and the standard deviation, 

but he does not live in a “bell curve” world, so his errors are not mild. Moreover, 

trying to calculate the mean after each shot, we can realize that, while in the 

Gaussian world each shot gives an insignificant contribute to the mean, in the 

wild one a single shot can overwhelm one-thousand ended up near the target. So 

they never position around a mean and never have a constant deviation from 

this. Consequently, the errors are not mean-reversing, they have an infinite 

mean and standard deviation and so on the other moments.  

The reduced probability density of Cauchy is represented by the equation (3.7), 

as follows: 

 

     
 

       
                                                        

 

The graph is similar to Gauss distribution, but with longer and thicker tails. 

 

3.2 How make the rare events more probable 

Section 3.1 has shown that dealing with Gaussian distributions we cannot 

consider the best state of randomness, when we have worries about financial 

problems. For the reason explained in Section 1.2.2 of Chapter 1 and illustrated 

by Figure 2-C1, we can present a family of particular probability distribution, 

called  -stable, which is also named Lévy distributions. 

Paul Pierre Lévy (1886 - 1971) was a French mathematician who was active 

especially in probability theory, introducing martingales,  Lévy flights,  Lévy 
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processes, Lévy measures, Lévy constant and Lévy distribution. All these works 

begin from what we define  -stable distributions, which are non-Gaussian. 

Indeed, Gaussian distribution and processes have long been well understood and 

their utility both as stochastic modelling constructs and analytical tools is well-

accepted. However, they do not allow for large fluctuations and are often 

inadequate for modelling high variability. Moreover, non-Gaussian stable models 

do not share such limitations. In general, the upper and lower tails of their 

marginal distributions decrease like a power function whose rate of decays 

depends on the parameter  , which takes a value constrained between 0 and 1. 

The smaller   is the slower the decay is and the heavier the tails are. In addition, 

these distributions have an infinite variance and when    , they have an 

infinite mean as well. 

Before dealing with them, we have to present what the power laws are. 

    

3.2.1 The power of power laws: scaling 

If our eyes observe more carefully a financial price series, we will find out that it 

does not follow the Gaussian bell curve, and its tails follow a power law. Power 

laws are mathematical relationships between two quantities. For example, let us 

consider the surface of a plot of land, it increases in proportion to the side of the 

second power; if the side doubles, surface quadruples; if it triplicates, surface 

increases nine times. In economics, an Italian economist Vilfredo Pareto 

discovered these laws about a century ago, which describe the distribution of 

income, according to which, the majority of wealth is concentrated in the hands 

of very few individuals. So adapting a power law to price series, we could make 

rare events more probable. Indeed, the behavior of these large events is related 

to the study of theory of large deviations, also called extreme value theory, which 

considers the frequency of extremely rare events, like stock market crashes and 

large natural disasters. 
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A power law is any polynomial relationship that exhibits the property of scale 

invariance and is represented by the equation (3.8). Consider a random variable 

  and its tail probability specified by the tail distribution             , 

then the last relation expresses the following power law: 

 

                                                           

 

To understand the meaning of the term scaling, we must consider scaling under 

conditioning. Suppose that      becomes known, this   is at least equal to  . So 

  becomes a conditioned random variable   and the tail distribution is 

 

                          
    

    
                       

 

Taking the tail distribution                   , when     , conditioning 

yields              , which is functionally identical to     34. This is the 

main property, that is, scale invariance.  

Now consider the logarithmic transformation      , we obtain  

 

                                                                

 

Conditioned by       , the tail distribution becomes 

 

                                                    

 

which is identical to        , except for a change of location rather than scale. 

Hence, a system ruled by scaling rather than Gaussian processes can represent 

better market’s activity, which is formed by more and more individuals who 

                                                           
34

 This law is well-known as Pareto law. According to his work on income,      is the percentage 
of individuals with an income above  , while    is the minimum income.    
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operate through several strategies and thoughts. Indeed, the most important 

feature of the scaling distribution is the length of its tail, not its extreme 

skewness. 

But now we want the reader to pay attention to the slight difference between 

Pareto law and scaling distribution, each of which can be either “uniform” or 

“asymptotic”. Uniform scaling distribution is concerned with two state variables 

   and  , so that  

 

      
                           
                                  

                                    

 

where, according to Pareto law,    is a minimum income, while the exponent 

    quantifies the notion of inequality of distribution. The corresponding 

density                is 

 

                                       
                                            

                          

 

But what about its asymptotic behavior? The term asymptotic means that  

 

             ,  as                                                 

 

where the sign   means “behaves like”. And so  

 

    

        
                                                         

 

Another kind of power law distribution with an exponential cutoff is (3.16) 
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This distribution does not scale and consequently is not asymptotically a power 

law35. However, it does approximately scale over a finite region before the 

cutoff, so this can be considered such a common alternative to the asymptotic 

power-law distribution because of its capturing of finite-size effects. But it is 

demonstrated that the parameter   is very small, and in addition, some crucial 

properties of the asymptotic Pareto distribution correspond to    .  

However, the asymptotic scaling distribution must be at least approximately 

correct for large  .  

One of the most important laws is that of Zipf, a linguist of the 1930s who 

discovered this law analyzing the frequencies of words in a book. In many papers 

and books, many words are repeated and what Zipf did was to choose a book 

and to count up how many times a word is repeated. The next step was to order 

these according to their frequency, giving a rank to each of them, that is, 1 to the 

most repeated word and so on. Finally, drawing the graph, we realize that the 

frequencies’ curve does not decrease in a regular way, but at the beginning it 

falls in a dizzy manner and then decreases more slowly. The Zipf law is shown by 

the equation (3.17). 

 

                                                                       

 

where      is the probability distribution with respect to the rank  ,   is a 

constant and     is the critical factor of the power law, that is the larger  , is 

the richer the vocabulary is and so, the curve decreases more slowly. 

Let us try to apply this experiment to the price series of The Coca-Cola Co. The 

result is shown in Figure 1-C3, which is a classical form of scaling. 

 

                                                           
35

 See Section 3.3.5 for the truncation of probability distributions. 
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Figure 1-C3. Frequency distribution (solid thin line), ordered frequencies (dashed 
line) and rank (dotted line). Weekly log-return from 1962 to 2009, 2089 data. 

 

A variant of Figure 1-C3 can be presented by Pareto chart exposed in Figure 2-C3, 

also referred to log-returns of The Coca-Cola Co. over the same period. 

 

 

Figure 2-C3. Pareto chart. In this case, the classes are only thirteen. Weekly log-
return from 1962 to 2009, 2089 data. 

 
So Zipf’s result is similar to that of Pareto’s, even if the playing field is different. 

But how to estimate the exponent  ? We will deal with this problem in Chapter 

5.  
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3.3 Stable non-Gaussian random processes and Lévy processes 

The theory of errors presupposes that every kind of measurement error has a 

stable “bell curve” distribution, that is, we can sum up the measurement errors 

generated by several independent fonts and this sum has again the Gaussian 

distribution. Also if mean and variance vary, the distribution remains the same. 

Also Cauchy expressed the same concept, but this time, on the other extreme 

side. The sum of the results of the distribution of two shooters is always the 

same, that is, Cauchy distribution, is also stable. But there is a complete family of 

these stable distributions, named L-stable by Mandelbrot and referring to the 

mathematician Paul Pierre Lévy. 

On one hand, the Gaussian bell curve seem to be egalitarian, while, on the other 

hand, the Cauchy one is too dictatorial, because few data can dominate the 

whole. Lévy has played an important role in probability theory, indeed, his 

distributions allow to connect these two extremities. 

Let us try to write some fundamental definitions to better understand. 

 

3.3.1 Univariate stable distribution    

Univariate stable distribution is characterized by four parameters. These are the 

index of stability  , the scale parameter  , the skewness parameter   and the 

shift parameter  . There are four equivalent definition of them. 

 

DEFINITION 1. A random variable   is said to have a stable distribution if for the 

positive numbers   and  , there is a positive number   and a real number   so 

that  

                                                            

 

where    and    are independent copies of   and “ ” denotes equality in 

distribution. If    ,   is called strictly stable, and also symmetric stable if the 

distribution of   is also symmetric. 
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DEFINITION 2. A random variable   is said to have a stable distribution if for any 

   , there is a positive number    and a real number    so that 

 

                                                     

 

where            are independent copies of  . 

Feller36 claims that in (3.20) we have necessarily 

 

        

 

for some      . 

While the first two definitions concern the stability property, meaning that the 

family of stable distributions is preserved under convolution, the third will 

concern the role of a stable distribution in the context of the central limit 

theorem37, and the last one specifies the characteristic function of a stable 

random variable. 

 

DEFINITION 3. A random variable   is said to have a stable distribution if it has a 

domain of attraction, i.e., if there is a sequence of i.i.d. random variables 

           and a sequence of positive numbers      and real numbers     , so 

that 

 

          

  
   

 
                                                

 

where the sign “
 
 ” denotes the convergence in distribution 

                                                           
36

 Feller, W., An Introduction to Probability Theory and Its Applications, Vol. 2, Wiley, New York, 
1971 
37

 The CLT is explained in Section 3.1.1 



Copyright ©2010 Gerardo Manzo 
 

71 
 

 

DEFINITION 4. A random variable   is said to have a stable distribution if there 

are parameters      ,    ,       , and   real, so that its 

characteristic function has the following form: 

 

      
                          

  

 
                  

              
 

 
                                  

  

        

 

where   is the index of stability, the same of the power law, and 

 

       
                   
                   
                

  

 

and  ,   and   are unique (  is irrelevant when    ). 

Leaving off several steps, now we present the so-called Lévy representation of 

the characteristic function (3.24). 

 

                      
   

   
   

  

 
     

  

 
             (3.24) 

 

where all the parameters have the same previously range of values but when 

      the L-stable variable   has        but         and so on the  -

moments,        . Moreover, when       also the first moment is 

infinite. 

Therefore, we can observe Table 1-C3 for a short explanation of the four 

parameters, Table 2-C3 to understand how this distribution varies when    and   

vary, and Figure 3-C3 and Figure 4-C3 for a graphic representation.  
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Variable Description 

    Peakedness index  

   Skewness index  

  Scale parameter 

  Location or shift parameter 

Table 1-C3. Lévy distributions’ four parameters and a short explanation. 

 

Variable Distribution 

                          

       
                      

             
  

    Skewness distribution 

        Cauchy distribution; 
very thick tails 

        Standard Gaussian bell curve 

Table 2-C3. Several parameters’ values and the corresponding distribution. 

 

 

Figure 3-C3. Simulation of Lévy distribution for several   parameters (on the left) 
and for several skewness parameters (on the right). 
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Figure 4-C3. Simulation of cumulative Lévy distribution for several   parameters 

(on the left) and for several skewness parameters (on the right). 
 

3.3.2 Multivariate stable distribution 

Multivariate stable distributions are the distributions of a stable random vector. 

It is well-known that any linear combination of Gaussian components is again a 

Gaussian random vector. The same is true for a scale distribution but it turned 

out that the converse is not always true, because the converse holds when the 

linear combination are either strictly or when    .38 The definition of stability 

is the same exposed in Section 3.3.1, but, in this case, we have   as a vector of 

stable random variables in   . 

By the definition (3.23), the equation (3.25) has the characteristic function 

 

       

                    

  

                   
  

 
                

       

                    

  

     
 

 
                                  

       

                                                           
38

 See Samorodnitsky G., Taqqu S. Murad, Stable Non-Gaussian Random Processes – Stochastic 
Models with Infinite Variance, Chapman & Hall, New York, 1994 
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where   is a finite measure on the unit sphere of    called spectral measure and 

replaces both the scale and skewness parameter. Besides,    is the shift vector 

which play a role similar to the shift parameter in the univariate case. 

The reason why we have written and exposed this complex equation is that the 

concept of Gaussian covariance is now replaced by two other equations as a 

measure of bivariate dependence, covariation and codifference. 

Leaving out the complex formulas, we present literally those two concepts. 

The first is designed to replace the covariance (the case    ) when      . 

It shares some properties of the covariance. Unfortunately, it is neither 

symmetric nor additive in its second component. However, it becomes additive 

only when the random variables are independent.  

Like the covariation, the codifference is reduced to the covariance when     

and while the covariation may not be defined for    , and the codifference is 

defined for all      .39 

 

3.3.3 Generalization of the concept of L-stability 

We have seen that if we consider two independent Gaussian random variables, 

   and    , of zero mean and of a standard deviation equal to     and     , 

respectively, their sum,       , is also a Gaussian variable of mean square 

equal to         . In particular, the “reduced” Gaussian variable is a solution to 

 

                                                                   

 

where   is a function of    and     given by the auxiliary relation 

 

            

 

                                                           
39

 For an analytic view, see Samorodnitsky G., Taqqu S. Murad, Stable Non-Gaussian Random 
Processes – Stochastic Models with Infinite Variance, Chapman & Hall, New York, 1994 
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So  ,    and     are scale factor which correspond to the root-mean-square in the 

Gaussian world. But they also express a kind of L-stability or invariance under 

addition, that is, the equations (3.20) and (3.21). So while the Gaussian is the 

only solution of (3.26) for which the second moment is finite, when the variance 

is infinite, like for L-stable distribution, (3.26) possesses many other solutions. 

This was shown by Cauchy, who considered the random variable   for which 

 

                                 

 

so that its density has this form 

 

         
 

       
 

 

For this law, all the moments are infinite, where the auxiliary relation takes the 

form 

 

         

 

where the scale factor is not defined by any moment.  

But, in 1925, Lévy discovered the solution of (3.26), that is, the equation (3.24) 

but in a logarithmic transformation 

 

                    
 

  

             
   

   
   

  

 
             

 

for which everything has been exposed in the previous sections is valid. It is 

called “reduced” when     and    . Hence, the auxiliary relation is now 
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More generally, suppose that    and     are stable, with the same values of  ,   

and    , but different  , (  and    ), the sum        is also stable with  ,  , 

         and     (       and is finite if and only if      ). 

 

Moreover, considering    in   independent stable variables with those 

parameters, (3.27) becomes 

 

                       
   

   
   

  

 
                       

 

which differs from (3.27) only for the location   and scale   parameters which 

are multiplied by  , which are the equivalent of the mean and of the standard 

deviation of the Gaussian distribution, respectively, but with different meanings. 

The result does not change if   and   have several values, 

  

    

 

   

           

 

   

        

 

   

   
   

   
   

  

 
                    

 

The property of invariance under addition is at the base of the interest towards 

those distributions because they can be applied to financial data. Indeed, 

whatever time interval is, price changes between two intervals can be seen as 

the sum of the same price changes between two sub-intervals. Therefore, if asset 

returns are random L-stable i.i.d variables, then daily, weekly and monthly price 

changes have the same distribution except for the scale and the location 

parameters.  
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3.3.4 Fractal dimension of symmetric L-stable distribution 

Considering   as a variable obtained by dividing the variable   for a scale factor 

    , the sum of   independent copies of   is 

 

             
 

    
 

     
 

       

 

where the fractal dimension is obtained by  

 

  
     

    
 

   
   

 

Hence, we have the Gaussian distribution     like that of a plane, and the 

Cauchy one     like that of a straight line, while for the other value of 

         , we have an infinite number of distributions. 

 

3.3.5 Truncation and multiplicative exponential decay 

This section is dedicated to a clarification of many concepts exposed previously. 

A scaling variable is said to be “truncated”, if it does not exceed a finite 

maximum     . On certain markets the distribution tails are shorter than the 

ones implied by the scaling distribution. So we define   as a L-stable distribution 

that was truncated to        and we consider the sum of   such variables. 

For small values of  , the distribution of the normalized sum is unaffected by 

    . In addition, for a large  , a different normalization converges to the 

Gaussian. Therefore, the tails become increasingly short as   increases. Hence, 

truncating a distribution causes the fall of some values of   between those two 

zones, which is called “transient” and hard to control. 

The density (3.15) with the exponential decay     shares the main virtue of 

the truncation with       . Assuming     the  -th moment is infinite when 

   .    



Copyright ©2010 Gerardo Manzo 
 

78 
 

3.4 An empirical analysis of asset returns 

To verify the hypothesis of invariance, we consider the daily, weekly and monthly 

price variations of the index S&P 500 from January 3, 1950 to December 4, 2009. 

Now we try to make an experiment. Observe carefully Figure 5-C3. Is there 

something strange? 

 

 

(a)                                                                  (b)                          

 

(c) 

Figure 5-C3. Scaling in finance. Daily (a), weekly (b) and monthly (c) prices of 
index S&P 500 from 1950 to 2009.  

 

The three graphs are similar but they differ on scale. This is a way to represent 

the scaling, that is, the scale invariance.  

In addition, we observe Table 3-C3 and Table 4-C3. These tables are constructed 

by calculating the actual mean (in bold on the diagonal) and then multiplying 

them for coefficients, in parenthesis, obtained by relating the several time 

horizons. For example, the coefficient (   ) in the cell (5 days-1 day) is obtained 
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by relating 1 to 5. The same procedure for Table 4-C3 but now with the variance 

of price changes. 

 

Price changes' means 

 
1 day 5 days 20 days 

1 day 2.78 (1) 13.91 (5) 55.65 (20) 

5 days 2.67 (1/5) 13.36 (1) 53.46 (4) 

20 days 2.90 (1/20) 14.51 (1/4) 58.03 (1) 

Table 3-C3. Scale invariance: about means 
 

Price changes' variances 

 
1 day 5 days 20 days 

1 day 0.94 (1) 4.70 (5) 18.80 (20) 

5 days 0.86 (1/5) 4.31 (1) 17.26 (4) 

20 days 0.89 (1/20) 4.44 (1/4) 17.75 (1) 

Table 4-C3. Scale invariance: about variances 

 

We can realize that the actual mean and variance and the fitted ones coincide. 

Indirectly we can verify the constancy of the exponent  . Indeed, considering   

based on the form of the distribution, if this remain constant, we realize that   

has not changed. To understand better this concept, see Table 5-C3 which is 

obtained by dividing the amount of observation in the distribution’s tails for the 

their total number. For example, the probability that two observations are in the 

tail is constrained from 0.25 to 0.27 percent, so they are almost equal. These 

conclusions imply that short-run investors run the same risk of an investor who 

operates on a longer time horizon considerate. 
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Probability to find   
observation 

probability 
20 days 

from 1 day 
to 20 days 

from 5 days to 
20 days 

1 0.1391% 0.1326% 0.1280% 

2 0.2782% 0.2653% 0.2560% 

3 0.4172% 0.3979% 0.3840% 

4 0.5563% 0.5306% 0.5120% 

5 0.6954% 0.6632% 0.6400% 

6 0.8345% 0.7959% 0.7680% 

Table 5-C3. Probability that an event is in the distribution’s tails over different 
time intervals. Note the similarity among these probabilities. 

 

This concept introduces the central topic of the next chapter which will deal with 

discontinuity according to the Fractional Brownian motion.   
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Chapter 4 

 

FRACTIONAL BROWNIAN MOTION, LONG-RUN 
DEPENDENCE  

 

 

 

In 1965, Mandelbrot realized that asset return are dominated by a global 

dependence. Here, the term global is referred to long-run. What Mandelbrot did 

is to introduce infinite memory into statistical modelling. In particular he 

introduced the so-called fractional Brownian motion (fBm), a process having one 

significant parameter: the Hurst or H  lder exponent   satisfying      . 

The Wiener Brownian motion, shown in Section 1.2.1, is the atypical special case 

corresponding to the value      . The link between this exponent and 

Pareto’s distribution deals with the relationship between long-run dependence 

and tails’ peakedness. In fact, while for the WBm model of Bachelier we have 

that            whose exponent is time invariant and      , for the 

FBM model of Mandelbrot we have          or        whose exponent is 

again time invariant but      . Indeed, according to a metaphor suggested by 

the statistical physics of magnets, an infinite range dependence controlled by 
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power-law expressions is the rule of a system similar to actual interactions, 

which only occur between immediate neighbors40.  

Moreover, we can pass from unifractality to multifractality, the models that 

show the exponent   not depending on time called uniscaling, while, 

multiscaling allows the exponent to depend on  . In other words, large or small 

values of      express, respectively, that      varies slowly or rapidly near the 

instant  . Therefore, in our opinion, Mandelbrot has introduced a revolutionary 

concept of time differing from the clock time, and related to trade, that is why it 

is called trading time. This special time ruled by a devil staircase41 is called fractal 

time, because it is a function of physical time which is reduced to a series of 

mutually independent jumps of widely varying size. For this reason, the graphs 

generated by fBm are self-affine. 

The central aim of this chapter is to show the main properties of the fBm, 

introducing a new way to conceive financial reality, in order that to present new 

methods in pricing derivatives and in the selection portfolio theory. 

 

4.1 Fractal Market hypothesis 

The Fractal Market Hypothesis (FMH) clashes with the Efficiency Market 

Hypothesis (EMH) shown in Section 1.2.4. FMH emphasizes the impact of the 

liquidity and the investment horizons on the investors. Its aim is to provide a 

theoretical model able to describe price changes closer to reality.  

A short-run investor, who suffers a loss due to his time horizon, will be assisted 

by a long-run investor for whom a negative event is partly negative. 

Consequently the market is self-stabilizing. This is the conclusion exposed in 

Section 3.4 and shown by the Table 5-C3, according to which market operators 

share the same risk level, an adjustment is made for the scale of the investment 

                                                           
40

 Mandelbrot, B.B., Fractals and Scaling in Finance, 1997, page 36 
41

 The exponent   of the Lévy motion is fed in by choosing a Lévy staircase of dimension    , so 
the two main parameters which combine long tails and long-run dependence are the   exponent 
which is twice the   exponent if the Lévy staircase, and the exponent  . 
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horizon. Hence, the shared risk explains why the frequency distribution of 

returns look the same at different investment horizon. This hypothesis is called 

Fractal because of its property of self-similarity42. 

Conversely, the instability of markets comes from the breaking down of this 

fractal structure. A break-down occurs when investors with long investment 

horizons either stop participating in the markets or become short-run investors.  

The fractal statistical structure exists because it is a stable structure. We have 

seen how a price diagram decreases according to a power law. Hence, each price 

formation depends on the previous one. If one generation is negative, then its 

negativity can continue for a certain time interval. However, the more 

heterogeneous investment horizons are, more the panic investment at one 

horizon can be absorbed by the other ones as a buying or selling opportunity.  

Indeed, when the investment horizon becomes uniform, the market falls, where 

discontinuities appear in price sequence. For Gaussian, a big change is made up 

of many small changes. But, during panic and stampede phases, the market often 

skips over prices. The discontinuities, which are the result of lack of liquidity, 

cause big changes, and fat tails appear in the frequency distribution of returns.  

Another explanation is that, if the information received by the market is 

important to both the short- and long-runs, also the liquidity can be affected. 

Many examples can explain these facts, so see Figure 1-C4 for a graphic view. 

 

 

                                                           
42

 See Peters, E. Edgar, Fractal market analysis: applying chaos theory to investment and 
economics, 1994 
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(a) October 1, 1963 – December 31, 1963 

(b) September 1, 1987 – December 31,1987 

(c) February 28, 2008 – June 20, 2009 

 

 

 

Figure 1-C4. S&P 500 index over the three described periods. 

 

So the main concepts of FMH are: 

 A market is stable when it is composed by a large number of investors 

who operate on a different investment horizon; 

 A technical analysis influences the short-run decision, while in the long-

run one the fundamental analysis predominates; 

 Instability is caused by a momentary exchange of investment horizons, 

which leads to a lack of traders who absorb the negotiations assuring the 

liquidity; 

 Price reflects a combination of evaluations of technical and fundamental 

analysis. Short-run price variations could be more volatile  than the long-

run ones. 
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4.2 Brownian motion 

This section makes a short review of the Wiener Brownian motion, but now 

according to a probability approach. 

Let us consider      as the Brownian motion. It is defined for equally-spaced 

time steps   , so that all the increments       are independent, isotropic and 

random. 

Independent means that the value of the current increment does not affect the 

next one. Isotropic means that the increments are equally probable to occur in all 

directions. Random means that future increments are unpredictable. An example 

of WBm is in Figure 2-C4. 

 

Figure 2-C4. A simulation of a one-dimensional (on the left) and two-dimensional 

(on the right) Wiener Brownian motion. 

 

4.2.1 Fractal properties and the probabilistic approach 

According to the concepts exposed in Chapter 2, observing WBm at different 

scales, we can realize that it is also a fractal. At each level of magnification, the 
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trace of the function has approximately the same jaggedness, so the function is 

self-similar.  

To show this property, we refer to the approach of Feder43. Consider a simple 

random walk in which all steps are of the same size and each step may be either 

up or down. At each step, the probability of moving up or down is the same. This 

random walk is illustrated in Figure 3-C4. 

 

 

 

 

 

 

 

Figure 3-C4. A possible moving for a simple random walk of three steps. The 
dotted line shows one possible path for the random walk. 

 

Considering   as the random variable which represents the number of steps in 

our random walk, we can model   with a binomial distribution which describes 

the likelihood of each possible outcome of an experiment. Here the experiment 

consists of   independent trials and each trial has the same probability   of 

success. It is the same concept according to which a coin tossing is based on. For 

example, toss a coin 20 times, with the probability of tossing heads     for each 

trial. The probability of each possible number   of successes, represented in 

Figure 4-C4, is  

       
 
                                                               

where the expected value and the variance are, respectively, 

                                                           
43

 Feder, J., Fractals, Plenum Press, New York, 1988 
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where        . 

 

Figure 4-C4. A binomial distribution with      and       

 

So, for our random walk, we have 

 

       
 
  

 

 
 

 

                                                        

     
 

 
  

       
 

 
  

 

Consequently, the next expectation is equal to   and the variance of   is 

proportional to  , so the standard deviation is proportional to     . Since the 

variance of the simple random walk scales with the number of steps taken, it is 

self-similar. 

Observing carefully the Figure 4-C4, we realize that the shape of the binomial’s 

probability distribution seems to be similar to the Gaussian one, if the number of 

trials,  , is large, the binomial distribution is approximately equal to the normal 

one, as follows in Figure 5-C4.  
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Figure 5-C4. Binomial distribution’s convergence to Gaussian one. 

  

Therefore, now we show the property of self-similarity for a more complex 

model of Brownian motion. Feder44 describes a random walk in which the step 

length has a normal distribution. 

Retrieve the equation (3.5). We consider   as the length of each positive or 

negative step and   and   represent respectively the length of each time step 

and the diffusion coefficient45, then (3.5) can be rewritten as 

 

       
 

     
     

  

   
                                           

 

where the expected value and the variance are: 

 

         

             

 

To show the property of a self-similarity, now we consider the value of   at every 

 th time step, so the probability distribution becomes: 

 

                                                           
44

 Feder, J., Fractals, Plenum Press, New York, 1988 
45

 This is a comlex concept so we say only that it is a factor of proportionality representing the 
amount of substance diffusing across a unit area through a unit concentration gradient in unit 
time. For more details see Heitjans, P., Karger, J., Diffusion in condensed matter: Methods, 
Materials, Models, Birkhauser, 2005  
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where the new variance is  

 

              

 

Hence something changes in the WBm. In fact, for every    time steps, we have 

a vertical range   , whose average will be       . But now it is necessary to 

make a clarification. The vertical range of this random walk does not scale 

directly with the horizontal range, but rather with the square root of the 

horizontal one, so it is more accurately described by the term self-similarity as 

shown in Figure 6-C4. 

  

Figure 6-C4. Self-similar Brownian motion. Note that (a) and (b) are similar from 
a direction to another, so self-similarity. 
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Instead of considering the WBm in terms of increments  , Wiener considers the 

random function      which describes the position itself.  

Before obtaining the probability density function and then dealing with its 

increments, now we have to present the property of WBm. 

Indeed, we can consider its covariance property, that is, 

 

                 

            
 

 
                                       

 

On the contrary, if we deal with its increments to obtain the probability density 

function, and consequently its expected value and variance, we can replace   

and   respectively with           and       in the equation (4.4): 

 

             
 

         
     

  

       
                          

                           

                      .     

 

Wiener showed that the function           defined by  

 

                                                                       

 

where   is a normally distributed random variable with zero mean and unit 

variance, has a probability density function, an expected value and a variance 

that coincide with the above expressions, which we can rewrite in another way: 

 

                  

                      . 
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So we realize that WBm’s increments are stationary. 

This stochastic process has the following properties: 

 Continuity: a continuous function is the one where, intuitively, small 

changes in the input result in small changes in the output; 

 non-differentiability: if a function is differentiable, it may not have any 

edges;  

 infinite variation: a plot of the WBm function can have an infinite vertical 

range within a finite length of time46; 

 independence of increments, because of the Gaussian distribution of  ; 

 uniformity of increments, that is, the graph is like the White Noise one. 

Figure 7-C4 makes a graphic summary of the above concepts. 

 

Figure 7-C4. The top graph illustrates a graph of WBm. The second shows the 
corresponding increments over successive small intervals of time. Note that the 

1st order differences’ graph is similar to White Noise’s. 
 

 

                                                           
46

 See Breiman, Leo, Probability, Addison-Wesley Pub. Co., 1968 
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4.3 Fractional Brownian motion 

The fractional Brownian motion (FBM),      , is a generalization of the WBm, so 

we can write the following relationship: 

 

                  

              
 

 
                                  

 

From the covariance property, it turns out that fBm itself is not a stationary 

process. But if we consider its increments, it represents a random process with 

Gaussian increments that satisfy the following diffusion rule, for all   and   and 

for      : 

 

 

                                                                     

                                     

                                

 

or, equally, 

 

                   

                                                     

                                                          
 
           

 
                  

                                    
 

 
                     

                                     

  

 

 

The first and second moments do no depend on time but only on the length of 

the increment, so fBm has stationary increments. But how we will see in the next 
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section, increments of fBm are not independent like the classical WBm, that is, 

the case      . 

 

4.3.1 Exponent   and long-run statistical dependence 

The exponent   has two thoroughly disparate historic roots. Firstly, it refers to 

the initial letter of the hydrologist H.E. Hurst (1880-1978), who dealt with a 

difficult problem of civil engineering. Secondly, it has deep roots in pure 

mathematics, namely, in the work of L.O. Holder (1859-1937). So seeing that the 

initial letter is the same, we prefer to call it with the letter “ ”. 

The revolution which occurred in finance is that this exponent measures the 

persistent and the anti-persistent level in a series. In fact, although many 

economists have always dealt with a short-run dependence, visible in a simple 

auto-correlogram showed in Figure 8-C4, the exponent   gives a measure of the 

long-run dependence, according to which there are correlations which decrease 

very slowly and never seem to vanish altogether. This concept bring us to the 

well-know “butterfly effect”.  

 

 

Figure 8-C4. Auto-correlogram of the first 100 Goldman Sachs prices from 
January 2, 2004 to December 12, 2009. The stronger correlations are the short-

run ones between closer periods. 
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The long-run dependence comes from an important property of fBm which 

concerns the quantities                 , called past average, and 

                called future average. Both are Gaussian random variables, 

and their correlation is 

 

  
 

 

              

     
                                    

 

which is independent of   because of its self-affine characteristic. Also in the 

case      , the mild randomness,   is equal to zero. Instead,     in the 

“persistent” case         and     in the “anti-persistent” case 

       . In both cases, FBM is neither a martingale nor a Markov process. 

See Figure 9-C4 and Figure 10-C4 for a graphic view. 

 

Figure 9-C4. Simulations of fBm from the anti-persistent case,      , to the 
persistent one,    . 
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Figure 10-C4. First order differences of the fBm exposed in Figure 9-C4. Note the 
graphic difference between the pure WBm,      , and the anti- and persistent 

cases.  
 

 

According to Mandelbrot,       is continuous and non-differentiable, and the 

spectral density of the fractional Gaussian noise,   
    , is proportional to     , 

with the exponent        ranging between   and   . These phenomena 

are denoted by physicists as “    noise” or “pink noise” (Figure 11-C4). 
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Figure 11-C4. Spectrum of a pink noise approximation. Note the similarity with 
the auto-correlogram in Figure 8-C4 

 

 

We refer to the reader to see Appendix A for the methods used to estimate the 

Hurst exponent. Table 1-C4 shows an empirical analysis of financial series on the 

exponent  . 

 

      

GENERALI 0.74 FINARTE CASA D'ASTA 0.57 

PIRELLI & R 0.61 FIAT 0.57 

MEDIOLANUM 0.83 OLIDATA 0.80 

ACOTEL GROUP 0.68 BANCA PROFILO 0.64 

LOTTOMATICA 0.47 ENGINEERING 0.75 

LUXOTTICA 0.62 BANCO SANTANDER 0.63 

LA DORIA 0.90 BENETTON GROUP 0.57 

TENARIS 0.56 ENEL 0.56 

TOS'S 0.51 ERG 0.50 

FASTWEB 0.40 BREMBO 0.63 

Table 1-C4. Estimates of the exponents   of 20 assets calculated on a sample of 
1099 data, from December 28, 2004 to March 25, 2009 

 

Therefore, the different range of possible Hurst parameters divides the family of 

fBm into three groups that can be distinguished by these typical criteria:  

      , the anti-persistent case; 

      , the pure WBm; 

      , the persistent case. 
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4.3.2 Exponent   and auto-covariance property 

As shown in Figure 8-C4, the increments of the different processes can also be 

characterized by using the auto-covariance properties. A stochastic process has a 

short memory provided by its auto-covariance function and it declines at least 

exponentially when the lags are increased. An intermediate memory exist, if its 

auto-covariance function only declines hyperbolically but the infinite sum of all 

the absolute values of auto-covariances still exists. If the latter condition is no 

longer satisfied, a long memory exists47.  

Now we examine the auto-covariance function of the stationary process of fBm’s 

increments. Considering       as the auto-covariance function and   as a generic 

time, we have 

                                                           

                                                             

                                       

                            
 

 
                                   

                                    

                        

                                  
 

 
                      . 

  

According to Rostek48, the last term is an approximation of the second derivative 

of the function         , called central finite difference. So for a large  , the 

auto-covariance function behaves like the second derivative 

 

                     

 

                                                           
47

 This detailed explanation is given by Stefan Rostek in his PhD thesis: Option Pricing in Fractional 
Brownian markets, April 2009 
48

 See note 8. 
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According to the theory of infinite sum, the infinite sum of values of the second 

derivative only exists for      , but is unlimited for      . So we can 

realize that the anti-peristent fBm has an intermediate memory, while the 

persistent one has a long-memory, as shown in Figure 12-C4 and Figure 13-C4. 

 

 

Figure 12-C4. Auto-covariance function of fBm for the case of persistence. 

 

Figure 12-C4 shows that all the curves are bounded by an upper and a lower 

limiting curve. The upper boundary is the line of total persistence, while the 

lower one is the case of a serial independence. 

 

 

Figure 13-C4. Auto-covariance function of fBm for the case of anti-persistence. 
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Figure 13-C4 shows the anti-persistent case where there is again the case of a 

serial independence. The other cases present a particular auto-covariance 

function that differs from zero in only two cases, when there is either a total over 

a lap between the two increments or in the case of two neighboring increments 

of equal length. For non-overlapping increments       all the curves tend 

towards zero as the distance grows. 

  

4.3.3 Trail and Graph dimensions 

Upon the Hurst exponent, we can define two types of fractal dimensions. Indeed, 

while self-similar fractals have a unique fractal dimension, Mandelbrot showed 

that self-affine fractals demand at least two, graph dimension    and trail 

dimension    where        and           which refer to different 

geometric objects.  

The value    is the box dimension of the graph of     , while the value    

corresponds to the box dimension of a trail. If a one-dimensional WBm      is 

combined with another WBm     , the process becomes a two dimensional 

Brownian motion, like that in Figure 2-C4. So the value    is the fractal 

dimension of the three dimensional graph of coordinates  ,      and      and 

the projected trail of coordinates      and     49. In addition,    is applied to 

the coordinates   and     , or to   and Y   . 

A FBM with       can be only embedded in a space of dimension   

          .          

 

4.3.4 The revolutionary trading time and Noah and Joseph effects 

According to Mandelbrot, if we work on a trading floor we can experiment with a 

different concept of time. In fact, in some days a trader is so busy not to realize 

that the time is flying, but in others where time seems to stop. This is trading 

time which differs from the natural clock time, so modelling a series on this time 

                                                           
49

 For a WBM with       we get      and       .  
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is more realistic. To do this we must consider the compound processes. A 

process is “compound”, “decomposable” or “separable” if their variation can be 

separated into the combination of two distinct contributions. The first is a 

trading time  , a random non-decreasing function of clock time  . Feller50 defines 

     as a directing function. The second, called compounding function, makes 

prices as function of a trading time. This will be presented in a graph for a better 

interpretation. 

Given a price function      and an arbitrary choice of     , we can define a 

function      that 

 

                                                                                     

 

which is a self-affine process. It is shown that if this process is continuous the 

trail dimension does not change, conversely, if it is discontinuous both trail and 

graph dimension change. 

But what does trading time do? What is his main contribution to Brownian 

motion? 

Given two non-overlapping time increments     and     , the corresponding 

increments        and         are independent. But when   follows a trading 

time  , that is, a non-linear one, a non-decreasing function of  ,      is replaced 

by               whose increments exhibit a very strong dependence also if 

they remain white, that is, uncorrelated51.  

Moreover, this time is called fractal because it is ruled by a Lévy devil staircase52. 

More general, we must refer to a multifractal structure which involves a non-

decreasing multifractal random function with an infinite number of parameters 

                                                           
50

 Feller, W., An Introduction to Probability Theory and its Application, vol. II New York, 1950, pp. 
347 
51

 It is now necessary to clarify that uncorrelation does not imply independence in our real world, 
only in the Gaussian one, in which it define the presence or not only of a “linear” dependence.   
52

 The term “staircase” refers to the presence off lat steps in the Lévy motion. A fleeting instant 
of clock time allows trading time to change by a positive amount, generating the price jumps. 
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whose increments are called multifractal measures. A price model of multifractal 

time presents the following characteristics: 

 price increments do not follow a Gaussian distribution; 

 concentration of the volatility: the periods of big price variation are 

clustered and followed by the more placid ones 

 the moments show a structure of scale invariance, characterized by 

parameter  ; 

These concepts can be summarized in two Mandelbrot’s effects: Noah and 

Joseph effects. The first refers to the biblical story of the Flood. As the Genesis 

reports, when Noah was six-hundreds years, God ordered that the Flood would 

purify our world dominated by  wickedness. This tragic background is also in the 

financial markets, better represented by discontinuity. The second effect, 

instead, refers to the story of Joseph, a Jewish slave, who interpreted the 

Pharaoh's dream of even fat years followed by the seven lean ones. So the last  

defines the tendency of the persistence of a time series. Summarizing, while 

Noah effect, measured by the exponent  , deals with the dimension of an event, 

Joseph is measured by the exponent  , depends on the precise order of events. 

In this way, Mandelbrot constructed a model in which he combined long-tails 

and long-dependence. 

In some cases these two effects are so correlated that we can write 

 

  
 

 
                                                                   

 

According to this relationship (4.10), we can describe the excess of reaction 

leading the investors to sell a big amount of assets after a period of excessive 

optimism which helps the formation of the “speculative bubbles”. The greatness 

of this excess of reaction can be estimated either through the evaluation of the 

demand and supply, or through the exponent   intrinsic to market data. But it is 
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not a consolation because no one is able to forecast the time of the next day, so 

we cannot forecast the instant in which the bubble breaks. 

So in a market where we combine discontinuity and long-tails, it is impossible to 

foresee the future. 

 

4.3.5 The property of uni- and multi-scaling 

The property of uniscaling is referred to the equation (4.7), according to which 

the scale factors based on moments to satisfy 

 

                                                          

 

for all      to avoid the infinite case, and where   is a constant. We realize 

that every moment is independent of  , so we can write that        .  

From this last result we obtain that 

 

  
        

  
 

 

The case where the moments depend on   is called multiscaling. Multifractal 

objects are more complicated and are characterized by many exponents, 

therefore, the moments of a multifractal measure    take the form 

 

                   

and 

 

                    

 

where       
       

 
,       is the moment exponent function which is a list of 

principal exponents. 
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Summarizing: 

 The uniscaling cases. Multifractal time reduced to clock time, is 

         , implying uniscaling, since       is independent of  ; 

 The multiscaling cases.       must satisfy two conditions:  

a)           , that is,          

b)         . that is,         

However, the graph of         is not a straight line. So       

decreases as    .  

Trying to construct a multifractal FBM. We consider    as a vector of the 

exponents of the form 

 

                                                               

 

where    is a sequence of numbers constrained between   and  . 

So this multifractional Brownian motion is represented by the Figure 14-C4. 

 

Figure 14-C4. Multifractional Brownian motion according to the vector   , 
equation (4.12). Note the characteristic of self-affine. 
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Chapter 5 

 

PORTFOLIO SELECTION FOR STRONG 
FLUCTUATING ASSETS  

 

 

 

All the concepts exposed in the previous chapters are now presented in an 

empirical application. This chapter and the next last one deal with an application 

of both  -stable distributions and fractional Brownian motion to finance. Indeed, 

we have seen that financial markets are turbulent, so that the extreme events, 

taking place over several periods, produce variations we can define “outliers”. 

But this term is correct only if we refer to the Gaussian world where they are 

more and more improbable. According to Mandelbrot, power laws have an 

extraordinary power, so they manage to make the quoted outliers more 

probable. For example, we consider the equation (3.11),              . For a 

minimum value    and for    , we can calculate the probability to have an 

event similar to that on October 19, 1987,     . According to a Gaussian 

distribution, the probability of this negative event is equal to       , while 

taking arbitrarily         , we have                           53.  

                                                           
53

 According to Taleb, the exponent   is equal to   for financial markets. Moreover,    is taken to 
be four times the standard deviation which is      . In addition, time interval of Dow Jones 
Industrial Average prices is from October, 2 1928 to November, 11 2009.   
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Therefore,  this reasoning allows us to consider the mean as insignificant, and 

every variation deviates from it in a wilder and wilder manner. Hence, we must 

consider the  -stable distributions with infinite variance, changing the methods 

used to select a portfolio because of the wild state of randomness. 

After presenting a long-run strategy able to choose the risky assets to insert 

them in the portfolio, this chapter discusses the optimal allocation problem with 

respect to  -stable distributed returns. In particular, we take into consideration 

some portfolio selection models based on a different risk measure, so we 

construct the dispersion matrix using the covariations, a statistical instrument 

which correspond to the covariance for    . Then, we compare the optimal 

allocation obtained with the Gaussian and the stable distributional assumption 

for the risky returns.  

The practical and theoretical appeal of the stable non-Gaussian approach is given 

by its attractive properties which are the same as the normal one. In fact, stable 

distributions have a domain of attraction, so according to the Central Limit 

Theorem (CLT), any distribution in the domain of attraction of a specified stable 

distribution has properties close to those of stable distribution. In addition, 

another aspect is the already quoted invariance under addition. 

Finally, we derive the generalized equilibrium relationship between risk and 

return again under the assumption that the changes of price follow a symmetric 

 -stable distribution, with      , introducing the stable CAPM with a 

generalized coefficient  . 

 

5.1 Efficient frontier with fluctuating assets 

The graph which shows the non-stationary of variance, Figure 2-C1, 

demonstrates that a distribution with finite variance cannot be used to foresee 

or apply to several methods. The assumption of Gaussian distribution is not 
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verified empirically. Mandelbrot and Fama54 proved that an empirical 

distribution of price changes such as stocks, foreign currencies, etc…, are closer 

to stable distributions rather than to the “bell curve”. Assuming that       

implies that mean is assumed to be finite but it is not necessary in this way for 

the variance. Therefore, the classical mean-variance approach, exposed in 

Section 1.4.1.3, is no longer valid. If a model does not consider the possibility of 

strong prices’ fluctuations, it of course gives a wrong estimate of the quantity of 

risk and of the risk premium.  

However, some techniques have to change. The covariance operator gives way 

to a more generalized one, the covariation, explained in Section 3.3.2, which 

corresponds to the covariance if and only if    , while in the other cases, we 

have to calculate the  -moments of the distributions. 

 

5.1.1 Efficient frontier with risky assets 

In our context, the measure of risk is the scale parameter of an appropriate 

multivariate symmetric stable distribution. 

Let’s consider    as the vector of considered asset returns and         . We 

assume that       follow a    55 distribution with    . The symmetry 

assumption allows positive and negative returns to be weighted in the same way. 

Therefore, hypothetical investor has preferences which are well-represented by 

a utility function defined over the mean and the scale of a portfolio return 

        
 
   , where    is the return of the asset   and    is the amount 

invested in the asset  . 

So we have: 

 

                                                                                                                  

                                                           
54

 Mandelbrot, B.B., New Methods in Statistical Economics, Journal of political economy, 56, 
1963; Fama, E.F., The Behavior of Stock Market Prices, Journal of business, 38, January 1965. 
55

       means that   follows a stable distribution           with       to indicate 

symmetry. 
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where   is the  -vector of the portfolio weights and    is the  -vector of asset 

return means. 

Then, respecting the relationship between risk and return, according to which we 

cannot increase an expected return without increasing risk, we have to solve the 

following optimization problem: 

 

   
    

              

  

                                                    

            

           

         

 

where     is a given value of portfolio return and    denotes a  -vector of those. 

Press and Arad56 showed that the efficient set is convex, meaning that the 

efficient frontier is the locus of all the convex combinations of any efficient 

portfolio.  

 

5.1.2 The whole model and its discretization 

Several authors have applied those theories to finance. In this research field an 

important role is played by the work of Ortobelli, Rachev and Schwartz57 who 

                                                           
56

 Press, S.J., Multivariate Stable Distributions, Journal of multivariate analysis, 2:444-462, 1972; 
Arad, W.R., The Implications of a Long-Tailed Distribution Structure To Selection and Capital Asset 
Pricing, PhD thesis, Princeton University, January 1975 
57

 Ortobelli, S., Rachev, S., Schwartz, E., The problem of optimal asset allocation with stable 
distributed returns, UC Los Angeles, Finance, Anderson Graduate School of Management, January 
2000 
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show the significant differences in the portfolio allocation when the data fit the 

stable non-Gaussian or the normal distribution. 

To understand how the optimization problem (5.3) comes out, we have to 

consider the following form of the characteristic function for (     ) 

 

                                 
 

                            

            
  

                                                        

 

where    
   

 
  is a positive definite        -matrix,    is the mean vector, and 

      is the spectral measure with support concentrated on       

         . 

The term     is defined by 

 

   

 
                 

   
                                                      

 

where the covariation            between two joint symmetrically  -stable random 

variables           and     is given by 

 

                  
   

                                               
  

 

 

which is equal to the equation (5.2). In particular, 
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5.1.3 Estimating the parameters 

The characteristic function (5.4) is used to estimate the parameter   and  , 

where the estimator of   is given by the vector    of a sample average. According 

to Taqqu and Samorodnitsky58, for every      , we can write 

 

          

      

  
        

     
 

       
 
 

                                                       

 

where the scale parameter    can be written          . 

Using the moment method suggested by Taqqu and Samorodnitsky59 in the 

symmetric case,    ,  

 

  
 

       
 

 
         

 
               

 

 

            
 

 

So It follows from (5.7) 

 

   

 
   

 
        

     
 

       
 
 

 

 

Finally, the estimator     
    

 
  is correct for the covariation matrix   

 

    

 
   

 
    

   
    

   
 
     

 
   

     
   

 
 

 
   

                                          

 

                                                           
58

 Lemma 2.7.16 in Samorodnitsky, G.,  Taqqu S. M., Stable non-Gaussian random processes – 
Stochastic models with infinite variance, Chapman & Hall, New York, 1994 
59

 Property 1.2.17 in Samorodnitsky, G.,  Taqqu S. M., Stable non-Gaussian random processes – 
Stochastic models with infinite variance, Chapman & Hall, New York, 1994 
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where   represents the rate of convergence of the empirical matrix    to the 

unknown, to be estimated, matrix  , which will be faster if   is as large as 

possible60. 

 

5.1.4 The optimization problem 

The previous section allows us to present our asset allocation. 

This section discusses the stable dispersion measure which is similar to the 

equation (5.8). Indeed, this measure can be seen as a generalization of the classic 

standard deviation. 

Let us consider the following stable risk measure 

 

                                                                         

 

where      is the weighted dispersion matrix which can be estimated by 

calculating the elements,    , as follows: 

 

           
 
     

 

 
                

 

   

                                    

          
 

 
        

 
 

   

 

   

                                                

 

where 

 

                          

     
          

    
   

          
 

                                                           
60

 For a proof see Rachev, S., Probability metrics and the stability of stochastic models, New York: 
Wiley, 1991. 
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61 

 

and   is the mean of the index of the stability of a return vector and    is the 

index of the stability of the  -th asset estimated, using a maximum likelihood 

estimator. 

So, the problem (5.3) assumes the following form 

 

   
    

                                                                  

            

           

         

 

or 

   
    

                                                                  

            

          

         

 

where the short sales are allowed. 

The optimal portfolio weights   take the following form: 

 

             
    

          
                                      

 

where       ;               ;           ;          ;   

       ;          . 

                                                           
61

 The parameter   is computed in order to minimize the rate of convergence of asset return 
series. According to Ortobelli, a good approximation is    .  
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So we can note that the dispersion frontier is obtained in the same way as the 

mean-variance one. 

 

5.2 The stable Capital Asset Pricing Model 

By observing carefully the optimal weights (5.14), we can realize that every 

optimal portfolio can be seen as the linear combination between the market 

portfolios 

 

     
            

     
 

 

According to Sharpe equilibrium model, the expected return of the asset   is 

given by 

 

                          

 

where      
      

     
, with   , the vector with   in the  -th component and zero in 

all the other components. 

Instead, Gamrowski and Rachev62 propose a generalization of Fama’s stable 

CAPM assuming             , for        , where    and   are  -stable 

distributed and         .  

So, we obtain the following formula for the stable CAPM: 

 

                           

 

where 

                                                           
62

 Gamrowski, B., Rachev, S., A testable version of the Pareto-stable CAPM, Mathematical and 
computer modeling, 29, 61-81, 1999 
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In addition, the coefficient can be estimated as shown in (5.7) having 

 

     
       

       
 

 

     

      

    
       

 

5.3 The empirical results 

The empirical analysis concerns the construction of a portfolio composed of 20 

risky assets, selected with respect to a particular long-run strategy. The analysis’s 

results allow us to show that the stable frontier is more risk preserving than the 

Gaussian efficient one. In fact, for a given expected return, or conversely for a 

given  dispersion value, the stable frontier exploits more investment opportunity 

because, as we can see, the locus of all the convex combinations of any efficient 

portfolio is larger than the Gaussian one. 

 

5.3.1 Selecting risky asset 

When an investor decides to invest in stock market, the first step is to choose 

and apply a strategy based on his own time preferences. What we present now is 

a long-run strategy because of the indexes used to evaluate a company. 

Let us consider only two economic indexes, earning/price ratio and return on 

investment. 

The first index is really important, because it allows us to buy risky assets at an 

undervalued price. Let us suppose that the spot price of a firm is €12 and that 

this firm is able to obtain an earning of € 1.20 per share, so the gain amounts to 

10%. Comparing this with the risk-free return of a ten-yearly Treasury bond 

which we approximate to 6%, we can realize a risk premium of 4%. But to 

foresee the earning of a firm is not easy, so to compare several firms we use the 

following ratio: 
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where EBIT is the acronyms of Earning Before Interest and Tax and actual value 

of a company is the sum of equity market value (or revalued asset) and net 

financial debt. 

The choice of EBIT rather than the classic earning and the choice of the actual 

firm value rather than a market capitalization has a fundamental meaning. In 

fact, the actual firm value adds to the market capitalization the net financial debt 

used to generate operating profit. In addition, EBIT allows us to compare firms 

with different tax rates and debt levels. 

The second index, return on investment has the following form: 

 

    

                            
 

 

The choice of EBIT has been previously explained. The denominator’s 

construction is based on the following reasoning: a company has to fund not only 

credits and warehouse goods, using the working capital, but also a tangible asset 

thanks to which it can develop its business.  

Table 1-C5 shows how to construct a cash flow. 
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How to estimate a cash flow 

(+) revenue  

(-) expenses  

= EBITDA  (Earnings Before Interest Tax 
Depreciation and Amortization) 

(-) amortization  

= EBIT ( Earning Before Interest and Tax) 

(-) tax  

= NOPAT  (Net Operating Profit After Tax) 

(+) amortization  

= net tax EBITDA  

(+/-) working capital 
variation 

 

(+/-) fixed 
investment/disinvestment 

 

= UCF  Operating Cash Flow or 
Unlevered Cash Flow 

(-) financial cost  

(-) Repayment of loans  

(+) New investment  

= LCF Available Cash Flow or Levered 
Cash Flow 

Table 1-C5. The procedure used to estimate the unlevered (available to 
stakeholders) and levered (available to shareholders) cash flow. 

 

But how are both the indexes related? 

A company which is able to obtain great earnings and whose earning power63 is 

very high, the re-investment policy can realize excellent results, increasing its 

evaluation.  

As shown by a work of Joel Greenblatt64, this strategy is long-run because its 

results are obtained after ten or more years, so the market is able to identify an 

undervalued price only after some years. 

With respect to those two indexes, we can select companies through several 

steps: 

                                                           
63

 The ability of a company to make a profit on its operations which can be good estimate with 
our return on investment. 
64

 Greenblatt, J. teaches Finance at Columbia Business School and is the author of “The little book 
that beats the market”. 
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1. Taking a list of companies with homogeneous market capitalizations (we 

have taken into account companies with a market capitalization of 

minimum € 200 millions, € 1 billion for extra-European companies); 

2. Classifying them according to our first index and giving rank one to the 

best of them, rank 2 to the second and so on; 

3. Classifying them again according to our second index and giving rank one 

to the best of them and so on; 

4. Inserting in portfolio the best twenty or thirty companies corresponding 

to the sum of the two ranks. For example, for the company A the rank 

based on our first index is 5, while the other based on our second index is 

34, so the company A is in the 39th position; 

5. Buying only 5-7 assets, using a percentage of our money; 

6. Repeating step 5 every two or three months, obtaining a portfolio 

composed of 20-30 assets after nine or ten months; 

7. Managing the portfolio substituting all the assets every year; 

8. Being patient. 

Table 2-C5 shows the companies selected thanks to the previous procedure. 
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Table 2-C5. Portfolio.

Company Market 
Share 
per € 
1000 

Capitalization 
(in €) 

(1) 
EBIT/actual 

value 

(2)      
Return on 

Investment 
Field 

Rank 
(1) 

Rank 
(2) 

Sum rank 
(1) and 
rank (2) 

Telegate AG DEU 104.17 204 M 22% 872% Service Company 10 6 16 

Poyry Oyj FIN 84.03 696 M 12% 2139% Service Company 20 1 21 

Gestevision Telecinco SA ESP 95.6 2547 M 15% 852% Media 17 7 24 

Global Payments Inc. USA 30.98 2633 M 9% 1672% Service Company 23 2 25 

Endo Pharmaceuticals USA 69.8 1681 M 17% 599% Biotechnology 15 10 25 

Sohu.com Inc. USA 24.32 1583 M 9% 1659% Data Storage Service 23 3 26 

AmerisourceBergen Corp. USA 53.49 5390 M 11% 1072% Biotechnology 21 5 26 

FTI Consulting, Inc. USA 33.28 1558 M 9% 1562% Service Company 23 4 27 

Hewitt Associates, Inc. USA 34.67 2699 M 11% 777% Service Company 21 8 29 

Apollo Group, Inc. USA 23.85 6499 M 12% 644% Schools 20 9 29 

GameStop Corp. USA 70.24 2348 M 19% 297% Consumer Technology 13 17 30 

GEA Group AG DEU 63.15 2911 M 16% 309% Service Company 16 15 31 

Questar Corporation USA 32.46 5376 M 12% 465% Petroleum/natural gas 20 12 32 

Terra Industries Inc. USA 42.9 2329 M 29% 169% Chemicals 4 28 32 

EVS Broadcast Equipment SA BEL 20.88 650 M 11% 367% Audio e video equipment 21 14 35 

Herbalife Ltd. USA 32.32 1886 M 11% 309% Personal care products 21 16 37 

EMCOR Group, Inc. USA 55.81 1182 M 24% 161% Building 8 30 38 

King Pharmaceuticals, Inc. USA 113.56 2188 M 12% 281% Biotechnology 20 19 39 

IMS Health, Inc. USA 67.2 2717 M 10% 255% Data Storage Service 22 21 43 

Lockheed Martin 
Corporation 

USA 18.76 20314 M 15% 188% Defence and Aerospatiale 17 26 43 
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5.3.2 Stable and Gaussian frontier: a comparison 

According to the optimization problems (1.29) and (5.12), respectively the 

Gaussian and stable ones, this empirical analysis indicates that the stable non-

Gaussian allocation is more risk preserving than the normal one. 

Let us consider        and       respectively the variance-covariance matrix and 

the dispersion one. In particular, these are          -matrixes. We consider    

as the mean vector. 

Table 3-C5 presents the estimation of all used parameters. 

 

 
  

Scale 
parameter 

Standard 
deviation 

 

telegate AG 1.442 0.008% 2.140% p 

Poyry Oyj 1.314 0.013% 4.718% 0.492 

Gestevision Telecinco SA 1.539 0.011% 2.216%  

Global Payments Inc. 1.546 0.009% 2.174% A(p) 

Endo Pharmaceuticals 1.589 0.009% 2.130% 0.922 

Sohu.com Inc. 1.472 0.026% 3.466%  

AmerisourceBergen Corp. 1.508 0.006% 1.682% A(1) 

FTI Consulting, Inc. 1.599 0.011% 2.463% 0.566 

Hewitt Associates, Inc. 1.451 0.007% 2.062%  

Apollo Group, Inc. 1.441 0.014% 2.933% N 

GameStop Corp. 1.576 0.022% 3.071% 1268 

GEA Group AG 1.478 0.017% 2.784%  

Questar Corporation 1.504 0.014% 2.792%  

Terra Industries Inc. 1.492 0.032% 3.912%  

EVS Broadcast Equipment SA 1.406 0.013% 6.989%  

Herbalife Ltd. 1.358 0.014% 3.034%  

EMCOR Group, Inc. 1.452 0.019% 3.071%  

King Pharmaceuticals, Inc. 1.444 0.011% 2.489%  

IMS Health, Inc. 1.359 0.007% 2.207%  

Lockheed Martin 
Corporation 

1.546 0.006% 1.707%  

  mean 1.472    

     

Table 3-C5. Stable and Gaussian parameters’ estimation.  
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Having estimated all the parameters, now we can construct both the efficient 

frontiers which are represented by Figure 1-C5. 

 

 

Figure 1-C5. Stable frontier versus Gaussian frontier with short sales and without 
the risk-free asset. 

 

Observing carefully Figure 1-C5, we realize that there is an area between the two 

frontiers that becomes greater and greater for higher expected returns. 

In fact, to have a better idea of the stable frontier’s risk preserving we can look at 

the Table 4-C5. 
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GAUSS-STABLE Comparison 

  
Expected value 0.1% 1% 5% 10% 

Gaussian scale 
parameter 

0.014% 1.324% 34.117% 137.032% 

Stable scale 
parameter 

0.002% 0.195% 5.142% 20.723% 

Amount of risk 
in excess 

0.012% 1.129% 28.974% 116.310% 

Table 4-C5. Comparison of both the frontiers for some given expected values. 

 

In this case, according to the equation (5.5), the Gaussian scale parameter is 

equal to the standard deviation divided by   , so we can compare the two risk 

measures. 

 

5.4 Fascinating and powerful conclusion 

The previous analysis is very important. The plot of the Gaussian and stable 

efficient frontiers in the same mean-scale space, displayed by Figure 1-C5, shows 

that for a given expected portfolio return, the associated risk in the stable model 

is lower than its counterpart in the Gaussian model. We can conclude that the 

portfolio selection, obtained in this way, allows us to take into consideration the 

so-called outliers, that is, the extreme asset return thanks to the stable non-

Gaussian distribution family. In Chapter 3 we have explained the characteristics 

of these distribution.  

Summarizing these characteristics which are really important to demonstrate our 

thesis, according to which the stable asset allocation is better than the Gaussian 

one, we can say that 

 they are characterized by the tendency to follow trends and cycles, with 

sudden changes of direction;  

 they are more heavy-tailed than the normal ones and with the maximum 

value, around which the majority of the observations is concentrated; 
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 they have finite mean and infinite variance for      ; 

 they are characterized by invariance under addition which replicate the 

scaling properties of the financial market; 

These properties can be found in the financial market, where it is shown that 

changes of price do not follow a normal distribution; that “one single observation 

can destroy thousands of years of confirmation”65; that daily, weekly and 

monthly prices have similar graphic form; and finally, that the assumption of 

stationary in variance is not a real assumption. 

In conclusion, our study could be a useful and convenient tool for fund managers 

and investors who try to maximize their trade-off between risk and return. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
65

 See for example the Black Thursday, October, 19 1987 when the Dow Jones  fell by 22%.  
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Chapter 6 

 

OPTION PRICING WITH RESPECT TO THE 
FRACTIONAL BROWNIAN MOTION  

 

 

 

In 1973, Fisher Black and Myron Scholes first articulated a formula able to price 

derivatives in their paper “The pricing of options and corporate liabilities”. This 

work presents a mathematical model of the market where the stock’s price 

follows a stochastic process. In the same year, Robert C. Merton published a 

paper expanding the mathematical understanding of the option pricing model 

and coined the term thanks to which we can refer to, the Black and Scholes 

model. The model, presented in Section 1.3, is criticized by many other 

economists, especially for the reasons exposed in Chapter 1. Because of its 

incompatibilities with real market data, the main critics are interested in the 

stochastic process of Brownian motion. Firstly, price changes cannot follow a 

Gaussian distribution as shown by the real data. Secondly, the process of 

observable market values seems to exhibit a serial correlation, allowing us to 

distinguish the persistent case from the anti-persistent one, as shown in Chapter 

4. Therefore, a model which can better represent reality is the so-called 

fractional Brownian motion, the real candidate. This motion was introduced by 

Mandelbrot and Van Ness in 1968 and is again a Gaussian stochastic process. It is 
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able to capture long-range dependencies or persistence and the characteristic of 

self-similarity of financial series thanks to the Hurst exponent, lying between one 

and zero. 

According to the theories explained in Chapter 4, now we want to apply the 

respective theory of option pricing to the fractional Brownian motion, which 

corresponds to the pure Brownian motion for      .  

This chapter, together with the fifth one, can be seen as the core of the thesis 

and presents the option pricing model according to the continuous time 

fractional Brownian market introduced by the work of Stefan Rostek and Rainer 

Scho bel66. We will price options using conditional expectation of fBm and a 

conditional version of the fractional Ito  theorem. The reason is to obtain a 

closed-form solution for the price of a European option written on a stock, 

following a fBm with arbitrary Hurst parameter, and we will show the reasons for 

excluding arbitrage. 

 

6.1 Binomial approximation of an arithmetic fBm 

As shown in Chapter 4, a pure Wiener Brownian motion (WBm) can be 

approximated to a binomial distribution by increasing the number of variables, 

independently and identically distributed at random. But for the fBm the quoted 

result is achieved through a more refined procedure. According to Mandelbrot 

and Van Ness67, the fractional Brownian motion,   
 , with Hurst parameter   can 

be regarded as a moving average of a two-sided classical Brownian motion   : 

 

  
             

  
 
       

  
 
  

 

                                     

 

                                                           
66

 Rostek, S. and Scho bel, R., Risk Preference Based Option Pricing In a Fractional Brownian 
Market, Eberhard Karls Universität Tübingen, May 2005. 
67

 Mandelbrot, B.B and van Ness, J.W., Fractional Brownian Motion, Fractional Noises and 
Applications, SIAM Rev 10(4), p 422-437, 1968 
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where    is a normalizing constant. 

As shown in Equation (6.1), a fBm is related to an infinite past, so there are some 

problems if we want to model a process going infinitely back to the past, when 

any future step depends on the whole history. Therefore, to render this 

procedure easier, we look at a process starting at a fixed point in time    , in 

order to consider a fBm as a finite Brownian integral, given by Norros and 

Valkeila68. Their derivation of this finite interval representation of fBm concerns 

the following formula: 

 

  
            

 

 

                                                

 

where 

 

          
 

 

  
 
 
       

 
     

 

 
  

 
 
      

 
 

 

 

       
 
     

 

So the last formula allows us to consider a fractional Brownian motion as a 

weighted sum of Brownian increments going finitely back to the past, which are 

variables independently and identically distributed at random   
   

, with zero 

mean and unit variance, 

 

  
   

 
 

  
      

    

   

                                                     

 

                                                           
68

 Norros, I., Valkeila, E., Virtamo, J., An Elementary approach to a Girsanov Formula and Other 
Analytical Result on Fractional Brownian Motion, Bernoulli 5, p. 571-587, 1999 
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where in the  -th approximation step each unit time interval is divided into   

discrete steps and time   is rounded down onto the next  -th part by replacing it 

by       . 

To understand how the last sum approximates to the standard Brownian motion, 

we can observe the following first two moments: 

 

    
   

    
 

  
      

    

   

  
 

  
         

    

   

                                    

      
   

     
 

  
      

    

   

 

 

  
 

  
          

 
 

    

   

 
    

 
           

 

Sottinen69 gives us a more complex version of equation (6.2), where he 

introduces a continuous time weighted kernel  

 

              
    

 
     

 

  
 
 

 

 

achieving 

 

  
    

            
 

 

  
   

     
    

 
     

 

  
  

   

 
 

   
 

    

   

                

 

which equals   
   

, WBm, for      . 

Therefore, we obtain a binomial random walk which is a sum of uncorrelated 

random variables and which approximates to the pure Brownian motion. 

 

                                                           
69

 Sottinen, T., Fractional Brownian Motion, Random Walks and Binary Market Models, Financ 
Stochast 5(3), p.343-355, 2001 
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6.2 Fractional Brownian motion and its conditional moments 

The next step that allows us to obtain a closed-formula of option pricing is to use 

the information of all the steps up to a certain time  . So considering the 

approximation of fBm, equation (6.6), a better representation of a finite-interval 

of classical Brownian motion is given by its conditional moments, the conditional 

expectation and variance. Considering    as the information set to time  , we 

have 

 

     
                       

 

 

  

                               

 

 

                 

 

 

  

                               

 

 

 

 

obtaining, according to Sottinen, we obtain 

 

     
       

               
 

 
 

 

  
  

   

    

   

                           

 

where we use the same coefficients as   
  only for summing them to time  . In 

this way, we can construct a conditional binomial tree which is again a 

representation of the evolution of fBm to time  , where each node indicates the 

mean of all the terminal nodes descending from it. In addition, it is interesting to 

investigate the second moment, the conditional variance defined by 
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According to Rostek, comparing the values of the conditional variances based on 

a different number of approximating steps with the continuous time limit case, 

we can realize that the speed of convergence differ eminently. This speed 

depends both on the Hurst parameter and on the relation between the lengths 

of the observation and the prediction interval. 

So we can conclude with some important characteristics of a fBm. This process is 

no longer a martingale because of the lack of equality between the future 

prediction and the present value. Besides, the prediction not only depends on 

the past, but also on all historic random realizations, so the process is neither 

Markovian. So in the next sections we will give a detailed explanation to solve 

this problem when we deal with financial models. 

 

6.3 Binomial approximation of a geometric fBm 

We know that the stochastic process of a spot price    is defined by the following 

differential equation 

 

                       
  

 

where    
  is the increment of fBm.  

Now let us consider the following recursion rule allowing us to generate a 

recursive multiplicative tree, starting with a value   : 

 

                  

 

where   is either the ordinary product or the discrete Wick product70, and    is 

the approximation of fBm increment as the equation (6.7) shows. 

                                                           
70

 This type of product vanishes if the two factors have at least one gene rating random 
variable, , in common. If none of the generators coincide, the Wick product equals the ordinary 

one. In formula                 
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But these types of products give us two different price processes. Indeed, 

consider the equation (6.7) and its expression in the following way 

 

  
              

   

    

   

 

 

where                  
 

 
 

 

  
. 

Let us consider only two steps of recursion, using      and      without a 

drift  . So we have 
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and 
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With     , the ordinary product,   , give us the following price process of the 

geometric fBm: 

 

  
    

   

  
    

   
          

              

  
    

   
          

   

                                                 

                                   
  

 

where   
  is equal to  , so the associated term contributes to the drift of the 

process, and the expected value is not zero. 
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While using the Wick product,   , we realize that it eliminates the squared 

term and so the drift remains unchanged. This is the reason why we introduce 

this product. 

  

  
    

   

  
    

   
    

        
              

  
    

   
    

        
   

                                                          

                                                  

 

The binomial tree modelling the classical Brownian motion is important to price 

derivatives only if we suppose the absence of arbitrage. But we will see that for 

     , the absence of arbitrage is no longer valid in the fractional 

background, unless we impose some restrictions. 

 

6.3.1 Arbitrage in fractional framework and its exclusion 

According to the binary fBm explained in the previous section, the assets only 

change their value at discrete point in time               .  

Let us consider a riskless asset   
   

, where     is the  -th approximation,  and its 

dynamics 

 

  
   

             
   

 

 

and a risky stock 

 

  
   

           
   

      
   

 

 

where, according to Rostek,   
   

 has the following representation: 
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According to Sottinen, we can rewrite this replacing 

 

                      
 

 
     

 
 

   
 

 

 

and so 

 

                                  

   

   

   

 

hence, the equation (6.8) becomes 

 

  
   

                             

 

So only two possible values exist of the binary random variable   
   

 for each 

step  , which are defined by   
   

, for    
   

   , and   
   

, for    
   

   . 

Finally, we can derive the no-arbitrage relation necessary to ensure any time 

step so we have 
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which indicates that the return of the risky asset exceeds the riskless interest 

rate in the case   
   

   
   

, while it drops below the riskless rate in the case 

  
   

   
   

.  

According to the equation (6.8), its increments are 

 

  
   

     
   

      
   

   
   

    
   

 

 

and so, the “no-arbitrage relation” is 

 

  
   

       
   

                                                     

 

Rostek provides an explicit arbitrage possibility. Let us suppose that the 

difference     is negative and that the binomial tree is strictly upward to step 

    , where    represents a critical step number depending on Hurst 

parameter and tending to infinity as      , that is  

 

                            

 

obtaining 
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so the relation (6.10) is violated. An investor could buy one stock at step     at 

price      and borrow the same amount paying the riskless interest rate  . In the 

worst case,    is    and the stock moves downward taking the value 

               . Being       , we have a gain. On the other hand, if 

    is positive, the opposite trading strategy is allowed, that is, the short-

selling one. 

In the next section we will introduce some restriction to eliminate arbitrage 

possibility. 

 

6.4 Restriction in eliminating the arbitrage possibility 

The previous section shows us that an arbitrage is possible in a fractional 

framework. But a careful reader can realize that the quoted arbitrage is allowed 

only if an investor is as fast as the market so, the one-step buy-and-hold strategy 

is possible only if an investor can react quickly. 

Therefore, if we introduce a minimal delay between two consecutive 

transactions of the same investor, we have a modified framework where 

investors cannot react as fast as the market free of arbitrage. 

Look at the Figure 1-C6 to understand better. 
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Figure 1-C6. Value of the fractional price process (y-axes). The lower chart shows 
the exclusion of arbitrage by restricting trading strategies. Investors can only 

make transactions at nodes on a dashed line. 

 

The above chart in the Figure 1-C6 shows that a buy-and-hold strategy is possible 

by buying the stock in time     and selling in    . While in the lower chart, 

an investor cannot exploit the transaction because in     he could encounter a 

loss. 

So, even if an investor sells immediately after having bought an asset, he would 

have missed a number of transaction nodes caused by the multitude of investors. 

If we introduce a great number of intra-interval nodes, the arbitrage opportunity 
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vanishes and this number depends on both the amount of historic available 

information and Hurst parameter. An high level of persistence and more 

information about the past increase the number of necessary steps. 

 

6.5 Different arbitrage strategies  

6.5.1 Arbitrage according to Shiryayev  

We have seen that if we adopt the ordinary product, the fBm is not a 

semimartingale because of the presence of a drift.  

Shiryayev71 analyzes a financial model where the drift of the risky asset is equal 

to the interest rate of the riskless asset and the volatility is equal to one. 

We have a bond    and a stock    following 

 

                                                                          

               
                                                  

 

From the chain rule formulated as a differential equation given by 

 

       
   

  

  
   

  

   
 

   
  

 

it follows that the explicit equations of the basic market assets have the form 

 

      
   

      
     

 
 

 

where    and    are assumed to be one. So the value of the portfolio   
  based 

on the weighted-strategy           is 

 

                                                           
71

 Shiryayev, A.N., On arbitrage and replication for fractal models, research report 20, MaPhySto, 
Department of Mathematical Sciences, University of Aarhus, Denmark, 1998 
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where the strategy is called self-financing, if 

 

   
              

 

So we have 

         
 

 

        
 

    

 

Substituting the last result in (6.13), we obtain  

 

  
         

 
   

 

 

 

Applying the chain rule, we obtain 

 

   
          

 
   

 

          
 

    
 

      
                

 

where the second term can be seen as follows: 

 

       
 

    
 

      
         

                                         

 

and the first one 

 

        
 

   
 

                
                                     

 

Then, combining the equations (6.14), (6.15) and (6.16), we obtain 
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Hence, the strategy is self-financing because its initial capital needed is zero and 

the successive portfolio value is non-negative. So this configures an arbitrage 

strategy. 

 

6.5.2 Arbitrage according to Bender 

In contrast to Shiryayev, Bender72 gives a different approach using the Wick 

integration. The starting point is similar to Shiryayev’s, that is,   

  

                                                                          

               
                                                  

 

where now the novelty is that Bender allows for an arbitrary constant drift   and 

volatility  . 

So the results of the differential equation are 

 

      
                                                                                     

            
 

 
         

                                   

 

and the strategy is given by 
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 Bender, C., Integration with respect to fractional Brownian motion and related market models, 
University of Konstanz, Department of Mathematics and Statistics: PhD thesis, 2003  
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which is again an arbitrage opportunity. 

6.6 Option pricing according to Hu and  ksendal 

Based on the equation (6.19), Hu and  ksendal73 deal with the fractional 

Brownian Black-Scholes market defined by the equations (6.17) and (6.18).  

Supposing that the value of the portfolio is given by the following stochastic 

process 

 

  
                                                                  

 

now the authors replace the property of self-financing with another concept, 

that is, a portfolio is said to be Wick self-financing if its process satisfies: 

 

   
                                                                                       

                                    
                               

 

where   indicates that the differential equation is represented in the Wick sense. 

From equation (6.20) we have  

 

   
  

       

  
 

 

which we substitute in (6.21) obtaining 

 

   
     

           
   

 
      

                          

 

Consider now a new probability measure denoted by    , determined by the 

Girsanov change of measure and defined 

                                                           
73

 Hu, Y.,  ksendal, B., Fractional White Noise Calculus and Applications to Finance, Infin Dimens 
Anal Qu 6(1), p.1-32, 2003 
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as a fractional Brownian motion under the new probability measure. According 

to the fractional Girsanov theorem74, we can rewrite (6.22) as follows 

 

   
     

              
                                           

 

Hu and  ksendal proceed by multiplying both sides of (6.23) by     , and from 

the fractional version of It  ’s Lemma, we have 

 

        
          

         
    

 

Therefore, integrating both sides from   to  , the authors derive a stochastic 

integral having zero expectation: 

  

      
    

                 
 

 

 

 

 

and  

 

           
     

  

 

The importance of this result is that   cannot be an arbitrage strategy because a 

positive value of   
  contradicts the condition of zero or the negative initial 

investment. 

                                                           
74

 The proof of this theorem goes beyond the aim of this work. For a detailed analysis see Section 
2.5 of  Rostek Stefan, Option Pricing in Fractional Brownian Markets, Springer, April 2009  
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Hence, in this way the authors have shown that this procedure represents a 

martingale measure and that it is the only one. Respecting this unique measure, 

they derive the pricing formula for the European options at time  :  

 

  
        

            
                                         

  
            

          
                                         

 

where 

 

  
  

   
  

      
 
      

   
 

  
  

   
  

      
 
      

   
 

 

Obviously, for      , we obtain the well-known Black-Scholes-Merton 

formula presented in Chapter 1. Generally, the formula is also valid for a 

different time interval, but it is necessary to replace the terms     and    with 

respectively           and        . 

But the derived pricing options aroused many critics concerning the economic 

meaning of the Wick product. Indeed, it is a product of random variables that 

needs to know the prospective holdings for all the possible states of nature at a 

precise point in time, in order to calculate the realization of the portfolio value at 

that point in time. 

Several authors have tried to solve this problem supposing that the dynamics of 

this process    can be interpreted as the fundamental firm value, distinguished 

carefully from the observable market price. In fact, the latter is assumed to be 

the outcome of a statistic test function applied to the distribution of the 

stochastic process. Moreover, other concepts have been introduced, like a mixed 

fractional Brownian motion and market imperfections. 
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The next section presents the risk preference-based option pricing.    

 

6.7 Risk preference-based option pricing 

This section presents a work of Rostek and Sch  bel who deal with a market 

where randomness follows a fractional Brownian motion. The price process 

evolves continually, but the novelty is represented by the introduction of a 

minimal amount of time between two transactions by the same investor. This 

restriction allows us to ensure the absence of arbitrage. Besides, in a fractional 

framework the well-known no-arbitrage pricing approach based on dynamical 

hedge is inappropriate. So, Rostek solved this problem by introducing risk 

preferences. 

Let us fix current time   and consider a simulation of fBm. Then group each path 

        having identical trajectories to the time   into one class      . So we 

can define the conditional distribution of   
  within its observed equivalence 

class, which is normal with the following moments: 
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Now we have the instruments through which we can derive the option pricing. 
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Let us assume risk-neutral investors possessing and using information about the 

past and the discounted conditional expected value of a call option based on the 

observation of      : 

 

                               
                               

   

According to Rostek, the pricing problem is solved by defining a suitable measure 

under which expectations are taken. Hence, he proposes to use the measure     

satisfying 

 

                   
                                                

 

which is the unbiased average risk neutral measure. 

This measure is based on the following equilibrium respecting the risk-neutrality: 

the investor should remain indifferent in buying the stock and holding the 

amount    of the riskless asset. Then we can rewrite (6.27) in the following way: 

 

           
      

                                                  

 

According to Rostek, to exploit the equation (6.28) we must consider the 

conditional distribution of    whose moments are given by the equations (6.27) 

and (6.27). Then applying the conditional version of the fractional It   theorem75, 

we have 

 

                     
 

 
                 

     
   

 

                                                           
75

 For a proof of the Conditional fractional It   theorem, see Section 5.3 of Rostek Stefan, Option 
Pricing in Fractional Brownian Markets, Springer, April 2009.   
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So we realize that the logarithm of the conditional process     is normally 

distributed with the following mean  , and variance  : 

 

                           
                                                  

             
 

 
                                            

               
 

               
 
   

                     

                                                                                          

 

So    is normally distributed with mean   and variance  : 

 

        
 

 
      

                                                                                 

                         
                      

             

 

Now, using (6.33) and inserting it into (6.30) we obtain: 

 

   
                 

        

 

and so 

 

                                                                

 

where    represents the adjusted drift divided into the return received from the 

riskless asset and in addition, a historically shift of the distribution. It is important 

to remember that in the Markovian case of classical Brownian motion, the drift 

of the process is equal to the free-risk return. 

But what does the adjustment mean? What is the financial meaning? 
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Ex ante, an investor has an idea on how to determine a price evolution. So if he 

realizes a positive evolution, he adjusts positively the stock’s future distribution. 

A posteriori, he could observe a mispricing between his prediction and the 

current value so he has to correct his overestimated prediction.  

Hence, inserting (6.35) into (6.31) and (6.32) we have 

 

              
 

 
                                             

                                                                                      

 

Finally, according to this density of the conditional process     which is the 

conditional density of    based on the observation      , that is,  

 

            
 

     
     

 

 

        

 
        

 

now we are able to write the Rostek and Sch  bel formula to price the European 

option: 

 

                                     
   

    
  

 
 
                             

 

where 

   
       

  
 

   
     

  
       

 

Then, substituting (6.36) and (6.37) we obtain the pricing formula for the 

fractional European call and put: 
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where  

 

             
  

   
  

          
 
            

          
 

  
  

   
  

          
 
            

          
   

             

 

So also the fractional Put-Call Parity is valid, that is,  

 

                             

 

For      and       we obtain the classical Black-Scholes-Merton option 

pricing. 

Table 1-C6 shows the increasing parameter according to which we can write the 

fractional Greeks, exposed in Table 2-C6. 

 

Parameter Definition 

  Time to maturity 

  Free-risk interest rate 

  Volatility 

   Spot price 

  Strike price 

  Dividend 

  Hurst parameter 

   variance of conditional fBm 

Table 1-C6. Parameters which the fractional European options depend on. 
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Fractional 
Greeks 

Derivation 

   
   

  
 

    
   

   
   

   
     

 
 

            
 

   
   

  
 

 
      

 
     

        
               

 
  

   
   

  
                   

 
             

 
  

   
   

  
       

 
            

Table 2-C6. The fractional Greeks and their analytical representation. 
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6.8 Option pricing comparison 

This section gives a summary of the previous derived option pricing and some 

examples. See Table 3-C6 to have a schematic representation of the three 

considered option pricing. 

 

Option pricing according to 

Black-Scholes-Merton 
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Hu and  ksendal 
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Rostek and Sch  bel 
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Table 3-C6. Comparison of the three derived option pricing. 
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Let us give an example to show a numerical difference among those three option 

pricing. 

Consider the value in Table 4-C6. 

 

Parameter Definition 

  1 year 

  2% 

  20% 

   100 

  100 

  0 

  0.1;0.5;0.9 

   

0.639887 (      ; 
1 (      ; 

0.365709 (     ) 
 

Table 4-C6. Value of option pricing parameter. 

 

Table 5-C6 shows the results of the three option pricing exposed in Table 3-C6. 

 

Option pricing according to 

Black-Scholes-Merton 

            

            

Hu and  ksendal 

Anti-persistent 
case       

 
  

           

  
           

Persistent  
case       
 
  

           

  
           

Rostek and Sch  bel 

Anti-persistent case       

                 

                 

Persistent case       

                 

                 

Table 5-C6. Application of the three derived option pricing. 
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Observing carefully the Table 5-C6, we can realize that, according to Rostek and 

Sch  bel’s option pricing, when the Hurst parameter increases, the option price 

decreases. But this relation depends on the maturity time as shown in the Figure 

2-C6, Figure 3-C6 and Figure 4-C6. 

 

 

Figure 2-C6. Maturity effect on the relation between the Hurst parameter and 
the price of the fractional European put and call options for maturity       . 

 
 

 
Figure 3-C6. Maturity effect on the relation between the Hurst parameter and 
the price of the fractional European put and call options for maturity       . 
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Figure 3-C6. Maturity effect on the relation between the Hurst parameter and 
the price of the fractional European put and call options for maturity    . 

 
 

In conclusion, we can present schematically the influence of the Hurst parameter 

on the price of a fractional European option for different maturity intervals  :  

 For 
 

 
    , the maximum of the call value and Hurst parameter lie in 

the anti-persistent area; 

 For    ,   is equal to    , so the case of a serial independence yields 

the highest call price; 

 For    , the maximum of the call value and Hurst parameter lie in the 

persistent area.  
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Conclusion 

 

 

 

This thesis is concerned with the two most used but also most criticized 

statistical instruments input in financial models: the pure Wiener Brownian 

motion and the Gaussian distribution. 

Indeed, the majority of economic and financial models have in common the 

Gaussian distribution, where a statistical distribution puts us in a symmetric 

world and where 68 per cent of the observations are around the mean, while the 

rare events may occur every 100000 years. Hence, a financial crisis is not 

included in the above models because they are valid only for a “peaceful” world. 

Not until we consider non-financial data, like the height of men and women, we 

realize that a person three meters tall is really a rare event, and in addition that 

the average height is concentrated around the mean. 

But is it the same about financial data? what is a crisis? or rather, what effects 

does it produce? 

History teaches us that everything can change in a day, that suddenly an index 

price can fall down by 20 per cent in a few hours. Besides, such a jump 

corresponds to a really slow recovery or even a non-existent one. 

 

In the beginning of Chapter 1 we have presented the most important and secular 

financial models taught in all the universities in the world. 

After presenting their incompatibilities with the reality, Chapter 2 introduces the 

fractal geometry and its power. A fractal is an object that can be self-similar or 

self-affine upon different scale. According to Mandelbrot, this scaling property is 

well represented by a particular distribution’s family, the  -stable non-Gaussian 
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one which has a closer approach to reality. Chapter 3 deals with these 

distributions whose power is to follow trends and cycles, with sudden changes of 

direction; to be more heavy-tailed than the normal ones, with the maximum 

value around the majority of the observations is concentrated on; to have finite 

mean and infinite variance for      ; and to be invariant under addition 

(the scaling property). The true power is to make the rare events more probable 

than the Gaussian “bell curve” (See Table 1-Con). 

 

The Black Monday 19/10/1987                

                                     

                        

                                      

                                        

                                        

                     

                     

                     

                     

Table 1-Con. Dow Jones Index on October 19, 1987. Gauss versus power laws. 
Note that for different minimum value, the power law makes the negative event 

more probable than the Gaussian distribution. 
 

But non-Gaussian distribution and discontinuity are not the only problems. Do 

you really think that the next price is totally uncorrelated or independent of the 

previous ones? Look at the price correlogram of an asset (Figure 8-C4). 

This question is partly solved by considering the fractional Brownian motion 

playing an important role in the option pricing. Black, Scholes and Merton have 

derived a complex model able to price derivatives, based on some abnormal 

assumptions, like that of independence of price changes and the so-called 

Efficient Market Hypothesis. These assumptions are replaced respectively by the 

fractional Brownian motion, which is always a Gaussian motion but now with a 

long-run dependence defined by the Hurst exponent (     ; for       its 

increments are independent), and the Fractal Market Hypothesis which 
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emphasizes the impact of the liquidity and of the investment horizons on the 

investors. 

 

This thesis reaches its maximum in the two final chapters on the empirical 

application of the quoted concepts. 

After presenting a long-run strategy able to choose the risky assets to insert in 

the portfolio, Chapter 5 deals with the optimal allocation problem with respect to 

 -stable distributed returns. In particular, we take into consideration portfolio 

selection models based on a different risk measure, constructing the dispersion 

matrix using the covariations. Comparing the optimal allocation under Gaussian 

and stable distributional assumption for the risky returns, we realize that the 

second is more risk preserving, and it includes the whole concepts which these 

non-Gaussian distributions are characterized by. 

The last Chapter is concerned with the option pricing with respect to the 

fractional Brownian motion. Under the assumption of risk-neutral investors, we 

introduce the option pricing depending on the Hurst exponent. But this motion 

has particular consequences, because its application in financial models allows 

the arbitrage opportunity. To solve this problem, the work of Professor Rostek 

Stefan plays an important role. His models take into consideration that even if 

arbitrage opportunities exist, an investor could not be as fast as the market. 

Modifying the binomial tree and considering the conditional fractional Brownian 

motion, we realize that the arbitrage vanishes. So this option pricing is an 

interesting object for our purpose, because we introduce a serial correlation into 

financial models obtaining solutions that are in a closed-form, easy to handle and 

in line with economic intuition. 
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Appendix  

 

METHODS TO ESTIMATE THE HURST 
PARAMETER  

 

 

 

In 1951, after having analyzed more than 800 years of records, Hurst defined a 

method of studying natural phenomena such as the flow of the Nile River. 

Indeed, he observed that the flow of the Nile River was not at random, but 

patterned. Some years later, precisely in 1968, Benoit B. Mandelbrot defined this 

pattern as fractal. To measure the bias of the fractional Brownian motion, they 

both introduced a parameter, called   by Mandelbrot himself, which is the core 

of the previous chapters. As shown in the Chapter 2, also the fractal dimension is 

also based on this parameter. Hence, it gives a measure of the smoothness of a 

fractal object. 

We have explained that, regarding the range of this parameter, that is, 

     , we realize that a low   indicates a high level of roughness and so a 

fractal dimension near to  , has derived from the relation      . On the 

contrary, the high value of it shows the high level of smoothness, and so a fractal 

dimension near to   is the Euler dimension of a straight line. 

These two parameters,   and  , can be used to analyze stock market data 

thanks to their capability of distinguishing persistent historical data from the 
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anti-persistent one. Besides low   values represents higher noise, more random-

like, or volatile data, so representing a higher risk. Also the opposite is true.  

In this appendix we reveal two of the most important and used estimation 

methods of the Hurst parameter, that is, the Rescaled Range analysis method, or 

R/S analysis, and the Dispersional analysis, also known as the Aggregated 

Variance method. 

 

A.1 Rescaled Range analysis 

This analysis is very simple. In fact, unlike the other usual statistical test, this 

does not demand a data organization. The R/S analysis implies measures over 

intervals of different length, the difference between the maximum values and 

the minimum ones only if they are higher or lower than the predictable 

difference when each datum is independent of the previous one. If the two 

amounts are different, then order of the data becomes important. Indeed, an 

uninterrupted sequence of gains or losses pushes the extreme values farther 

than those which can be made casually. 

The analysis is composed of seven steps: 

1. Calculate the mean,  , over the whole of the available data; 

2. Sum the difference from the mean to get the cumulative total of each 

point in time,       , from the beginning of the period up to any time; 

3. For every maximum and minimum value,           and          , for 

     , calculate the range     ; 

4. Calculate the sample standard deviation,     , of the values over the 

period  , according to the local mean     ; 

5. Then calculate the ratio              ; 

6. Repeat the procedure, step    , determining     for each non-

overlapping segment of the dataset. Then, we take the averaged     

value; 
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7. In conclusion, plot log-log plot that is fit linear regression   on   where 

         and        and where the Hurst exponent is the slope 

of the regression line.   

Finally, in formula: 

 

    
   

     
        

       
     

        
   

  
 

       
  

   

 

 

where   represents the log-return of a price series. 

Consider a dataset composed of three asset of three firms which operate in 

different fields, Fiat, Fastweb and Ubi Bank. Each sample is of 154 weekly price, 

from January, 1st 2007 to January 5th, 2010. 

Table 1-A shows the estimation of the Hurst parameter obtained through the 

previous procedure. 

 

 Hurst Parameter Fractal Dimension Description 

FIAT 0.70 1.30 Persistent 

FASTWEB 0.55 1.45 Low persistent 

UBI BANK 0.61 1.39 Low persistent 

Table 1-A.     analysis. Estimates of Hurst parameter and fractal dimension. 

 

Moreover, Figure 1-A, Figure 2-A and Figure 3-A show the respective graphs. 
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Figure 1-A.     analysis. Log-log plot of Fiat with the tendency line (red). 

 

 

Figure 2-A.     analysis. Log-log plot of Fastweb with the tendency line (red). 

 

 

Figure 3-A.     analysis. Log-log plot of Ubi Bank with the tendency line (red). 
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A.2 Dispersional analysis 

This method averages the different fractional Brownian motion,    over bids of 

width   and calculates the variance of the averaged dataset. 

Four steps are needed to apply this method: 

1. Set the bin size to    ; 

2. Calculate the standard deviation of   data points and record the point 

       ; 

3. Average neighbouring data points and store in the original dataset 

 

      
 

 
                  

 

and rescale   and   appropriately 

 

  
 

 
 

    ; 

 

4. Perform linear regression on the log-log plot 

 

                ; 

 

the slope is the estimate of  . 

According to Blok76, this method performs significantly better than Rescaled 

Range analysis. 

Consider the same information set used to apply     analysis. 

Table 2-A shows the estimation of the Hurst parameter obtained through the 

previous procedure. 

                                                           
76

 Blok, J. Hendrick, On the nature of the stock market: simulation and experiments, PhD thesis, 
The University of British Columbia, November 2000. 
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 Hurst Parameter Fractal Dimension Description 

FIAT 0.52 1.478888418 Low Persistent 

FASTWEB 0.41 1.592144008 Low Anti-persistent 

UBI BANK 0.28 1.721130723 High Anti-persistent 

Table 2-A. Dispersional analysis. Estimates of Hurst parameter and fractal 
dimension. 

 

The reader can observe carefully that according to this method, the results are 

different, making riskier the last two assets. 

Moreover, Figure 1-A, Figure 2-A and Figure 3-A show the respective graphs. 

 

 

Figure 4-A. Dispersional analysis. Log-log plot of Fiat. 
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Figure 5-A. Dispersional analysis. Log-log plot of Fastweb. 

 

 

Figure 6-A. Dispersional analysis. Log-log plot of Ubi Bank. 
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