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INTRODUCTION
It was in 1881 that the astronomer Simon Newcomb, after noticing 

how the logarithmic tables in the library were dirtier in the first 

pages than in the last ones, published a 2-page article in the 

American Journal of Mathematics stating that numbers in ‘nature’ 

have their leading digit distributed in a specific, non-uniform way.  

He came out with a law  describing their expected distribution.  His 

paper went unnoticed and was soon forgotten.

While working as a physicist at the General Electric Research 

Laboratories in Schenectady,  New  York, in the 1920s, Frank 

Benford, unaware of Newcomb’s paper, made the same simple 

observation. He saw that the first pages, of his log tables, which 

showed the logarithms of numbers with low first digits (1 and 2),  

were more worn than the last pages, showing logs of numbers 

with high first digits (8 and 9).  He then speculated about the fact 

that numbers starting with low first digits appear more often. He 

tried to prove, succeeding, that significant digits, the number to the 

left of the decimal point, fitted to some sort of numerical pattern. 

This pattern would be remembered as Benford’s Law.

 After collecting and assembling a total of 20,229 numbers from 20 

lists of numbers extrapolated from extremely diverse sources, 

such as: population sizes, street addresses of “American Men of 

Science”, all the numbers in an issue of Reader’s Digest, 

geographical measures and scientific constants. He tabulated and 

analyzed the datasets.  The results were published in a paper that 

appeared in 1938 on the pages of Proceedings of the American 

Philosophical Society called “The law of Anomalous Numbers”.
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Benford’s paper could have easily be ignored and lost just like 

Newcomb’s, instead the next paper in that fortunate edition of the 

journal was one by a group of important physicists, Bethe, Rose 

and Smith.  Gousmit (1977) assumes that many physicists might 

have been intrigued by the last phrase of Benford’s article, stating: 

“and the numbers but play a poor part of lifeless symbols for living 

things.”  Then some of them turned back to read the paper from 

the beginning.  

The results of his effort “to collect data from as many fields as 

possible” showed that 30.6% of the numbers had a first digit 1. 

The first digit 2 occurred 18.5% of the time. In contrast only 4.7% 

of the numbers had first digit 9. The naive expectation is that the 

numbers are distributed approximally in a uniform way, so there 

should be as many threes as sevens and so on. Consequently, 

the expected probability for any first digit is on average 1/9. 

Instead, what the datasets show is a heavy skeweness towards 

the lower digits.  A bias in favor of lower digits exists even for the 

digit in the second position, even if they are much less skewed.

The specific data of Benford’s article are shown in Table 1:
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Title 1 2 3 4 5 6 7 8 9 Samp-
les

Rivers 31.0 16.4 10.7 11.3 7.2 8.6 5.5 4.2 5.1 335

Population 33.9 20.4 14.2 8.1 7.2 6.2 4.1 3.7 2.2 3259

Constants 41.3 14.4 4.8 8.6 10.6 5.8 1.0 2.9 10.6 104

Newspaper
s

30.0 18.0 12.0 10.0 8.0 8.0 6.0 5.0 5.0 100

Specific 
Heat

24.0 18.4 16.2 14.6 10.6 4.1 3.2 4.8 4.1 1389

Pressure 29.6 18.3 12.8 9.8 8.3 6.4 5.7 4.4 4.7 703

H.P. Lost 30.0 18.4 11.9 10.8 8.1 7.0 5.1 5.1 3.6 690

Mol. Wgt. 26.7 25.2 15.4 10.8 6.7 5.1 4.1 2.8 3.2 1800

Drainage 27.1 23.9 13.8 12.6 8.2 5.0 5.0 2.5 1.9 159

Atom. Wgt 47.2 18.7 5.5 4.4 6.6 4.4 3.3 4.4 5.5 91

n^-1 25.7 20.3 9.7 6.8 6.6 6.8 7.2 8.0 8.9 5000

Designs 26.8 14.8 14.3 7.5 8.3 8.4 7.0 7.3 5.6 560

Reader’s 
Digest

33.4 18.5 12.4 7.5 7.1 6.5 5.5 4.9 4.2 308

Cost Data 32.4 18.8 10.1 10.1 9.8 5.5 4.7 5.5 3.1 741

X-Ray 
Volts

27.9 17.5 14.4 9.0 8.1 7.4 5.1 5.8 4.8 707

Am. 
League

32.7 17.6 12.6 9.8 7.4 6.4 4.9 5.6 3.0 1458

Black Body 31.0 17.3 14.1 8.7 6.6 7.0 5.2 4.7 5.4 1165

Addresses 28.9 19.2 12.6 8.8 8.5 6.4 5.6 5.0 5.0 342

n! 25.3 16.0 12.0 10.0 8.5 8.8 6.8 7.1 5.5 900

Deathrate 27.0 18.6 15.7 9.4 6.7 6.5 7.2 4.8 4.1 418

Average 30.6 18.5 12.4 9.4 8.0 6.4 5.1 4.9 4.7 1011

Probable 
Error

± 
0.8

± 
0.4

± 
0.4

± 
0.3

± 
0.3

± 
0.2

± 
0.2

± 
0.2

± 
0.3
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This thesis is organized as follows: in part 1 the theoretical  and 

mathematical aspects of the law describing the behavior of the 

first significant digits is taken into account, in part 2 some 

applications of the law, commonly denominated Benford’s Law, to 

forensic accounting are introduced, with a focus on Digital 

Analysis and on a model, the Distortion Factor Model, both 

commonly used tools for the detection of frauds by the tax-

collection agencies of many advanced countries.  In part 3, a brief 

example of how Benford’s Law has been applied on 

macroeconomic data of the European Union countries is 

presented.  The paper concludes with a summary. 
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Part 1 - EXPECTED DIGIT FREQUENCIES
The next part of Benford’s research was deriving the expected 

frequencies of the digits in the lists.  He noticed that the first 

significant digits adhered to the following logarithm laws 

tremendously well.

Where D1 represents the first digit, D2 the second digit, and D1D2 

the first two digits of a number; Prob() indicates the probability of 

obersving the event in the parentheses. (1.1) is the formula for 

first digit proportions, (1.2) the formula for second digit 

proportions; the formula for first two digits proportion is shown in 

(1.3) and the probability of the second digit being d2 given that the 

first digit is d1 in (1.4).  Logarithms are assumed to be base 10 

wherever something different is not specified.
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For example, according to this formulae the probability of having 4 

as the first digit is:!

And the expected frequency of a number starting with a 3 and a 4 

is:

The expected digit frequencies are shown in the table below:

Position in numberPosition in numberPosition in numberPosition in number

Digit 1st 2nd 3rd 4th

0 0,11968 0,10178 0,10018

1 0,30103 0,11389 0,10138 0,10014

2 0,17609 0,10882 0,10097 0,10010

3 0,12494 0,10433 0,10057 0,10006

4 0,09691 0,10031 0,10018 0,10002

5 0,07918 0,09668 0,09979 0,09998

6 0,06695 0,09337 0,09940 0,09994

7 0,05799 0,09035 0,09902 0,09990

8 0,05115 0,08757 0,09864 0,09986

9 0,04576 0,08500 0,09827 0,99820

The general form of the law is:
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Where the mantissa of a positive real number x is the unique 

number r in [1/10,1) with

x = r × 10n for some integer n; so the mantissae of 628 and 

0,00000628 would be equal.

Letting D1, D2... Denote the base10 significant digit functions 

D1(0.628) = 6, D2(0.628)=2, the general significant digit law  takes 

the following form:

With the unpredicted corollary that the significant digits are 

dependent from each other.

Graphically, the distribution of the First Digit is:

0"

0,05"

0,1"

0,15"

0,2"

0,25"

0,3"

0,35"

1" 2" 3" 4" 5" 6" 7" 8" 9"

First&Digit&Distribu+on&

              vc7

(1.6)



Whereas the First-two Digits distribution is:

Instead of considering the mantissae, in this paper, the analysis 

will use the scientific notation of numbers.  Whereas mantissae 

are commonly used to investigate on more complex distributions 

and not just with the simple one made up by the first significant 

digit.  

To get a formal definition of the first digit of a number, it is needed 

to resort to scienfic notation, very much in use in the fields of 

physics, chemistry, astronomy and wherever very big or very small 

numbers occur quite often. A number is in scientific notation when 

it is written as a number between 1 and 10 times a power of 10. 

Scientific notation (11235) = 1.1235 x 104
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The integer part of that number is called significand, in this case 

it’s a 1.  Every positive number can be converted without much 

difficulty  to scientific notation, and most calculators and 

spreadsheets have functions that make this passage very easy. 

First digit (x) = Abs (significand (a))    

Where: x = a · 10k and 0 ≤ a < 10 , k integer

The definition can be adapted simply so that it defines the first two 

digits.  The resulting statement will be that the first digits are going 

to be the 9 integers from 1 to 9, while the first-two digits are the 90 

numbers 10, 11, 12,..., 99.

GEOMETRIC SEQUENCES AND A LITTLE FIBONACCI

In his article Benford noted how the best fits to the expected 

pattern were digits that could be associated with a geometric 

progression.  Records in a dataset made up of natural numbers 

form a geometric sequence, especially when numbers derive from 

“natural events or events of which man considers himself the 

originator”.

The usual mathematical representation for a geometric sequence 

is:

Where a is the first term, r is the common ratio and n represents 

the nth term.
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It can be shown (and it will be in the next sections) how  if the 

difference between the log of the upper bound and the log of the 

lower bound is an integer the set is conform to Benfors’s Law.  A 

set of records that follows Benford’s Law is called Benford’s Set.  

In the early 1970s Wlodarski (1971), soon followed by Sentence 

(1973) and Brady (1978), showed how  the familiar Fibonacci 

sequence follows perfectly the first-digit law. 

A Fibonacci series is, by definition, a sequence where, after the 

first two numbers 0 and 1, every following integer is the sum of the 

previous two. The sequence Fn of Fibonacci numbers is defined 

by the recurrence relation: Fn = Fn-1 + Fn-2 , with F0 = 0 and F1 = 1 

as starting points.

Mathematically, the Fibonacci sequence is a geometrical 

progression where the common ratio tends quickly to the so called 

Golden Ratio, equivalent to 1.6180.

Using an Excel spreadsheet, with the first 1020 numbers of 

Fibonacci we obtain an extremely good fit. 
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The fit will tend to perfection as long as we add numbers to the 

sequence. 

It could be considered interesting to note how a result obtainable 

after a few  passages in Miscrosoft Excel today could be regarded 

as worth of publication just over thirty years ago.
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AN INTUITIVE EXPLANATION

A first intuitive explation for the ‘preference’ the world seems to 

have for numbers with low  first digits can be given simply 

considering the net assets of a mutual fund. Suppose the assets 

are 100 million and grow at a steady yearly rate of 10%. 

The first digit one persists until the cumulative growth has reached 

one hundred percent, this would take 7.3 years compunding. 

Once at 200 millions reaching 300 millions would take much less, 

only 4.3 years. From 900 millions to go back to a number with first 

digit one would require the fund to grow  only 11.1%, which would 

be achieve in a little more than one year. So the dataset 

composed by the net assets of the mutual funds over time would 

be mostly made of numbers with first digits recurring more often.

Time Assets
0 € 100,00
1 € 110,00
2 € 121,00
3 € 133,10
4 € 146,41
5 € 161,05
6 € 177,16
7 € 194,87
8 € 214,36
9 € 235,79

10 € 259,37
11 € 285,31
12 € 313,84
13 € 345,23
14 € 379,75
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WHEN DATA CONFORM TO BENFORD’S LAW

Not all data sets follow Benford’s Law.  And Benford himself did 

not give any suggestion on which lists of numbers follow  the 

expected frequencies and which do not.  Because of the link 

between geometric sequences and the law, the data should be 

approximately a geometric progression.  Experience has not 

shown many near-perfect geometric sequences. So those data 

more likely to be compliant to Benford’s distribution will be those:

I. Without built-in minimum or maximum values. Except if the 

lowest possible record is zero. 

II. Where the records should describe the sizes of similar 

phenomena. Such as cities’ population, market value of listed 

stocks or the flow rates of rivers.

III. Where the records need not to be assigned numbers.  Like 

telephone numbers, car license plate numbers or flight 

numbers.

IV. That have more small numbers than larger ones, implying that 

the data should not be clustered around a mean value.  This 

means the larger the (bounded) variance the better the fit.
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SCALE INVARIANCE
A property usually associated to Benford’s Law is scale invariance.

If the first digits obey to a fixed distribution law  this fact should be 

independent of the system of unit chosen, since nature does not prefer 

either the metric system or the British system, the dollars or the euros.  

So if the areas of the world’s nations or the lengths of rivers followed a  

law, nothing should change if those numbers are expressed in square 

miles or square kilometers. Then one would define the law  as scale 

invariant under multiplication by a non-zero constant.

A definition of scale invariance is that: A probability measure P on R⁺ is 

scale invariant if and only if

Roger S. Pinkham, in 1961, in the second part of his paper ‘On the 

distribution of First Significant Digits’ suggested the principle that 

Benford’s Law as a matter of fact implies scale invariance.  If scale 

invariance means that if a vast amount of measurements N are made, 

and if k is any constant, except zero, then the first digits of the numbers 

kN will be distributed in the same fashion as those of N.  Pinkham’s 

idea was that this would have also hold true for logN and logkN.  Since 

logkN = logk + logN. If one lets b = logk, this signifies that the first digits 

of b + logN are distributed in the same way as the first digit of N, and 

this requires a uniform distribution for logN.  Specifically, a uniform 

distribution for logN(mod1).
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To define this more accurately, let be F(x) a cumulative distribution 

function, continuous and differentiable, such that prob(x≤a) = F(a). F is 

an approximation which can describe any sample of observations at 

hand. 

Let

So (8.1) becomes:

If we define

The statement in (1.8.3) can be rewritten:

Benford’s law is now simply:

H(x) = x! so! H(x) - x = 0! for x= log2, log3, ..., log9;!

Where
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(1.8.3)

(1.8.2)

denotes the set of all members of R+ whose standard 

decimal expansion begins with an integert ≤ p (p=1, ..., 9)

(1.8.1)

(1.8.6)



Since we know that the cumulative distribution function for Benford’s

Law is 

A sufficient condition for the exactness of Benford’s Law is simply:

H(x) = x for all x ∈ [0,1)

Denoting the derivatives of the functions F, G and H, by f, g, h (these 

are the densities of their respective distribution functions). Thus, for all 

x ∈ [0,1),

From (8.4) we have:

And the sufficient condition (8.7) becomes

   for all x ∈ [0,1)! ! ! ! ! ! !

In terms of random variables, if F is the cumulative distribution function 

for variable x, then G is the cumulative for variable logx and H for the 

variable logx(mod1).

Then it is necessary to find conditions on a variable x which assure that 

logx(mod1) is uniformly distributed on [0,1]. Because the uniform 

distribution is the only kind of distribution that remains unchanged 

when a constant is added.
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Pinkham’s contribution was to apply Fourier Transform theory and 

Abel’s theorem to obtain an explicit bound on |H(x) - x| . So that it’s 

easier to recognize distributions F whose corresponding H has property 

(8.6) and are consequently considerable as a Benford Set.

The explicit formulas describing this bound are:

The sufficient conditions for the validity of these formulae are that g be 

of bounded variation (var(g) <∞)

Since:

Summing the series in (8.10) gives: 

!
where g is the density of function G

It is clear that the quality of the approximation of the set is generally 

very high and does not depend on the fine structure of F or G. And it is 

where
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also evident that as the variance of G increases the approximation 

improves markedly. The latter, as explained in the last paragraph, is 

one of the conditions that one looks for when is looking towards 

understanding if a given set is Benford or not.  

When looking for conditions on a variable x which assures that 

logx(mod1) is uniformly distributed on [0,1] one can also include 

‘natural’ distributions that fail to exist here and there, and only request 

that h(x) = 1 for a finite number of points.

Suppose F is such that for some fixed j ≥ 0, G turns out to be piecewise 

linear with slope s(n) on each interval ( j + n, j + n + 1) and such that 

∑s(n) = 1.  Then G’ = g is a step-function such that (1.8.8) implies 

(1.8.9).  To illustrate it, in the figure below one can graphically see G, 

even if the horizontal axis is labelled as if it was F, it would actually be 

G just by relabelling the abscissae with the logarithms of the number 

displayed.  Those numbers comes from one of the sets Benford’s used 

in his original paper, specifically those taken from American Men of 

Science, 1934, a biographical reference on leading scientists in the 

United States and Canada published as a series of books.
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The remarkable feature of this figure, and of any other distribution that 

roughly complies with Benford’s Law, inheres in its general shape 

which astoundingly resembles that of a probability density function of a 

uniform distribution.

The immediate application of scale invariance in economics is that 

Benford’s Sets will keep following this distribution even if the currency 

of data change.

A question that may easily come up in the reader could be: why does 

the natural world presents so many data sets that more or less conform 

to Benford’s Law and are therefore scale-invariant?

To answer this question, let’s go a little bit back and restate that 

changing the measuring unit is equivalent to multiplying by a factor k.  

Hence, the original values N will then become N’=kN and the 

corresponding distribution should be identical to the starting one, 

expect from a constant scaling factor A(k) that may depend upon k but 

not on N.  One can state invariance as:
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The general solution to this equation is this is the following power 

distribution law:

In an example by Pietronero 

et al (2001) data from the 

m a g n i t u d e o f 

e a r t h q u a k e s i n 

California are taken 

i n t o accoun t , t he 

Richter scale has an 

alpha of circa 2.  It’s 

worth saying that the 

larger the alpha the 

more lower-digits one 

obtains.  If alpha is 

one perfect scale invariance occurs. 

The case of alpha = 1 corresponds to a uniform distribution in 

logarithmic space.  Benford Sets have an alpha of circa one.  The 

precedent question then becomes why nature presents so many data 

sets with alpha ≃1?

One of the mostly used theorems in statistical probability is the Central 

Limit Theorem which states that let x1, ..., xn be a set of random 

variables with mean ui and bounded variance σ i then if S=S(x1, ..., xn) 

for n → ∞, S is distributed Normally.  If we consider a random variable 
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Datas are taken from the combination of 
first digits from Zurich, Vienna and 

Madrid Stock Exchanges and 



N which changes over time t according to a Brownian Dynamics so 

that:

! ! !

where e is a random variable

The probability distribution P(N,t) to have a value N after t steps is a 

Gaussian with variance σ ∼ t(1/2) which diverges in an infinite time limit.  

This is very far from scale invariance. Clearly, many systems do not 

follow  such a dynamical description.  Fluctuations are not linked to 

some external dynamic parameter, in most cases fluctuations are 

relative to the value of the random variable N, in the following way:

! !
where e is stochastic, positive and definite.

Undoubtedly this is very different from the Browninan Motion. But with 

a simple trasformation e = loge, which means taking the variable in 

logarithmic space.  One can see how there’s a relation betwen the two.

This means that  for t→ ∞ the distribution P(logN) approaches a 

uniform distribution and by putting it back to linear space we have
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With C the normalization factor. This gives P(N) followsN-1 as the 

distribution of variables values N. Accordingly the distribution of first 

digits n will follow an ideal Benford law  with alpha=1.  What we recover 

is a Brownian dynamics in a logarithmic space; i.e. , a random 

multiplicative process corresponds to a random additive process in 

logarithmic space. 

In conclusion, one can finally answer the question previously asked.  

Benford’s Law shows how  so many real-life phenomena are nothing 

more than random walks in log-space, or random multiplicative 

processes, whereas Benford’s pushed himself to write to claim that 

“claiming that mere Man counts arithmetically, 1,2,3,4…, while Nature 

counts e0, ex, e2x, e3x, and so on.”  I  won’t force myself to consider as 

true such a vigorous statement.  Although, I will consider to make my 

own the assertion that the natural state of affairs in the world is non-

linear, that contributes to explain why Benford’s Law is present in such 

a wide range of fields and in such a large amount of observable data.
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BASE INVARIANCE

Another interesting property of Benford’s Law is base invariance.  

This means that if this significant law exists then it should be valid 

when written in bases different from 10, which was the base this 

paper has been using so far. 

Let

Be the General significant digit law as in (1.6) for all k ∈ N, d1 ∈{1, 

2, ...,9} of which the First-Digit Law is just a special case, just like 

the other marginal significant digit laws.

An example:

This is just a generalization of the statement that the significant 

digits are dependent and not independent as one may expect. 

Which is the intuition behind Benford’s Law.

To demonstrate that (2) is the unique base invariant distribution 

we’ll take into consideration the set of positive numbers S with, 

base 10, first significant digit less than 5.  Using the decimal 

notation D1 as above and letting D1100 be the first significant digit 

base 100, one can see how:

S = { 1 ≤ D1 < 5} = {1 ≤ D1100 < 5} ∪ {10 ≤ D1100 < 50}
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Which states graphically, as a subset of [1, b), the same set S is:

(where a = log105 . Thus if P is base invariant the two measures 

should be the same:

P ( [ 1 , ba ) ) = P ( [ 1 , ba /2 ) ) + P ( [ b1/2 , b ( 1+a) /2 ) )

Which allows us to define P as base invariant if

Letting PL be the logarithmic probability defined in (1.6)  and P0 be 

the degenerate probability which assigns mass 1 to constant 1. It 

follows that:

Corollaries are that:

1.The logarithmic distriution (G) is the unique continuous base-

invariant distribution;

2.Scale invariance implies base invariance, though the opposite is 

not true.
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Thus, if there is a universal significant digit law and it is base 

invariant , then the constant 1 occurs with plausibly positive 

probability q, and otherwise the digits satisfy the logarithmic 

distribution law (1.6).
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CONFORMITY TESTS

Among the several mothods used to verify conformity of an 

observations’ set to Benford’s Law  the most used are those 

presented by Nigrini and Mittermaier (1997).

Let fi(T,N) be the observed relative frequency of a particular digit i 

in the context of conformity test T in a set of N records, and let 

ei(T) be the expected Benford probability as defined before.

First Digit Test (T=1): compares fi with ei for the first digit of 

numbers, i=1,..., 9.

Second Digit Test (T=2): compares fi with ei for the second digit 

of numbers, i=0, 1,...,9.

First-two Digits Test (T=3): compares fi with ei for the first digit of 

numbers, i=i1i2; i1i2=10,..., 99. 

While the first two are mostly initial tests of reasonableness for a 

data set, the last one is applied intensively to select audit 

samples, as it will be described in the next sections.

Those tests can be utilized with individual statistics or with a 

collective statistic, one where all the relevant frequency deviations 

are joined in a single statistic.

A collective statistic to measure conformity to Benford’s Law  that 

ignores the number of records N is the Mean Absolute Deviation. 
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Where n(T) is the number of feasible digits i in the context of 

conformity test T: n(1)=9, n(2)=10, n(3)=90.

The peculiarity of the MAD is that it doesn’t follow  any known 

distribution. Drake and Nigrini (2000) defined some critical values 

which can be used to conclude about the testing process.

MAD Nonconformity

T = 1 > 0.012

T = 2 > 0.016

T = 3 > 0.0018

The MAD measures the accuracy in the same units of datas, so in 

our case those would be the proportions.  This makes it pretty 

straight-forward to understand. 

The MAD gives the average deviation between the Benford line 

and the heights of the bars. The higher it is, the larger the 

difference between actual and expected frequencies. Since it does 

not take into account the size of the data set can be used to 

compare the ‘Benfordness’ of two sets.

A more common statistical tool which can be applied is the Chi-

Square statistic, given by
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Where the null hypothesis corresponds to Benford’s Law 

conformity.

Also individual statistics can sometimes prove useful. A Z-statistic 

consents to test whether or not the deviation of a particular 

feasible digit i from the expected Benford probability is significant. 

The Z-statistic is
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The null hypothesis is conformity of digit with the law. In operating 

this statistic one may compute n(T) statistics, one for each digit i. 

The frequencies shown by the thin lines above and below  the 

Benford’s Law line of the above graph are the upper and lower 

bounds for a significant (p < 0.01) difference as measured by the 

z-statistic.

              vc29



ALL DISTRIBUTIONS LEAD TO BENFORD
Another intriguing quality of Benford’s distribution is that if 

nonconforming data sets are multiplied between each other the 

resulting new  data set will be more Benford than the previous two. 

If this process is done more than five times one obtains almost 

perfect conformity. In sum, numbers with any continuous 

distribution multiplied between each other will converge to the 

First-Digit Law.

The general rule seems to be that Benford’s Law is similar to the 

Central Limit Theorem for products. This is particularly useful in 

accounting as many datas, take a company’s payments or 

inventory data both obtained by multiplying the cost by the 

quantity. As a matter of fact, it follows that one should expect 

numbers resulting of successive multiplications, even if coming 

from uniform distributions, to adhere to Benford’s Law.
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Part 2 - ACCOUNTING APPLICATIONS

In 1972 Hal Varian, an economist, suggested that Benford’s Law 

could be used as a test of honesty and ‘naturalness’ of purportedly 

random scientific data in a social science context.  He affirmed 

that conformity to the law  of the first significant digits does not 

automatically mean authenticity, but nonconformity should raise 

some skepticism.  Unfortunately, his suggestion was not picked up 

before 1988 by Carslaw, who found that earnings numbers from 

New  Zealand firms did not conform to the expected Benford 

distribution.

In his analysis Carslaw (1988) took into account psychological 

studies conducted by Gabor and Granger in 1966, that 

demonstrated the existence of key numbers that serves as 

reference points.  The idea is that the human mind has a tendency 

to round up, or down, a number towards the closest reference 

point when assessing the magnitude of a number.  For istance, 

when one observes a number like 7024 or 6986, a number, a 

factor of ten precisely, will be used as a yardstick in its perception 

and judgement, for this reason both numbers will presumably be 

reported as 7000.  This is well-known in marketing and it’s the 

explanation of the .99 € pricing phenomena.

If this is put into an accounting perspective, reference points will 

be used either by readers and analysts of financial statements or 

by the preparers of this information within a business organization.  

Since companies are (very often) results driven there will be 

pressures on management to reach an expected goal and to 
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ensure that the first digit of a numeric goal is at least as large as 

the users’ expectations.  A smaller amount of attention will be put 

on meeting the second digit, even less on the third, and so on.

Because of this practice, figures reported in financial statements 

can be enhanced up to a significant degree especially in the mind 

of the user by just making sure that income numbers top those 

reference points, even artificially.

If this Phenomenon exists, there will be an atypical distribution of 

the second-from-the-left digits of income numbers by producing an 

abnormally low frequency of high digits and a compensating 

unusual high occurrence of lower digits.  In this way the number 

will just exceed the reference point.

Carslaw  (1988) reports that the frequency of occurrance of certain 

second digits, especially zero, contained in earnings numbers of 

New Zealand firms departs significantly from expectations 

(Benford’s Law).  Specifically, there’s a higher than expected 

frequency of zeros and a less than expected frequency of nines.  

This provides evidence of goal oriented behavior when preparing 

end-of-the-year budgets.

The hypothesis of the existence of number targeting would signify 

that a somewhat wide deviation from the expected random 

distribution.  Because in New  Zealand the reported income may 

be either ordinary or net income, in contrast with North American 

procedures, an examination was performed on the one which was 

emphasized the most by the company in its report to 

shareholders.

In Table 2 a strong evidence emerges in favor of the numbers with 

lower second digits, while there’s also a consistent lack of nines.  
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Thus, one cannot accept the alternative hypothesis of random 

distribution of the second digits.

By using a Chi-Squared test and individual Z-statistics he shows 

how most reference points are numbers just over multiples of 10k 

(where k > 0) and no favor whatsoever was found for the number 

just below that threshold.

Frequency of Second Digits for Emphasized Income NumbersFrequency of Second Digits for Emphasized Income NumbersFrequency of Second Digits for Emphasized Income NumbersFrequency of Second Digits for Emphasized Income NumbersFrequency of Second Digits for Emphasized Income NumbersFrequency of Second Digits for Emphasized Income Numbers

Ordinary Income 
(n=319)

Ordinary Income 
(n=319)

Ordinary Income 
(n=319)

Net Income 
(n=252)

Net Income 
(n=252)

Digit Expecte
d 

Distributi
on

Percent

Observ
ed 

Deviatio
n 

Percent

Z-
statistic

Observe
d 

Deviatio
n

Percent

Z-
statistic

0 12.0 +8.7 +4.78*** +5.1 +2.49***

1 11.4 -1.7 -0.95 +1.3 +0.65

2 10.9 -3.1 -1.78* +2.2 +1.12

3 10.4 +0.3 +0.18 +1.9 +0.99

4 10.0 -1.5 -0.89 -1.3 -0.69

5 9.7 -1.9 -1.15 -3.0 -1.61

6 9.3 +0.1 +0.06 -0.2 -0.11

7 9.0 +1.7 +1.06 -2.6 -1.44

8 8.8 +0.6 +0.37 -0.5 -0.28

9 8.5 -3.2 -2.05** -2.9 -1.65*

!2 = 30.66*** 15.02

* Significant at the .10 level

** Significant at the .05 level

*** Significant at the .01 level
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The conclusion that numbers in excess of factors of 10k are 

especially common is then also tested by taking into account if the 

ownership of firms mattered in determining the amount of the 

deviation from the expected Benford’s frequencies.  In other 

words, corporations were also divided between those controlled 

by management and those controlled by owners.  The owners 

were also divided between domestic and foreign.  The findings are 

in Table 3.

The results are that domestic owner controlled companies are the 

ones were the abnormality of data is more pronounced and their 

income figures often are just in surplus over the key reference 

points.  Manager controlled firms exhibit the same behavior, but at 

a lesser extent.  Contrastingly, the distribution of second digits for 

foreign owned companies is a very good fit to the random 

distribution.

Thomas (1989) is another researcher who did find a similar 

pattern in American firms: an excess of zeroes as second digits 

and a lack of nines in U.S. Net income data.  He also found how 

the opposite effect is true for companies reporting losses on their 

balance sheets and that Earnings Per Share (EPS) were too often 

multiples of 5 cents and had ending digit 9 less often than 

expected.  Nigrini (2010) demonstrated how this has revealed true 

even for companies subject to more or less recent financial 

scandals: AIG (excess of nines to cover losses) and  Enron 

(excess of ones to exhibit better results).
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Frequency of Second Digits for Income Numbers for Owner and 
Manager Controlled Firms

Frequency of Second Digits for Income Numbers for Owner and 
Manager Controlled Firms

Frequency of Second Digits for Income Numbers for Owner and 
Manager Controlled Firms

Frequency of Second Digits for Income Numbers for Owner and 
Manager Controlled Firms

Frequency of Second Digits for Income Numbers for Owner and 
Manager Controlled Firms

Frequency of Second Digits for Income Numbers for Owner and 
Manager Controlled Firms

Frequency of Second Digits for Income Numbers for Owner and 
Manager Controlled Firms

Frequency of Second Digits for Income Numbers for Owner and 
Manager Controlled Firms

Domestic Owner 
(n=244)

Domestic Owner 
(n=244)

Domestic Owner 
(n=244)

Foreign 
Owner 
(n=126)

Foreign 
Owner 
(n=126)

Manager 
Controlled 

Firms (n=434)

Manager 
Controlled 

Firms (n=434)

Digi
t

Expected 
Distributio

n
Percent

Observed 
Deviation 
Percent

Z-statistic Observed 
Deviation
Percent

Z-
statisti

c

Observed 
Deviation
Percent

Z-
statistic

0 12.0 +9.3 +4.47*** -0.5 -0.18 +4.1 +2.63**

1 11.4 -1.1 -0.54 -0.6 -0.22 +0.6 +0.39

2 10.9 +0.6 +0.30 -4.7 -1.72* -0.5 -0.33

3 10.4 -1.4 -0.71 +2.7 +1.01 +0.2 +0.14

4 10.0 -2.2 -1.15 -1.5 -0.57 -1.2 -0.83

5 9.7 -2.3 -1.22 +2.6 +1.00 -1.9 -1.34

6 9.3 +3.0 +1.61 -3.9 -1.53 +1.8 +1.30

7 9.0 +0.8 +0.44 +2.4 +0.96 -0.5 -0.37

8 8.8 -3.2 -1.93* +1.2 +0.48 +0.6 +0.44

9 8.5 -3.5 -1.79* +2.3 +0.94 -3.2 -2.39**

!2 = 29.77** 8.80 15.45

* Significant at the .10 level

** Significant at the .05 level

*** Significant at the .01 level
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U.S. STOCK INDEXES’ DIGITS

Research has also focused on looking into the patterns in the 

digits of carefully followed stock market indexes.  Eduardo Ley 

(1996), a former assistant to Varian, found how the series of one-

day returns on the two most important U.S. Stock indexes: the  

Dow  Jones Industrial Average (DJIA) and the Standard and Poor’s 

500 (S&P) reasonably agree with Benford’s Law.  He used datas 

going back from 1993 to January 1900, so the sample can be 

considered meaningful.

The test was conducted by using the daily returns.  Hence, by 

letting pt be the closing value of the stock index at time t, the day-

to-day yield is defined as:

Where dt is the number of trading days between t and t+1.  For 

istance between friday (=t) and monday (=t+1), dt will be equal to 

3.  Consequently, whenever there is a holiday rt  is the average 

rate of return. In 88.35% of the cases dt was either 1 or 3.

If a basis of prior ignorance is assumed, one could think the 

probability to be equally likely.  Instead, as it is shown in Table 4, 

the one-day returns of the two indexes agree approximately with 

Benford’s Law.
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Digit Benford’s 
Law

DJIA 
(1900-1993)

S&P 500 
(1926-1993)

1 30,10% 28,94% 29,17%

2 17,61% 16,78% 16,96%

3 12,49% 12,38% 13,42%

4 9,69% 9,99% 9,87%

5 7,92% 8,48% 7,76%

6 6,69% 7,23% 7,13%

7 5,80% 6,15% 5,60%

8 5,12% 5,32% 5,36%

9 4,58% 4,72% 4,73%

!2 = 71,98 43,46

n = 33804 24126

In this context the law of the first significant digits could be 

interpreted as affirming that small movements in the DJIA and in 

the S&P are more likely than large ones.  

Since the data information is very strong we can affirm that, in a 

long enough time frame, stock indexes’ daily returns are part of 

the “outlaw numbers without known relationship” as Frank Benford 

called Benford’s Sets.
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DIGITAL ANALYSIS AND FRAUD DETECTION

But it’s Mark J. Nigrini to be credited with the commencement of 

the era of the extensive use of Benford’s Law in accounting, with 

the goal to detect fraud, just a few years after Carslaw  and 

Thomas.  Nigrini used digital analysis to help identify tax evaders.  

Over the years, the use of analytical procedures and technology 

driven processes in the planning stage of an audit, commonly 

called Digital Analysis, has increased dramatically.  

In the United States, the SAS (Statements on Auditing Standards), 

a list of guidelines for external auditors in regards to the audit of 

non-public companies, mentions Digital Analysis more than once.

SAS 56 (Analytical Procedures) requires auditors to use analytical 

procedures in planning the nature, timing and extent of other 

auditing operations.  Digital Analysis is a reasonableness test of 

whether digit patterns of single numbers assembled to make a 

total conform to Benford’s Law.  One of the performed tests is the 

comparison of current year account balances with prior period 

account balances.  This comparison usually does not make much 

sense, especially when a company is experiencing rapid growth or 

has made a massive acquisition of a business.  A useful test is to 

compare the digit patterns of both years, indeed, those are 

expected to follow Benford’s Law.

SAS 82 called “Consideration of Fraud in a Financial Statement 

Audit” requires to make evaluations about the level of risk of 

material misstatement due to fraud.  Digital Analysis is a useful 
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tool for assessing the chance of fraud: by identifying the data that 

does not conform with expected frequencies the auditor could put 

more effort in the inspection of high risk areas. 

At the same time though, SAS 99 cautions that relying solely on 

analytical procedures, especially those on highly aggregated data, 

can provide only limited indications of manipulation.  If used 

correctly, Digital Analysis can lead to the identification of specific 

accounts where fraud might located.

In addition to the United States some European nations, notably 

Netherlands and Germany, have embraced Digital Analysis in the 

last 10 years.  Since January 1, 2002, German fiscal authorities 

are able to demand company data in machine readable form, in 

order to analyze it by means of mathemathical procedures, even 

before the on-site tax audit.  The important implication of putting in 

place a system like this one is that it cuts drastically the costs of 

the on-site investigation for companies as well as fiscal 

authorities.

This implication would make Digital Analysis extremely important 

in a country like Italy, where the tax gap (difference between the 

tax due and tax paid) is among the largest in the OECD group, a 

club of mostly rich countries, amounting to circa 20% of real GDP.  

Implementing analytical audit procedures to increase the 

effectiveness and efficiency of the tax audit should be a primary 

goal of tax-collecting agencies.
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DIGITAL ANALYSIS TOOLS
Some Digital Analysis tools were presented in the first chapter, 

such as testing of: first digits, second digits and first-two digits.  

But in Nigrini and Mittermaier (2000) some more instruments are 

introduced: number duplication, multiples test, and last two digits 

test.  Those screenings are also put to work in the paper and used 

on data provided by a NYSE listed oil company.  

The first-two digits test, or FTD, assumes a predominant role in 

most cases, since   often is the one test that releases more 

information when used on records extracted from inventories or 

invoices.  The number duplication examination is an extension of 

the FTD test that focuses on the actual numbers that caused the 

positive spikes that may have occurred.  To target audit attention 

on abnormal duplications, the frequencies of the actual numbers 

are tabulated and auditors should determine the reasons for the 

duplications.  Another test is that of checking for multiples, which 

scrutinizes the phenomenon of rounding by tabulating the 

proportions of numbers that are multiples of 10, 25, 100 and 1000.  

Users would want to use such a test when rounding could signal 

estimation, in cases where estimation is not acceptable.  The last-

two digits test, LTD, is more targeted than the rounded number 

test and is relevant when auditors suspect that number invention 

might be occurring.  Indeed, it reasonable to expect that in most 

cases that each of the LTD has an equal probability of occurring, 

hence their distribution should be very close to perfect uniformity.  

In a recent case, LTD testing was the tool used to discover a bar 

owner which was just making up the numbers on the receipt at the 

end of each working day.  The excess of 40s and 60s generated 
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suspicion that something was wrong at Internal Revenue Service, 

which eventually led to a fine of a considerable amount.

In Nigrini (1992) a scheme to show a mathematical link between 

fraud and Digital Analysis is suggested: the Distortion Factor 

Model.  This is a model that uses digit patterns to signal if data 

appears to be overstated, or understated, and quantifies the 

magnitude of the distortion.  Estimating the level of manipulation, 

or distortion, requires the confrontation between the mean of the 

actual numbers and the mean of the numbers in a Benford Set. 

Since relatively small, or relatively large numbers can make up a 

Benford Set there is no unique mean.  A solution to this first 

problem may be to move the decimal point of each actual number 

so that every record is contained in the range [10, 100).  For 

instance, number 12345 is collapsed to 12,345 whereas 5,4321 is 

expanded in 54,321.

Recalling from the previous chapter, one should remember how 

the key trait of Benford’s Law is that when data are ordered from 

the smallest to the largest they resemble a geometric sequence.  

A geometric sequence written as ar(n-1) where the ratio r is the (n

+1)th element divided by the nth element.  When r is a function of 

the range [10, 100) and of N (number of observations), it is 

computed as follows:

Where ub and lb represent the upper and lower bound of the 

geometric sequence.
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For the sequence of collapsed values, a is fixed at 10 and log(ub) 

- log (lb) is fixed at 1.  The average value of the series is 

dependent on N (r is a function of N) but it doesn’t make much 

difference when N is greater than 500.  Since the expected sum of 

the elements of any geometric series is ,

The Expected Mean (EM) of elements spanning the [10, 100) 

interval is derived by substituting a=10, r = 101/N from equation (5) 

and then dividing by N,

 
The EM of any large (>500) Benford Set is approximately 39,08.  If 

every digital combination had equal probability to be found the 

mean would be 55.  The Distortion Factor Model is given by:

Multiplied by a hundred, it measures the percentage deviation of 

the AM from the EM.  An overabundance of lower first digits 

signals how smaller numbers occurred more often compared to 

the Benford Set and the DF would be negative.

Hence, the steps to use the DIstortion Factor Model are:

1. Transform reported numbers to numbers in the range [10, 100); 

this would imply only to collapse larger number since it is often 
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better to eliminate the smaller figures which could interfere 

causing spikes due to immaterial amounts.

2. Compute the Actual Mean.

3. Compute the Expected Mean of a Benford Set.

4. Compute the DIstortion Factor.

The Distortion Factor Model is used on tax data to analyze fiscal 

evasion.

Cuccia (1994) notes how  in the majority of research concerning 

compliance has found that the reporting decision, whether a 

taxpayer declares more or less than due to the authorities, is 

made at the time of filing.  Nigrini (1992) suggests the following 

dichotomy of tax evasion:

I) Planned evasion (PE): the taxpayer prepares all year his steps 

and hides its traces to audit.

II) Unplanned Evasion (UPE): Evasion occures at the moment of 

preparing the return statement.  Blatant adjustments (downward 

for income items, upward for deductible items) thought to be 

safe prior to an audit but detectable upon an audit.  It is a 

behavioral act where the taxpayer fabricates a number in the tax 

return.  The act is influenced by specific numbers acting as 

psychological barriers as specified by Carslaw.

The essential difference is in timing and skills the taxpayer puts in 

place.  The core assumption at the base of the UPE is that 

taxpayers have a small amount of knowledge of the “average” 

return filed by people in homogeneous economic positions, and 

that the true number act as a reference point upon which to base 

the reported number.  Consequently it is reasonable to think that 
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the reported number is in the same [10k, 10k+1) range as the true 

value.

Thus, the DF could prove very useful in detecting unplanned fiscal 

evasion, shortly after the returns of the year are filed.  Since 

evasion estimates are usually computable only after some years, 

the DF model formulates inexpensive extimates of the UPE.  For 

obvious reasons, it wouldn’t make much sense to use it to 

investigate on Planned Evasion, because even if data were 

checked through an on-site audit all the relevant papers would 

look clean.
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Part 3 - BENFORD TOURS THE EU

!When one begins to work with Benford’s Law  to detect 

accounting fraud he needs to look for support for the idea that 

accounting data should, habitually follow Benford’s Law.  One 

should expect conformity to Benford to be constant over time 

because of the scale invariance theorem.  If the numbers increase 

by x% every year as a result of economic growth and by y% 

because of inflation, then a Benford Set will continue to be a 

Benford Set even with the numbers altering on a year-to-year 

basis.

!A quite interesting paper published earlier this year by Gernot 

Brahler and a group of German researchers investigates through 

a Benford test on the quality of macroeconomic data relevant to 

the deficit criteria reported to Eurostat by the EU member states.  

Since the data are collected by national agencies and then 

reported to the European Statistic Agency (Eurostat), which until 

2010 was not given the authority to inspect them more thoroughly 

and ensure their quality.  Eurostat had no right to audit those 

informations the way regulators and private companies audit the 

financial statements of companies.  This led to an incentive for an 

individual country to manipulate its economic statistics.  Especially 

because the same data were the ones used to comply with the 

Stability and Growth Pact criteria of the European Union.  On top 

of of that, countries could have been willing influence those 

numbers in order to obtain more favorable conditions on the 

capital markets.
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!The non-Benfordness of a set of observations does not imply 

manipulation, as said earlier, but significant non-conformity could 

mean poor data quality.  A deviation from the law is not a 

conclusive proof as well as conformity doesn’t prove cleanliness of 

the statistics.  The concept is, once again, that non-conformity is a 

signal and could direct auditors to closer examination and 

additional testing. The use of Benford testing on macroeconomic 

indicators was put forward by Nye and Moul (2007), who were 

able to show how growth rates of GDP leads to sets agreeing with 

Benford’s Law.

!Brahler’s approach was not of identifying datasets which disagree 

remarkably from Benford’s Law, instead they ranked the EU 

member states as specified by the deviation of their data from the 

law.  This ranking could be used to indicate the probability of 

manipulation in the countries’ data.  From the standing of each 

sovereign it is possible to determine the order and the extent of 

further auditing procedures.

!The dataset used consisted of:

1. Government statistics: government deficits, surplus, debt and 

associated data.

2. Government finance statistics: government revenue, 

expenditure and main aggregates.

3. National accounts: GDP and main components, at current 

prices.

4. Financial accounts: balance sheets, financial transactions, 

asset and liabilities consolidated.

!These categories are all related to public deficit, public debt and 

gross national product, thus, they are those use to compute the 
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coefficients for the Stability and Growth Pact.  The total is of 156 

positions per country per year, from 1999 (Introduction of the 

Euro) to 2009.  The total sample contains 39691 observations.

!To measure the conformity to Benford’s law  a chi-squared test on 

the first digit was conducted.  To make sure that the position in the 

ranking was not due to sample size, a Pearson correlation 

coefficient between sample size and chi-squared statistic was 

computed.  The value of the coefficient (0,049) is insignificant.  

Benford distribution was the null hypothesis of the test, thereby a 

rejection of the test suggests manipulation.  The null hypothesis is 

rejected at a 5% level of significance if the chi-squared statistic 

exceeds 15,5073.

!Besides the standard chi-squared test another measure of 

distance of actual records from expected ones was calculated: 

dividing chi-squared by sample size n gives back a measure 

independent of sample size.

!The results for each member state are shown in Table 5 below.  

Greece with a mean value of 17,74 leads every other nation for 

the magnitude of its deviation from the expected value.  Belgium 

and Austria follow  right after.  The ranking determined by chi-

squared and by chi-squared divided by n are significantly close.

!
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In Table 6 the distribution of the first digits for Greece is shown in 

detail.  The higher proportions of digits one and two when 

juxtaposed to those predicted by Benford is noticeable.  In 

massaged and adjusted data one could suppose a more uniform 

distribution, instead the pattern of the deviation is contingent on 

the specific way the data are misreported.  It was Nigrini (1996) 

who pointed out that due to psychological barriers manipulated 

data will have lower digital combinations than the true values.

Problems with Greek data have been well-known for a long time 

(European Commision reports on the issue appeared in 2004 and 

2010).  It is of public knowledge now  that the authorities 

repeatedly corrected debt figures at least for the three years going 

from 2005 to 2008.  In 2008 the deficit was revised from 5% of 

GDP to 7,7%.  In 2009 the planned deficit quotient of 3,7% was 

increased at first to 12,5% and then to 15,4%.  Therefore it can be 

stated with a large degree of certainty that the fiscal statistics 

provided to Eurostat from the Hellenic Republic were not of the 

finest quality.

Although, contrary to one’s expectations, the results do not seem 

to suggest that data reported by the so-called PIIGS, an acronym 

used to denominate the group of Eurozone countries sharing high 

debt and financial problems, are of lower than average quality.

Once again Benford’s Law reveals to be a good indicator of 

manipulation that can direct audit on reported data to make the 

examination more efficient and effective.

              vc49



              vc50

C
om

pa
ris

on
 o

f G
re

ek
 s

ta
tis

tic
s 

(1
99

9-
20

09
) w

ith
 B

en
fo

rd
’s 

La
w

C
om

pa
ris

on
 o

f G
re

ek
 s

ta
tis

tic
s 

(1
99

9-
20

09
) w

ith
 B

en
fo

rd
’s 

La
w

C
om

pa
ris

on
 o

f G
re

ek
 s

ta
tis

tic
s 

(1
99

9-
20

09
) w

ith
 B

en
fo

rd
’s 

La
w

C
om

pa
ris

on
 o

f G
re

ek
 s

ta
tis

tic
s 

(1
99

9-
20

09
) w

ith
 B

en
fo

rd
’s 

La
w

C
om

pa
ris

on
 o

f G
re

ek
 s

ta
tis

tic
s 

(1
99

9-
20

09
) w

ith
 B

en
fo

rd
’s 

La
w

C
om

pa
ris

on
 o

f G
re

ek
 s

ta
tis

tic
s 

(1
99

9-
20

09
) w

ith
 B

en
fo

rd
’s 

La
w

C
om

pa
ris

on
 o

f G
re

ek
 s

ta
tis

tic
s 

(1
99

9-
20

09
) w

ith
 B

en
fo

rd
’s 

La
w

C
om

pa
ris

on
 o

f G
re

ek
 s

ta
tis

tic
s 

(1
99

9-
20

09
) w

ith
 B

en
fo

rd
’s 

La
w

C
om

pa
ris

on
 o

f G
re

ek
 s

ta
tis

tic
s 

(1
99

9-
20

09
) w

ith
 B

en
fo

rd
’s 

La
w

C
om

pa
ris

on
 o

f G
re

ek
 s

ta
tis

tic
s 

(1
99

9-
20

09
) w

ith
 B

en
fo

rd
’s 

La
w

C
om

pa
ris

on
 o

f G
re

ek
 s

ta
tis

tic
s 

(1
99

9-
20

09
) w

ith
 B

en
fo

rd
’s 

La
w

C
om

pa
ris

on
 o

f G
re

ek
 s

ta
tis

tic
s 

(1
99

9-
20

09
) w

ith
 B

en
fo

rd
’s 

La
w

C
om

pa
ris

on
 o

f G
re

ek
 s

ta
tis

tic
s 

(1
99

9-
20

09
) w

ith
 B

en
fo

rd
’s 

La
w

D
ig

it
Be

nf
or

d
19

99
20

00
20

01
20

02
20

03
20

04
20

05
20

06
20

07
20

08
20

09

1
0.

30
0.

37
0.

40
**

0.
42

**
0.

36
0.

30
0.

33
0.

39
**

0.
31

0.
34

0.
26

0.
29

2
0.

18
0.

22
0.

27
**

0.
22

0.
18

0.
23

0.
23

0.
16

0.
23

0.
26

**
0.

34
**

0.
26

**

3
0.

12
0.

06
**

0.
08

0.
11

0.
10

0.
11

0.
12

0.
16

0.
13

0.
12

0.
10

0.
20

**

4
0.

10
0.

09
0.

03
**

0.
05

**
0.

07
0.

08
0.

10
0.

05
0.

08
0.

08
0.

11
0.

10

5
0.

08
0.

09
0.

10
0.

04
0.

06
0.

04
0.

04
0.

06
0.

04
0.

04
0.

05
0.

02
**

6
0.

07
0.

06
0.

02
**

0.
05

0.
04

0.
06

0.
05

0.
05

0.
07

0.
08

0.
05

0.
04

7
0.

06
0.

04
0.

02
0.

04
0.

06
0.

04
0.

02
0.

01
**

0.
03

0.
04

0.
04

0.
05

8
0.

05
0.

03
0.

05
0.

04
0.

12
**

0.
06

0.
06

0.
04

0.
03

0.
03

0.
04

0.
03

9
0.

05
0.

05
0.

03
0.

05
0.

03
0.

08
**

0.
05

0.
07

0.
09

**
0.

01
0.

01
0.

00
**

!
2

7.
70

26
.3

3*
*

16
.5

5*
*

20
.5

0*
*

12
.3

7
9.

45
16

.3
6*

*
14

.5
3

15
.8

5*
*

27
.8

8
27

.6
1*

*

!
2 
/n

0.
08

0.
20

0.
13

0.
14

0.
09

0.
07

0.
12

0.
10

0.
11

0.
20

0.
20

Si
ze

 (n
)

10
1

13
2

13
2

14
2

14
2

14
1

14
0

14
1

14
0

14
0

14
0

Table 6



Part 4 - SUMMARY AND FUTURE RESEARCH

The first chapter reviewed the mathematics underlying Benford’s 

Law.  This included the logarithmic basis of the law, the scale 

invariance theorem dealing with multiplication by a constant, base 

invariance dealing with the validity of the law  in counting systems 

different other than the decimal one, and mathematical 

manipulation that gave back a data set conforming to Benford’s 

Law.  The link with the Fibonacci sequence was also reviewed.  

Some of the primary tests associated with Benford’s Law  were 

introduced such as the first digit test and the first-two digits test, 

which are used for every analysis.  The following chapter reviewed 

some of the applications of Benford’s Law to economic data.  

Those ranged from stock market rate of return, to income 

numbers paid by public stocklisted companies in New  Zealand.  

Next, Digital Analysis was introduced and various methods 

showing the relation of this technique with Benford’s Law  were 

reviewed, notably the Distortion Factor Model created by Mark 

Nigrini. Because of previous research it is implied that since many 

accounting data follow Benford’s Law, manipulated data deviate 

from it.  Examining those deviations with professional judgement  

can lead to suprising improvements in the quality of audits.  The 

paper ends with a review  of a study by German researchers who 

scritinized throughly macroeconomic data of European Union’s 

nations, this pointed out how  statistics provided by Greek 

authorities should have been audited long before 2009, when they 

were reported publicly to have been manipulated for years.
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In sum, applications of Benford’s Law  to accounting are far more 

than the one proposed and new  ones are emerging at a 

remarkably fast pace.  Benford’s analysis, when used correctly, is 

a useful tool for identifying suspect accounts for further analysis.  

This could improve substantially the efficiency and effectiveness 

of the planning stage of an audit,  when targets for deep controls 

are chosen, reducing the loss of time and budget for tax agencies.

Research in the field of accounting applications of Benford’s Law 

is ongoing at remarkably fast pace.  In the last ten years more 

than 500 papers were published, compared with only 200 since its 

discovery in 1938.  My suggestion for future studies in the area is 

comparing the results of a set of tax audits when the planning is 

executed through a procedure that takes Benford’s Law into 

account with the results of a number of tax audits executed on 

random targets.  An empirical work of this kind would strongly 

favor the expansion of Digital Analysis techniques.  Finally, a new 

paper that reviews all the applications of the law, from criminology 

to hydrology to finance, is much needed since the last one now 

belongs to more than fifteen years ago.
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