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CHAPTER	1	
	

1.1			INTRODUCTION	
	

Investing	in	financial	markets	is	a	diffused	activity	perpetrated	by	different	

entities.	 Example	 of	 investors	 are	 not	 only	 individuals	 willing	 to	 gain	 a	

return	 from	their	 saving	but	also	banks,	 investment	 funds	and	 insurance	

company	can	be	quoted	among	the	number	of	investors.	

Those	entities	are	all	naturally	 interested	 in	gaining	as	much	as	possible	

from	 their	 investment	 operations	 but	 at	 the	 same	 time	 they	 are	 also	

concerned	with	the	risks	they	have	to	face.	It	is	common	sense	to	consider	

investors	 as	 risk	 averse	 agents,	 that	 is	 to	 consider	 them	 as	 reluctant	 to	

allocate	their	wealth	on	assets	bearing	a	high	level	of	risk.	

A	 logical	 aim	 of	 an	 investor	 is	 as	 a	matter	 of	 fact	 the	 allocation	 of	 their	

wealth	 in	a	way	 that	maximize	 their	returns	while	also	not	 trespassing	a	

risk	 level	 limit.	 	 It	 is	 possible	 to	 mathematically	 replicate	 this	 investor	

behaviour	 through	 the	 theory	of	stochastic	control	and	 the	maximization	

of	expected	utility.	

The	 objects	 taken	 into	 consideration	 by	 investors	 for	 potential	 financial	

operations	 can	 generally	 be	 differentiated	 into	 two	 diverse	 categories:	

risky	 assets,	 which	 include	 all	 the	 assets	 whose	 future	 returns	 are	 not	

defined	 and	 are	 therefore	 uncertain,	 and	 risk-free	 assets,	 a	 group	

containing	those	assets	whose	returns	are	fixed	and	therefore	bear	no	risk.	

Examples	 of	 risky	 asses	 could	 be	 stock,	 real	 estate,	 commodities,	

derivatives	 and	 other	 several	 could	 come	 to	mind.	 Examples	 of	 risk-free	

assets	are	instead	bonds	and	t-bills.	Based	on	his	degree	of	risk	aversion,	

an	 investor	 could	 compose	 an	 investment	 portfolio	 as	 a	mixture	 of	 both	

risky	 and	 risk-free	 assets	 in	 order	 to	 match	 the	 level	 of	 risk	 he	 is	

comfortable	with.	 It	 is	 then	 natural	 to	 question	what	 allocation	 strategy	

should	be	followed	by	said	investor	during	the	formulation	of	his	portfolio	
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and	what	will	be	the	result	that	will	maximize	his	utility.	Such	must	have	

been	the	question	Robert	C.	Merton	posed	himself	while	writing	his	1969	

paper	 entitled	 “Lifetime	 portfolio	 selection	 under	 uncertainty:	 The	

continuous-time	 case”.	 In	 this	 paper	 the	Nobel	 laureate	 formalized	what	

has	been	later	regarded	as	the	“Merton’s	portfolio	problem”.	

The	 most	 basic	 version	 of	 the	 problem	 establishes	 a	 setting	 where	 an	

investor	 has	 the	 limited	 choice	 of	 allocating	 his	 wealth	 between	 a	 risky	

asset	 and	 a	 risk-free	 on.	 Given	 some	 additional	 assumptions,	 Merton	

concluded	 that	 the	 best	 allocation	 strategy	 is	 to	 maintain	 a	 constant	

fraction	of	the	wealth	in	the	risky	asset	and	consequentially	to	hold	fixed	

the	 part	 of	 wealth	 invested	 in	 risk-free	 assets.	 This	 setting	 can	 later	 be	

expanded	 and	 several	 risky	 assets	 can	 be	 incorporated	 in	 the	 model.	

However,	 this	 variation	doesn’t	 affect	 the	 first	 conclusion	 as	 the	 optimal	

allocation	 still	 accounts	 for	 a	 fixed	 proportion	 between	 the	 wealth	

allocated	between	assets	bearing	and	not	bearing	risk.	

If	considered	from	a	more	realistic	point	of	view,	the	conclusion	of	Merton	

when	 solving	 his	 portfolio	 problem	 is	 based	 on	 assumptions	 that	 don’t	

hold	with	 the	 same	strength	 in	 the	 real	world.	For	example,	 the	 solution	

assumes	that	the	dynamics	of	the	risky	assets	follow	a	geometric	Brownian	

motion	which	 implies	 normally	 distributed	 log	 returns.	 However,	 in	 the	

case	 of	 real	 stock	 prices,	 this	 assumption	 is	 hardly	 ever	 held	 true.	 An	

analysis	 of	 the	 distribution	 of	 real	 stock	 returns	 shows	 in	 fact	 that	 the	

distributions	tend	to	have	heavier	or	fatter	tails,	due	to	the	fact	that	price	

changes	 are	 normally	 higher	 than	 those	 a	 normal	 distribution	 would	

forecast.	

Another	drawback	of	the	solution	proposed	by	Merton	is	the	fact	that	said	

conclusion	 is	 based	 on	 a	 continuous	 mathematical	 framework.	 The	

investor	 should	 therefore	 rebalance	 his	 portfolio	 at	 the	 same	 rate	 of	

change	 of	 the	 stock	 prices	 in	 order	 to	 rigorously	 follow	 the	 optimal	

strategy.	 However	 modern	 financial	 markets	 are	 extremely	 liquid	 and	
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price	changes	happens	almost	constantly,	an	event	that	makes	impossible	

to	stick	strictly	to	the	optimal	strategy.	An	additional	factor	that	could,	and	

should,	be	taken	into	account	is	the	fact	that	portfolio	rebalancing	happens	

at	the	price	of	the	transaction	costs,	making	such	a	behaviour	an	expensive	

one.	

The	 aim	 of	 this	 thesis	 is	 to	 introduce	 the	 models	 necessary	 to	 the	

application	 of	 a	 simple	 model	 of	 the	 Merton	 portfolio	 choice	 where	

transaction	costs	are	not	considered.	The	selection	will	be	made	using	the	

returns	of	 fourteen	real	 indexes	over	the	past	years.	Chapter	1	will	cover	

the	models	underlying	the	returns	estimation,	Chapter	2	will	introduce	the	

theory	behind	 the	Portfolio	 selection	problem	while	Chapter	3	will	 focus	

on	the	application	of	the	models	to	the	real	data.	

	

	

1.2					ESTIMATING	STOCK	RETURNS	
	

In	 order	 to	 apply	 portfolio	 theory	 to	 the	 previously	 shown	 data	 set	 it	 is	

necessary	first	to	introduce	the	process	through	which	said	returns	will	be	

estimated.	 Stochastic	 processes	 are	 generally	 regarded	 as	 the	 best	

approach	to	such	a	feature	and	are	here	introduced.	

	

First	it	is	necessary	to	give	a	definition	of	a	stochastic	process.	

	

1.2.1		STOCHASTIC	PROCESSES	
	

A	 variable	whose	 value	 changes	 over	 the	 course	 of	 time	 in	 an	 uncertain	

way	 is	 generally	 said	 to	 follow	a	 stochastic	process.	 Stochastic	processes	

can	 be	 divided	 into	 discrete	 time	 processes	 and	 continuous	 time	

processes.		
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In	a	discrete	time	stochastic	process,	the	value	of	the	variable	can	assume	

different	 value	 only	 in	 determined	 points	 in	 time	while	 in	 a	 continuous	

time	stochastic	process	those	value	can	change	at	any	point.		

Another	possible	division	of	stochastic	processes	may	be	the	one	between	

continuous	variable	processes	and	discrete	variable	ones.	In	a	continuous	

variable	 stochastic	 process,	 the	 used	 variable	 can	 assume	 all	 the	 values	

contained	 in	 a	 certain	 range,	 differently	 from	 the	 discrete	 variable	

processes	where	the	underlying	variable	can	take	only	a	definite	number	

of	values.		

A	more	rigorous	definition	of	a	stochastic	process	is	hereby	introduced.	

	

1.2.2			PROPERTIES	OF	A	STOCHASTIC	PROCESS	
		

A	 stochastic	 process	 is	 a	 mathematical	 model	 for	 the	 occurrence	 of	 a	

random	event	at	each	moment	after	the	starting	time.	The	randomness	of	

the	occurrence	 is	 represented	by	 the	 introduction	of	a	measurable	 space	

(Ω, ℱ),	 denominated	 sample	 space,	 where	 probability	 measure	 can	 be	

located.	Therefore	a	stochastic	process	is	a	collection	of	random	variable	X,	

with	

	

𝑋 = 𝑋(; 0 ≤ 𝑡 < ∞ 	on	 Ω,ℱ ,																																				(1.1)	

	

	which	 take	 values	 in	 a	 second	measurable	 space	(𝑆, ℘),	 called	 the	 state	

space.	 The	 index	 𝑡 ∈ [0,∞) 	of	 the	 random	 variables	 Xt	 admits	 an	

interpretation	as	time.		

Given	a	fixed	sample	point	𝜔 ∈ Ω,	the	function	

	

𝑡 ↦ 	𝑋( 𝜔 ; 𝑡 ≥ 0																																																				(1.2)	
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is	the	sample	path	of	the	process	X	associated	with	ω.	This	sample	path,	or	

sample	trajectory	allows	for	the	creation	of	mathematical	model	which	can	

be	used	on	a	random	experiments	whose	outcome	are	observable	over	a	

continuous	period	of	time.		

Stochastic	 processes	 have	 several	 properties	 and	 those	 relevant	 to	

successively	 discussed	 notions	 are	 hereby	 introduced,	 but	 it	 is	 first	

necessary	to	disclose	the	notions	of	𝜎-fields	and	filtration.	

• 𝜎-fields	

A	𝜎-field	ℱ	of	subsets	of	X	is	a	collection	ℱ	of	subsets	of	X	satisfying	

the	following	conditions:	

a) ∅ ∈ ℱ	

b) if	𝐵 ∈ ℱ	then	its	complement	Bc	is	also	in	ℱ	

c) if	 B1,B2,…	 is	 a	 countable	 collection	 of	 sets	 in	ℱ	then	 their	

union	is	𝑈Z[\] 𝐵Z	

• Filtration	

Given	 that	 (𝐹(, 𝑡 ≥ 0) 	is	 a	 collection	 of	 𝜎 -fields	 in	 the	 same	

probability	 space	(Ω, ℱ, 𝑃)	with	ℱ( ⊆ ℱ	for	 all	𝑡 ≥ 0,	 said	 collection	

is	called	a	filtration	if	

	

ℱc ⊆ ℱ(, ∀	0 ≤ 𝑠 ≤ 𝑡																																						(1.3)	

	

In	 case	 the	 index	 t	 is	 discrete,	 the	 filtration	(ℱZ, 𝑛 = 0,1, … )	is	 a	

sequence	of	𝜎-fields	on	Ω	with	ℱZ ⊆ ℱZk\	for	all	𝑛 ≥ 0.		

The	 reason	 for	 the	 inclusion	 of	 those	 notions	 in	 the	 study	 of	

stochastic	 process	 is	 related	 to	 the	 temporal	 feature	 of	 the	

stochastic	processes	analysed.		

In	order	to	include	different	time	periods	in	the	process	of	choice	it	

is	 possible	 to	 equip	 the	 sample	 space	(Ω, ℱ)	with	 a	 filtration,	

consisting	 in	 a	 nondecreasing	 family	 ℱ(; 𝑡 ≥ 0 	of	 sub-	𝜎-fields	 of	

ℱ: ℱc ⊆ ℱ( ⊆ ℱ	for	0 ≤ 𝑠 < 𝑡 < ∞.	In	such	setting,	it	also	holds	that	
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	ℱ] = 𝜎( .(mn ℱ().																																									(1.4)	

	

Having	introduced	those	two	relevant	notions,	it	is	now	possible	to	

describe	some	relevant	properties	of	a	stochastic	process.	

	

• Measurable	processes	

The	 stochastic	 process	 X	 is	 called	 measurable	 if,	 for	 every	𝐴 ∈

ℬ ℝu ,the	 set	 𝑡, 𝜔 ;	𝑋((𝜔) ∈ 𝐴 	belongs	 to	 the	 product	𝜎-field	

ℬ( 0,∞ )×ℱ;		it	means	that	if	the	mapping	is	such	that	

	

𝑡, 𝜔 ↦ 𝑋( 𝜔 : ([0,∞)×Ω, ℬ( 0,∞ )×ℱ) → (ℝu, ℬ ℝu )						(1.5)	

	

then	the	process	is	measurable.	

	

• Adapted	processes	

A	stochastic	process	X	is	defined	as	adapted	to	the	filtration	 ℱ( ,	if,	

for	 each	𝑡 ≥ 0,	 Xt	 is	 an	ℱ(-measurable	 random	 variable.	 Values	 of	

𝑋((𝜔)	can	only	be	determined	by	the	information	available	at	time	t.	

	

A	 stochastic	 process	 useful	 in	 the	 determination	 of	 the	 stocks	 returns	 is	

the	Markov	process.	

	

	

1.2.3		MARKOV	PROCESS	
	

A	Markov	process	is	a	typology	of	stochastic	process	where	the	prediction	

of	the	future	is	based	only	on	the	value	presently	taken	by	the	considered	

variable.	The	past	history	of	the	variable	and	the	path	through	which	the	
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present	 situation	 has	 been	 generated	 are	 therefore	 both	 considered	 as	

irrelevant.			

Stock	 prices	 are	 generally	 assumed	 to	 follow	 a	 Markov	 process.	 This	

general	idea	implies	that	the	only	relevant	piece	of	information	regarding	

a	 stock	 is	 the	 current	price	 since	 the	past	 cannot	 affect	 the	 future	of	 the	

stock	itself.		

Prediction	 for	 the	 future	movements	of	 the	price	are	uncertain	and	must	

therefore	 be	 expressed	 in	 terms	 of	 probability	 distributions.	 Those	

distributions	 are	 at	 any	 time	 completely	 independent	 from	 the	 path	

previously	followed	by	the	stock.		

In	 order	 to	 have	 a	 mathematical	 definition	 of	 a	 Markov	 process,	 it	 is	

necessary	to	take	into	consideration	a	positive	integer	d	and	a	probability	

measure	 on	 (ℝu, ℬ(ℝu) .	 An	 adapted,	 d-dimensional	 process	 𝑋 =

𝑋(, ℱ(; 𝑡 ≥ 0 	on	some	probability	space	(Ω, ℱ, 𝑃y)	is	therefore	said	to	be	a	

Markov	 process	with	 intial	 distribution	 µ	 if	 the	 following	 conditions	 are	

verified:	

	

§ 𝑃y 𝑋n ∈ Γ = µ Γ , ∀	Γ ∈ ℬ ℝu ;	

	

§ 𝑃y 𝑋(kc ∈ Γ ℱc = 𝑃y 𝑋(kc ∈ Γ 𝑋c , 𝑓𝑜𝑟	𝑠, 𝑡 ≥ 0	𝑎𝑛𝑑	Γ ∈ ℬ ℝu .	

	

A	particular	type	of	Markov	stochastic	process	in	a	continuous-time	setting	

is	 the	Wiener	Process.	 In	order	 to	explain	what	a	Wiener	process	 is,	 it	 is	

necessary	to	first	introduce	the	concept	of	Brownian	motion,	which	is	itself	

a	case	of	a	Markov	process.	
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1.2.4		BROWNIAN	MOTION	
	

Brownian	 movement	 is	 originally	 the	 name	 given	 to	 the	 irregular	

movement	 of	 pollen	 suspended	 in	 water	 which	 was	 observed	 by	 the	

botanist	Robert	Brown	in	1828.		

Such	random	motion,	which	it	has	been	now	attributed	to	the	buffeting	of	

the	pollen	by	water	molecules,	results	in	the	dispersal	of	the	pollen	in	the	

water.	 However,	 this	 originally	 botanic	 observation	 has	 been	 expanded	

outside	its	original	field	of	study.		

In	 mathematical	 terms,	 a	 one-dimensional	 Brownian	 motion	 is	 a	

continuous	 and	 adapted	 process	𝐵 = 𝐵(, ℱ(; 0 ≤ 𝑡 < ∞ ,	 defined	 on	 a	

probability	space	(Ω, ℱ, 𝑃).	Properties	of	 that	process	are	 that	𝐵n = 0	and	

that	 the	 increment	𝐵( − 𝐵c	,	 given	0 ≤ 𝑠 < 𝑡,	 is	 independent	 of	ℱc	and	 is	

normally	distributed	with	mean	zero	and		variance	𝑡 − 𝑠.		

A	process	B	is	said	to	have	stationary	and	independent	increments	if	such	

a	 process	 is	 a	 Brownian	 motion	 and	0 = 𝑡n < 𝑡\ < ⋯ < 𝑡Z < ∞.	 In	 that	

case	 the	 increments	 𝐵(� − 𝐵(��� �[\

Z
are	 independent	 and	 the	distribution	

of	𝐵(� − 𝐵(��� 	depends	 on	 tj	 and	 tj-1	 only	 through	 the	 difference	𝑡� − 𝑡��\,	

therefore	it	is	normal	with	mean	equal	zero	and	variance	equal	to	𝑡� − 𝑡��\.		

While	the	 filtration	 ℱ( 	is	part	of	 the	definition	of	Brownian	motion,	 it	 is	

possible	 to	have	a	Brownian	motion	when	 the	 filtration	 is	different	 from	

ℱ( .	Specifically,	if	no	filtration	is	given	for	a	process	 𝐵(; 0 ≤ 𝑡 < ∞ 	but	it	

is	 known	 that	𝐵( = 𝐵( − 𝐵n	is	normal	with	mean	zero	and	variance	 t	 and	

that	 B	 has	 stationary,	 independent	 increments,	 it	 is	 possible	 to	 define	

𝐵(, ℱ(�; 0 ≤ 𝑡 < ∞ 	as	a	Brownian	motion.		

Another	case	could	be	that	 ℱ( 	is	a	larger	filtration,	meaning	that	ℱ(� ⊆ ℱ(	

for	𝑡 ≥ 0.	 In	that	case,	 if	𝐵( − 𝐵c	is	 independent	on	ℱc	whenever	0 ≤ 𝑠 < 𝑡,	

it	is	possible	to	consider	 𝐵(, ℱ(; 0 ≤ 𝑡 < ∞ 	as	a	Brownian	motion.		
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1.2.4a					WIENER	PROCESS	
	

The	 Wiener	 Process,	 is	 another	 particular	 type	 of	 Markov	 Stochastic	

process	 and	 a	 case	 of	 standard,	 one-dimensional	 Brownian	 motion.	 A	

Wiener	 process	 has	 a	mean	 change	 of	 zero	 and	 a	 variance	 rate	 of	 1	 per	

year.	More	 formally,	a	variable	z	 is	said	to	 follow	a	Wiener	process	 if	 the	

following	two	properties	hold	true:	

	

• Property	1	

The	change	∆𝑥	during	a	small	period	of	time	∆𝑡	is:	

∆𝑧 = 𝜀 ∆𝑡	

														where	𝜀	has	a	standard	normal	distribution	𝜙(0,1).	

	

• Property	2	

The	values	of	∆𝑧	for	any	two	different	short	intervals	of	time,	∆𝑡,	are	

independent.		

	

From	 the	 first	 property	 it	 is	 also	 possible	 to	 state	 that	∆𝑧	has	 a	 normal	

distribution	with	the	following	characteristics:	

	

	

o Mean	of	∆𝑧	=	0	

o Standard	Deviation	of	∆𝑧	=	 ∆𝑡	

o Variance	of	∆𝑧	=		∆𝑡	

	

The	second	property	implies	instead	that	x	follows	a	Markov	process.	

It	is	now	possible	to	take	into	consideration	the	change	of	value	assumed	

by	 z	over	 a	 relatively	 long	period	of	 time	T.	This	 change	of	 value	 con	be	

defined	as	𝑧 𝑡 − 𝑧(0).	
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Another	way	 to	 interpret	 this	variation	 is	as	 the	sum	of	 the	changes	 in	x	

during	N	small	time	intervals	of	length	∆𝑡,	where	N	=	 �
∆(
.	

It	is	therefore	possible	to	establish	the	following	relationship:	

	

𝑧 𝑡 − 𝑧 0 = 𝜖��
�[\ ∆𝑡																																							(1.6)	

	

where	 	 the	𝜖� 	(i=1,2,….N)	 are	 distributed	𝜙(0,1).	 Those	 various	𝜖� 	are	

independent	 of	 each	 other	 from	 the	 second	 property	 of	 the	 Wiener	

process.	 It	 is	 therefore	 possible	 to	 conclude	 that	𝑧 𝑡 − 𝑧(0)	is	 normally	

distributed	with	

	

o mean	of	𝑧 𝑡 − 𝑧(0)=0	

o variance	of	𝑧 𝑡 − 𝑧(0)=N∆𝑡=T	

o standard	deviation	of	𝑧 𝑡 − 𝑧(0)= 𝑇.	

	

1.2.4b			GENERALIZED	WIENER	PROCESS	
	

The	 mean	 change	 per	 unit	 time	 for	 a	 stochastic	 process	 is	 generally	

defined	 as	 the	 drift	 rate	 and	 the	 variance	 per	 time	 unit	 is	 known	 as	 the	

variance	 rate.	 The	 basic	 Wiener	 process	 previously	 introduced,	 shortly	

referred	as	dz,	has	a	drift	rate	of	zero	and	a	variance	rate	of	1.		

The	drift	rate	of	zero	 indicated	that	 the	expected	value	of	z	at	any	future	

time	 is	 identical	 to	 its	 present	 value.	 The	 variance	 rate	 of	 one	 instead	

suggests	that	the	variance	of	the	change	in	z	in	a	time	interval	of	duration	

T	 equals	 T	 itself.	 A	 generalized	 Wiener	 process	 for	 a	 variable	 x	 can	 be	

therefore	defined	in	terms	of	dz	as	

			

𝑑𝑥 = 𝑎𝑑𝑡 + 𝑏𝑑𝑧																																														(1.7)	

where	a	and	b	are	constants.	
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This	definition	is	made	of	two	essential	components:	 the	first	 is	 the	term	

“𝑎𝑑𝑡”	which	implies	that	x	has	an	expected	drift	rate	of	a	per	unit	of	time.	

The	second	term	“𝑏𝑑𝑧”	can	be	instead	regarded	as	an	addition	of	noise	and	

variability	 to	 the	path	 followed	by	x.	The	quantity	and	magnitude	of	 this	

noise	is	b	times	a	Wiener	process.		

Since	 a	 Wiener	 process	 has	 a	 standard	 deviation	 of	 1,	 it	 follows	 that	 b	

times	a	Wiener	process	has	a	standard	deviation	of	b.	If	this	second	term	

wasn’t	to	be	added,	the	equation	would	have	been	𝑑𝑥 = 𝑎𝑑𝑡	which	would	

have	 lead	 to	𝑎 = u�
u(
.	 The	 integration	 of	 this	 relationship	 with	 respect	 to	

time	yields	the	following	result:	𝑥 = 𝑥n + 𝑎𝑡,	where	x0	 indicates	the	value	

of	x	at	time	0.		

In	a	period	of	time	T,	the	variable	x	would	then	increase	by	an	amount	𝑎𝑇,	

a	 result	 which	 would	 leave	 out	 lots	 of	 possibilities	 which	 are	 instead	

integrated	by	the	addition	of	the	second	component	“𝑏𝑑𝑧”.		

As	a	result,	it	is	possible	to	state	that	in	a	small	time	interval	∆𝑡,	the	change	

∆𝑥	in	the	value	of	x	is:	

	

∆𝑥 = 𝑎∆𝑡 + 𝑏𝜀 ∆𝑡																																								(1.8)	

	

As	it	was	previously	mentioned,	𝜀	has	a	normal	standard	distribution,	thus	

it	is	possible	to	state	that	also	∆𝑥	has	a	normal	distribution	with:	

	

o Mean	of		∆𝑥 = 𝑎∆𝑡	

o Standard	deviation	of	∆𝑥 = 𝑏 ∆𝑡	

o Variance	of		∆𝑥 = 𝑏�∆𝑡	

	

With	the	same	reasoning	it	is	also	possible	to	determine	that	the	change	of	

value	in	x	in	any	time	interval	T	is	normally	distributed	with:	

	

o Mean	of	change	in	𝑥 = 𝑎𝑇	
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o Standard	deviation	of	change	in	𝑥	 = 𝑏 𝑇	

o Variance	of	change	in	𝑥 = 𝑏�𝑇.	

	

To	sum	up,	the	generalized	Wiener	process	has	an	expected	drift	rate	of	a	

and	a	variance	rate	of	b2.	

	

1.2.4c				ITO	PROCESS	
	

The	 Ito	 process	 is	 another	 type	 of	 stochastic	 process	 based	 on	 the	

generalized	Wiener	process.	It	is	in	fact	a	generalized	Wiener	in	which	the	

parameters	𝑎	and	𝑏	are	functions	of	the	value	of	the	considered	variable	𝑥	

and	of	the	time	variable	𝑡.	An	Ito	process	is	algebraically	expressed	as:	

	

𝑑𝑥(𝑡) = 𝑎(𝑥(𝑡))𝑑𝑡 + 𝑏(𝑥(𝑡))𝑑𝑧(𝑡)																																					(1.9)	

	

Bothe	 the	expected	drift	 rate	and	 the	variance	 rate	of	an	 Ito	process	 can	

change	 value	 over	 time.	 If	 the	 time	 interval	 taken	 into	 consideration	 is	

small,	 that	 is	 in	 an	 interval	 between	𝑡	and	𝑡 + ∆𝑡,	 then	 the	 variable	 value	

changes	from	𝑥	to	𝑥 + ∆𝑥,	where:	

	

𝑥(𝑡 + ∆𝑡) − 𝑥(𝑡) ≈ 𝑎(𝑥(𝑡))∆𝑡 + 𝑏(𝑥(𝑡))𝜀(𝑡) ∆𝑡																				(1.10)	

	

A	small	approximation	is	assumed	in	that	relationship.	The	approximation	

consists	 in	 the	 fact	 that	 the	 mean	 and	 the	 standard	 deviation	 of	𝑥,	

conditional	 to	𝑥(𝑡),	 remain	 constant,	 respectively	 equal	 to	𝑎(𝑥(𝑡))	∆𝑡	and	

𝑏(𝑥(𝑡)) ∆𝑡,	during	the	time	interval	from	𝑡	to	𝑡 + ∆𝑡.	
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1.2.5	STOCHASTIC	PROCESSES	FOR	STOCK	PRICES	
	

1.2.5a	HISTORY	OF	STOCHASTIC	PROCESSES	FOR	STOCK	PRICES	
	

The	 birth	 of	 the	 relationship	 between	 mathematics	 and	 financial	 model	

must	be	tracked	back	to	Louis	Bachelier’s	1900	dissertation	on	the	theory	

of	 speculation	 in	 the	 Paris	 markets.	 That	 work	 gave	 life	 to	 both	 the	

continuous	 time	mathematics	of	 stochastic	processes	and	 the	continuous	

time	economics	of	option	pricing.		

During	 his	 analysis	 of	 option	 pricing,	 Bachelier	 elaborated	 two	 different	

derivations	of	 the	partial	differential	equation	 for	 the	probability	density	

for	 the	 Wiener	 process.	 In	 one	 derivation,	 he	 worked	 out	 what	 is	 now	

known	 as	 the	 Chapman-Kolmogorov	 convolution	 probability	 integral.	

Bachelier	exploited	 the	 ideas	of	 the	Central	Limit	Theorem	and,	 realizing	

that	market	noise	should	be	without	memory,	he	reasoned	that	increments	

of	 stock	 prices	 should	 be	 independent	 and	 normally	 distributed.	

Combining	 this	 reasoning	 with	 the	 Markov	 property,	 he	 was	 able	 to	

connect	 Brownian	motion	with	 the	 heat	 equation	 in	 order	 to	model	 the	

market	 noise.	 He	was	 also	 able	 to	 define	 other	 processes	 related	 to	 the	

Brownian	motion,	in	particular	he	computed	the	maximum	change	during	

a	time	interval	for	a	one-dimensional	Brownian	motion.		After	Bachelier’s	

crucial	works,	it	took	more	than	60	years	before	a	new	breakthrough	could	

happen	in	the	field	of	stochastic	processes	for	stock	prices.		

It	was	Paul	 Samuelson	 in	 1965	 that	 introduced	 the	Geometric	Brownian	

Motion	 as	 a	 good	 model	 for	 stock	 price	 movements.	 In	 his	 research	

Samuelson	 tried	 to	 improve	 Bachelier’s	 model	 and	 to	 fix	 its	 inability	 to	

ensure	positive	prices	for	the	stocks,	a	capacity	that	the	Brownian	motion	

had	instead.		

Samuelson	contributions	are	mainly	contained	in	two	papers.	In	those,	he	

gave,	65	years	after	Bachelier	had	stated	 it,	his	economic	arguments	 that	
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prices	must	 fluctuate	 randomly.	 	 He	 postulated	 the	 idea	 that	 discounted	

futures	prices	follow	a	martingale	and	went	on	to	prove	that	futures	prices	

changes	were	 uncorrelated	 across	 time.	Moreover,	 his	 proposition	 could	

be	 also	 extended	 to	 arbitrary	 functions	 of	 the	 sport	 price	 therefore	

allowing	for	an	application	on	options.	

Another	turning	point	was	the	publication	1973	if	the	Black-Scholes	model	

for	option	pricing.		

The	two	economists	Fischer	Black	and	Myron	Scholes	deduced	an	equation	

that	provided	the	first	strictly	quantitative	model	for	calculating	the	prices	

of	options.	The	basic	 insight	underlying	the	Black-Scholes	model	 is	that	a	

dynamic	 portfolio	 trading	 strategy	 in	 the	 stock	 can	 replicate	 the	 returns	

from	an	option	on	that	stock.	That	action	is	defined	as	“hedging	an	option”	

and	it	is	the	most	important	idea	underlying	the	Black-Scholes	approach.	

Conceptual	breakthroughs	in	finance	theory	in	the	1980s	were	fewer	and	

less	crucial	than	in	the	1960s	and	1970s	but	the	resources	employed	in	the	

field	were	more	than	that	used	in	the	previous	decades.	The	development	

of	more	powerful	 computing	machines	 and	 the	growth	of	 the	number	of	

sophisticated	 mathematical	 models	 for	 financial	 practices	 happened	

almost	simultaneously,	allowing	for	more	effective	models	than	those	used	

in	the	past.		

	

1.2.5b			MODEL	DERIVATION	
	

The	generalized	Wiener	process	fails	to	capture	some	key	aspect	of	stock	

prices	due	to	its	constant	expected	drift	rate	and	its	constant	variance	rate.	

The	biggest	shortfall	is	the	incapacity	of	the	model	to	capture	the	fact	that	

the	percentage	return	required	by	investors	from	a	stock	is	independent	of	

the	stock’s	price.		
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The	assumption	of	 constant	expect	drift	 rate	must	 therefore	be	 removed	

and	replaced	by	the	assumption	that	the	expected	return,	represented	by	

the	expected	drift	divided	by	the	stock	price,	is	constant.		

In	this	assumption,	if	S	is	used	to	represent	the	stock	price	at	time	t	and	𝜇	

is	used	to	represent	the	expected	rate	of	return	on	the	stock	expressed	in	

decimal	 form,	 it	 is	 possible	 to	 state	 that	 the	 expected	 drift	 rate	 in	 S	 is	

assumed	 to	be	𝜇𝑆∆t	 and	 that	 represents	 the	 increase	 in	 S	during	 a	 short	

time	period	∆t.		

Assuming	 a	 constant	 stock	 price	 volatility	 of	 zero,	 the	 presented	 model	

implies	that	:	

	

∆𝑆	 = 	𝜇𝑆∆𝑡																																																								(1.11)	

which,	as	∆t→ 0,	becomes:	

	

𝑑𝑆	 = 	𝜇𝑆𝑑𝑡																																																					(1.12)	

	

or	also	

	
u�
�
= 𝜇	𝑑𝑡																																																					(1.13)	

	

Integrating	this	relationship	between	time	0	and	time	𝑇	it	results	that:	

	

𝑆� = 𝑆n𝑒y� 																																																	(1.14)	

	

Where	 S0	 and	 ST	 are	 the	 stock	price	 at	 time	0	 and	 time	T.	This	 equation	

indicates	that	when	the	effect	of	the	variance	rate	is	absent,	the	stock	price	

grows	at	a	continuously	compounded	rate	of	µ.		

It	is	however	impossible	in	reality	to	experience	an	absence	of	volatility	in	

the	 growth	 of	 stock	 prices.	 A	 reasonable	 assumption	 that	 can	 be	 made	

regarding	volatility	of	stock	prices	is	that	the	variability	of	the	percentage	
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returns	 in	 a	 short	 period	 of	 time	∆𝑡	is	 the	 same	 regardless	 of	 the	 stock	

price.	The	aim	of	the	assumption	is	to	represent	the	fact	that	an	investor	is	

indifferently	 uncertain	 about	 the	 future	 of	 stock	 independently	 from	 the	

price	 of	 the	 stock	 itself.	 Moreover,	 the	 assumption	 suggests	 that	 the	

standard	 deviation	 of	 the	 change	 in	 a	 short	 period	 of	 time	∆𝑡	should	 be	

proportional	to	the	stock	price	and	allows	for	the	creation	of	the	following	

model:	

	

𝑑𝑆 = µ𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑧																																										(1.15)	

	

or	

	
u�
�
= 𝜇𝑑𝑡 + 𝜎𝑑𝑧.																																											(1.16)	

	

In	that	equation	the	variable	µ	represents	the	expect	rate	of	return	of	the	

stock	and	the	variable	𝜎	represents	the	volatility	of	the	stock	prices.	

This	 model	 of	 stock	 price	 behaviours	 is	 mostly	 known	 as	 geometric	

Brownian	motion.	It	is	also	possible	to	elaborate	a	discrete	time	version	of	

the	model.	In	that	version	it	happens	that	

	
∆�
�
= µ∆𝑡 + 𝜎𝜀 ∆𝑡																																												(1.17)	

	

or	

	

∆𝑆 = µ𝑆∆𝑡 + 𝜎𝑆𝜀 ∆𝑡																																								(1.18)	

	

The	 variable	∆𝑆	is	 the	 variation	 in	 the	 stock	 price	𝑆	during	 a	 small	 time	

interval	∆𝑡	while	𝜀	is	a	parameter	with	a	standard	normal	distribution.	The	

parameters	µ	and	𝜎	are	again	the	expected	rate	of	return	per	unit	of	time	

and	the	volatility	of	the	stock	price.		
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The	right	side	of	this	equation	is	of	particular	interest.	The	term	µ∆𝑡	is	the	

one	 representing	 the	 expected	 value	 of	 the	 return	 on	 a	 short	 amount	 of	

time	∆𝑡	while	the	term	𝜎𝜀 ∆𝑡	stands	for	the	stochastic	component	of	those	

returns.	The	variance	of	that	component,	and	therefore	of	the	returns	as	a	

whole,	 is	𝜎�∆𝑡.In	 the	 end	 it	 is	 possible	 to	 state	 that	∆�
�
	is	 normally	

distributed	 with	 mean	µ∆𝑡	and	 standard	 deviation	𝜎 ∆𝑡,	 or	 in	 another	

notation:	

	
∆�
�
~𝜙(µ∆𝑡, 𝜎�∆𝑡)																																												(1.19)	

1.2.5c			ITO’S	LEMMA	

	

The	Ito’s	lemma,	named	after	the	mathematician	K.	Ito,	is	an	in	important	

process	 in	 the	 understanding	 of	 the	 behaviour	 of	 functions	 of	 stochastic	

variable.	

Assuming	that	a	variable	𝑥	follows	the	Ito	process	

	

𝑑𝑥 = 𝑎(𝑥(𝑡))𝑑𝑡 + 𝑏(𝑥(𝑡))𝑑𝑧																																	(1.20)	

	

where	𝑑𝑧	is	 a	 Wiener	 process	 and	𝑎	and	𝑏	are	 functions	 of	𝑥	and	𝑡,	 it	 is	

possible	to	define	the	drift	rate	of	the	variable	𝑥	as	𝑎	and	its	variance	rate	

as	b2.	Ito’s	lemma	shows	that	a	function	𝐺	of	𝑥	and	𝑡	follows	the	process	

	

𝑑𝐺 = ��
��
𝑎 + ��

�(
+ \

�
���
���

𝑏� 𝑑𝑡 + ��
��
𝑏𝑑𝑧																						(1.21)	

	

where	𝑑𝑧	indicates	the	previously	mentioned	Ito	process.	𝐺	also	follows	an	

Ito	process	and	the	drift	rate	is	defined	by	

	
��
��
𝑎 + ��

�(
+ \

�
���
���

𝑏�																																							(1.22)	
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and	the	variance	rate	is	

	

��
��

�
b2																																																(1.23)	

	

It	 is	 now	possible	 to	 connect	 those	 results	with	 the	 previous	 conclusion	

that	

	

𝑑𝑆 = µ𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑧																																								(1.15)	

	

can	be	considered	a	valuable	model	of	stock	price	movements	with	µ	and	𝜎	

constant.		

From	Ito’s	lemma	it	follows	that	the	process	undergone	by	a	function	𝐺	of	

𝑆	and	𝑡	is	

	

𝑑𝐺 = ��
��
µ𝑆 + ��

�(
+ \

�
���
���

𝜎�𝑆� 𝑑𝑡 + ��
��
𝜎𝑆𝑑𝑧																			(1.24)	

	

It	is	relevant	to	highlight	how	both	𝑆	and	𝐺	are	affected	by	the	underlying	

source	of	uncertainty	𝑑𝑧.	

	

1.2.5d			LOG-NORMAL	PROPERTY	
	

It	is	now	possible	to	use	Ito’s	lemma	to	derive	the	process	followed	by	𝑙𝑛𝑆,	

which	 is	 the	natural	 log	of	 the	stock	price,	when	𝑆	follows	 the	previously	

introduced	equation	

	

𝑑𝑆 = µ𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑧.																																																					(1.15)	

	

First	it	is	necessary	to	define	𝑙𝑛	𝑆	as	𝐺.	After	that	it	is	possible	to	state	that:	
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��
��
= \

�
,	�

��
���

= − \
��
, ��
�(
= 0.																																														(1.25)	

	

Ito’s	 lemma	can	now	be	applied	and	 the	process	 followed	by	𝐺	results	 to	

be:	

	

𝑑𝐺	 = µ − ¡�

�
𝑑𝑡 + 𝜎𝑑𝑧.																																													(1.26)	

	

Since	 µ	 and	𝜎	are	 constant,	 the	 equation	 essentially	 states	 that	 the	

equation	𝐺	 = 	𝑙𝑛𝑆	follows	a	generalized	Wiener	process.		

The	constant	drift	rate	is	µ − ¡�

�
	and	the	constant	variance	rate	is	𝜎�.		

Therefore	 the	 variation	 in	 𝑙𝑛𝑆 	from	 time	 0 	to	 time	 𝑇 	is	 normally	

distributed	with	a	mean	of		 µ − ¡�

�
𝑇	and	a	variance	of	𝜎�𝑇.	

	

In	a	more	formal	way	it	means	that	

	

𝑙𝑛𝑆� − 𝑙𝑛𝑆n~𝜙 µ − ¡�

�
𝑇, 𝜎�𝑇 																														(1.27)	

	

or	also	

	

𝑙𝑛𝑆(~𝜙 𝑙𝑛𝑆n + µ − ¡�

�
𝑇, 𝜎�𝑇 .																													(1.28)	

	

This	equation	shows	how	𝑙𝑛𝑆� 	is	normally	distributed.		

A	 variable	 has	 a	 lognormal	 distribution	 if	 the	 natural	 logarithm	 of	 the	

variable	 is	 normally	 distributed	 as	 it	 is	 in	 this	 case.	 This	model	 of	 stock	

price	 behaviour	 implies	 that	 stock’s	 price	 at	 time	 T,	 given	 the	 current	

price,	is	log-normally	distributed.		

The	standard	deviation	of	the	logarithm	is	𝜎 𝑇	which	implies	a	growth	in	

the	standard	deviation	as	the	time	span	of	interest	grows	larger.	
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1.3			TEST	OF	RETURN	ESTIMATION	
	

It	is	now	possible	to	test	the	soundness	of	the	previous	assumptions.	As	a	

matter	of	fact,	the	whole	model	relies	on	the	condition	that	stock	prices	are	

log-normally	 distributed	 and	 that	 therefore	 the	 returns	 are	 normally	

distributed.	It	is	possible	to	verify	if	those	conditions	hold	also	in	reality	by	

using	statistical	tests	on	a	selected	data	set.		

	

1.3.1				DATA	SET	
	

The	 data	 set	 taken	 into	 consideration	 for	 the	 application	 of	 the	 theories	

presented	is	composed	by	the	variations	of	fourteen	different	indexes	over	

the	course	of	a	16	years’	time	span.	The	data	are	analysed	from	the	1st	of	

January	2000	to	the	4th	of	March	2016.		

The	 tables	below	contain	a	summary	of	 the	most	relevant	characteristics	

of	the	daily	returns	of	those	samples	over	the	considered	time	length.		

	

INDEX	 SPXINDEX	
CCMP	

Index	

DAX	

Index	

SASEIDX	

Index	

N	OF	OBSERVATIONS	 4065	 4065	 4110	 4357	

MEAN	 0.01%	 0.01%	 0.02%	 0.03%	

STANDARD	

DEVIATION	
1.27%	 1.67%	 1.55%	 1.46%	

KURTOSIS	 11.08	 8.67	 7.37	 12.77	

SKEWNESS	 0.01	 0.22	 0.12	 -0.65	

MEDIAN	 0.05%	 0.08%	 0.07%	 0.09%	

MAX	RETURN	 11.58%	 14.17%	 11.40%	 9.85%	

MIN	RETURN	 -9.03%	 -9.67%	 -8.49%	 -9.81%	
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INDEX	
NKY	

Index	

CAC	

Index	

UKX	

Index	

FTSE	 MIB	

Index	

N	OF	OBSERVATIONS	 3969	 4134	 4086	 4102	

MEAN	 0.01%	 0.05%	 0.006%	 -0.007%	

STANDARD	

DEVIATION	
1.56%	 1.50%	 1.23%	 1.56%	

KURTOSIS	 8.95	 7.78	 9.03	 7.24	

SKEWNESS	 -0.18	 0.15	 -0.003	 0.05	

MEDIAN	 0.03%	 0.03%	 0.03%	 0.04%	

MAX	RETURN	 14.15%	 11.18%	 9.84%	 11.49%	

MIN	RETURN	 -11.41%	 -9.04%	 -8.85%	 -8.24%	

	

INDEX	 INDEX	CF	Index	 SHCOMP	Index	 SMI	Index	

N	OF	OBSERVATIONS	 4002	 3909	 4065	

MEAN	 0.08%	 0.03%	 0.01%	

STANDARD	DEVIATION	 2.17%	 1.66%	 1.22%	

KURTOSIS	 18.90	 7.29	 9.80	

SKEWNESS	 0.30	 -0.18	 -0.002	

MEDIAN	 0.11%	 0.06%	 0.05%	

MAX	RETURN	 28.69%	 9.86%	 11.39%	

MIN	RETURN	 -18.66%	 -8.84%	 -8.67%	

	

INDEX	 AS51	Index	 SPTSX	Index	
MXBR	

Index	

N	OF	OBSERVATIONS	 4091	 4062	 4215	

MEAN	 0.01%	 0.01%	 0.03%	

STANDARD	DEVIATION	 1.02%	 1.15%	 2.21%	

KURTOSIS	 8.19	 11.51	 9.57	
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SKEWNESS	 -0.36	 -0.45	 0.07	

MEDIAN	 0.04%	 0.06%	 0.05%	

MAX	RETURN	 5.79%	 9.82%	 18.08%	

MIN	RETURN	 -8.34%	 -9.32%	 -16.74%	

	

It	 is	 already	 possible	 to	 spot	 some	 of	 the	most	 essential	 features	 of	 the	

indexes	that	will	be	used	for	the	portfolio	composition.		

The	most	glaring	one	is	the	low	mean	of	the	daily	changes,	always	close	to	

zero,	 and	 the	general	 symmetry	of	 the	data	 sets,	 represented	by	 the	 low	

skewness	value.		

Moreover,	all	the	indexes	have	a	high	kurtosis	value,	a	predictable	feature,	

indicating	that	the	tails	of	the	returns	distribution	are	fatter	than	those	of	a	

normal	distribution.		

The	most	volatile	 indexes	of	 the	bunch	are	 the	Russian	 Index,	 the	 INDEX	

CF,	and	the	Brazilian	 index,	MXBR,	whose	daily	return	volatility	 is	higher	

than	the	2%.	

Still,	 the	 indexes	seem	to	 fit	 the	 logical	expectation	an	 investor	may	have	

when	dealing	with	assets	replicating	an	 index	performance,	 that	 is	a	non	

excessive	daily	volatility	and	expected	returns.		

	

Having	introduced	the	data	set,	it	is	now	possible	to	compare	how	the	real	

returns	would	fare	when	compared	with	a	normal	distribution.			

In	order	to	perform	such	a	comparison,	it	is	first	necessary	to	present	two	

useful	 statistical	 test	 for	 the	 normality	 of	 the	 returns.	 Those	 are	 the	

Kolmogorov-Smirnov	test	and	Jarque-Bera	test.		
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1.3.2			KOLMOGOROV-SMIRNOV	TEST	
	

The	Kolmogorov-Smirnov	test	is	a	nonparametric	test	that	can	be	used	to	

compare	a	sample	with	a	reference	probability	distribution	or	to	compare	

two	sample.		

The	two	sample	test	may	be	used	to	test	whether	the	two	underlying	one-

dimensional	probability	distributions	differ	while	the	one-sample	test	will	

indicate	 whether	 the	 sample	 has	 a	 distribution	 similar	 to	 a	 standard	

normal	one	or	not..		

	

• Kolmogorov-Smirnov	one-sample	test	

Assuming	that:	

	

o x1,...,xm	be	observations	on	i.i.d.	r.vs	X1,...,Xm	with	a	c.d.f.	F1,		

	

The	aim	is	to	test	the	null	hypothesis:	

	

𝐻n ∶ 	𝐹\(𝑥) 	= 	𝐹�(𝑥),	for	all	x																														(1.29)	

	

where	𝐹n	is	a	known	c.d.f.	

The	Kolmogorov-Smirnov	test	statistic	𝐷Z	is	defined	by  

 

𝐷Z = 𝑠𝑢𝑝
�∈§

𝐹 𝑥 − 𝐹n(𝑥) ,																																				(1.30)	

	

In	that	case	𝐹	is	an	empirical	cumulative	distribution	which	can	be	

defined	as	

	

														𝐹 𝑥 = #(�:�©ª�)
Z

																																										(1.31)	
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It	can	be	noticed	that	the	supremum	from	equation	(1.30)	can	occur	

only	at	one	of	the	observed	values	𝑥� 	or	to	the	left	of	𝑥� .	

	

	

It	 is	 now	 possible	 to	 perform	 a	 Kolmogorov-Smirnov	 test	 and	 verify	

whether	the	log-normal	assumption	holds	true	for	the	analysed	indexes	by	

testing	 whether	 the	 returns	 appear	 to	 follow	 a	 standard	 normal	

distribution	or	not.		

The	 test	will	be	made	at	a	significance	 level	of	0.05,	or	5%	and	 it	will	be	

performed	using	the	MATLAB	software.		

The	results	of	 the	test	are	hereby	reported,	where	“REJECT”	will	 indicate	

the	 rejection	 of	 the	 null	 hypothesis	 of	 the	 sample	 following	 a	 standard	

normal	distribution.		

	

INDEX	 RESULT	OF	K-S	TEST(𝜶 = 𝟎. 𝟎𝟓)	

SPXINDEX	 REJECT	

CCMP	Index	 REJECT	

DAX	Index	 REJECT	

SASEIDX	Index	 REJECT	

NKY	Index	 REJECT	

CAC	Index	 REJECT	

UKX	Index	 REJECT	

FTSE	MIB	Index	 REJECT	

INDEX	CF	Index	 REJECT	

SHCOMP	Index	 REJECT	

SMI	Index	 REJECT	

AS51	Index	 REJECT	

SPTSX	Index	 REJECT	

MXBR	Index	 REJECT	

Matlab	code	available	in	the	Matlab	Appendix.	
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As	 it	 can	 be	 seen	 the	 indexes’	 returns	 distribution	 seems	 not	 to	 be	

corresponding	 to	 a	 standard	normal,	 indicating	 that	 the	 assumption	 that	

prices	 follow	a	 log-normal	distribution	may	be	an	 incorrect	one.	 In	order	

to	avoid	 the	possibility	of	a	Kolmogorov-Smirnov	 test	 failure	 in	correctly	

assessing	the	returns	distribution,	it	 is	possible	to	introduce	and	perform	

another	normality	test	as	the	Jarque-Bera	test	is.	

	

1.3.3		JARQUE-BERA	TEST	
	

The	 Jarque-Bera	 test	 is	 a	 statistical	 test	 capable	 of	 assessing	 whether	 a	

sample	 data	 has	 a	 distribution	 approximately	 normal.	 The	 test	 tries	 to	

determine	the	distribution	by	matching	the	sample	skewness	and	kurtosis	

with	those	of	a	normally	distributed	sample.		

The	sample	skewness	is	defined	as:	

	

𝑆 = \
Z
∙ 	 (�©��)¯

°
©±�

(¡�)
¯
�
																																							(1.32)	

	

where	

	

𝜎� = \
Z

(𝑥� − 𝑥)�Z
�[\ 																																													(1.33)	

	

Skewness	 provides	 a	 measure	 of	 how	 symmetric	 the	 observations	 are	

around	the	mean.	For	a	distribution	skewed	to	the	right,	the	skewness	has	

a	 positive	 value	 while	 the	 opposite	 holds	 in	 case	 the	 observations	 are	

skewed	to	the	left.		

The	sample	kurtosis	is	instead	defined	as:	
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𝐾 = \
Z
∙ (�©��)³

°
©±�
(¡�)�

																																																(1.34)	

	

Kurtosis	 gives	 a	 measure	 of	 the	 thickness	 in	 the	 tails	 of	 a	 probability	

density	function.	For	a	normal	distribution	the	kurtosis	is	3.	

Additionally,	the	Excess	Kurtosis	is	defined	as:	

	

𝐸𝐾 = 	𝐾 − 3																																																					(1.35)	

	

It	 follows	 that,	 for	 a	 normal	 distribution,	 the	 excess	 kurtosis	 is	 0.	 A	 fat-

tailed	or	 thick-tailed	distribution	has	a	value	 for	kurtosis	 that	exceeds	3.	

That	is,	excess	kurtosis	is	positive.	This	is	called	leptokurtosis.		

It	is	now	possible	to	present	the	Jarque-Bera	test	for	normality.		

The	test	is	set	by	formulating	the	null	hypothesis:	

	

H0:	skewness	and	excess	kurtosis	are	zero	

	

against	the	alternative	hypothesis:	

	

H1:non-normal	distribution.	

	

The	Jarque-Bera	test	statistic	is:	

	

𝐽𝐵 = 𝑛 ∙ ��

¶
+ ·¸ �

�¹
																																												(1.36)	

	

This	 test	 statistic	 can	be	 compared	with	a	 chi-square	distribution	with	2	

degrees	 of	 freedom.	 The	 null	 hypothesis	 of	 normality	 is	 rejected	 if	 the	

calculated	test	statistic	exceeds	a	critical	value	from	the	𝜒(�)� 	distributions.		

Critical	values	can	be	chosen	by	stating	the	preferred	significance	level	for	

the	 hypothesis	 test.	 	 The	 significance	 level,	 generally	 indicated	 by	 the	
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greek	 letter	𝛼,	 represents	 the	probability	of	 rejecting	 the	null	 hypothesis	

when	it	is	indeed	true.	

	

1.3.4	APPLICATION	OF	THE	J-B	TEST	
It	is	now	possible	to	apply	a	Jarque-Bera	test	in	order	to	verify	whether	the	

returns	of	the	indexes	are	normally	distributed.		The	significance	level	will	

again	 be	 of	 the	 five	 percent	 and	 the	 calculation	 will	 be	 performed	 in	

MATLAB.	

The	results	are	hereby	summarized	by	the	following	table:	

INDEX	 RESULT	OF	J-B	TEST(𝜶 = 𝟎. 𝟎𝟓)	

SPXINDEX	 REJECT	

CCMP	Index	 REJECT	

DAX	Index	 REJECT	

SASEIDX	Index	 REJECT	

NKY	Index	 REJECT	

CAC	Index	 REJECT	

UKX	Index	 REJECT	

FTSE	MIB	Index	 REJECT	

INDEX	CF	Index	 REJECT	

SHCOMP	Index	 REJECT	

SMI	Index	 REJECT	

AS51	Index	 REJECT	

SPTSX	Index	 REJECT	

MXBR	Index	 REJECT	

Matlab	code	available	in	the	Matlab	Appendix.		

	
Again	the	statistical	test	refuses	the	hypothesis	that	the	distribution	of	the	

indexes	returns	is	similar	to	a	normal	distribution	therefore	implying	that	

the	distribution	of	the	prices	cannot	be	considered	a	log-normal	one.	It	is	
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possible	 to	 highlight	 some	 of	 the	main	 reasons	 behind	 the	 failure	 of	 the	

log-normal	model.	

	

1.3.5	FAILURES	OF	THE	LOG-NORMAL	MODEL	
The	failure	of	the	log-normal	model	in	correctly	predicting	the	distribution	

of	the	stock	returns	is	a	widely	accepted	notion	nowadays.	There	are,	as	a	

matter	 of	 facts,	 a	 number	 of	 properties	 empirically	 experienced	 that	 are	

hardly	replicable	by	a	stochastic	process.	It	is	possible	to	list	some	of	such	

properties	 in	order	to	provide	an	overview	of	 the	main	characteristics	of	

returns	that	are	hard	to	incorporate	in	a	stochastic	model.	

• Heavy	Tails:	the	distribution	of	returns	generally	displays	an	heavy	

tail	with	positive	excess	kurtosis.	Such	a	behaviour	is	not	correctly	

reproduced	by	a	normal	distribution,	moreover	the	precise	form	of	

the	tails	is	hard	to	determine	at	all.	

• Absence	 of	 autocorrelations:	 linear	 autocorrelations	 of	 assets	

returns	are	mostly	 insignificant,	exception	made	for	small	 intraday	

time	windows	where	instead	some	forms	of	autocorrelation	can	be	

observed.	

• Gain/Loss	 asymmetry:	 drawdowns	 in	 stock	 prices	 and	 indexes	

values	tend	to	be	larger	than	upward	movements	therefore	causing	

asymmetric	movements	in	the	two	directions.	

• Volatility	clustering:	volatility	clustering	is	a	term	used	to	indicate	

the	 fact	 that	 large	changes	 in	stock	returns	 tend	 to	be	 followed	by	

large	 changes,	 of	 either	 sign,	 while	 small	 changes	 tend	 to	 be	

followed	 by	 small	 changes.	 This	 situation	 has	 also	 a	 quantitative	

reflection.	While	correlation	is	mostly	absent	among	returns,	that	is	

not	 true	 for	 absolute	 returns.	 Absolute	 returns,	 defined	 as	 𝑟((∆) ,	

display	a	positive	and	significant	autocorrelation	function.	
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The	main	result	of	those	events	consists	in	the	impossibility	of	replicating	

the	movement	of	the	stock	prices	by	a	continuous	model.	Models	assuming	

that	prices	move	in	a	continuous	manner	neglect	the	abrupt	movements	in	

which	most	of	the	risk	is	concentrated.		
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The	pictures	represent	the	histograms	of	the	returns	and	the	prices	of	the	index	SPX	

plotted	against	a	normal	distribution	and	a	lognormal	distribution	respectively.	As	

it	can	be	seen	the	distributions	don’t	seem	to	fit	well	the	data.	
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CHAPTER	2	
	

2.1				PORTFOLIO	THEORY	

	
Portfolio	theory	deals	with	the	problem	of	building	a	desirable	investment	

out	of	a	collection	of	assets.	The	objective	is	to	construct	a	portfolio	which	

features	satisfy	 the	demand	of	 the	 financial	agent	who	 is	considering	 the	

investment	itself.		

The	 management	 of	 a	 portfolio	 is	 a	 fundamental	 aspect	 in	 modern	

economics	 and	 finance.	 The	 first	 attempt	 to	 solving	 a	 portfolio	 problem	

was	 the	 mean-variance	 approach	 introduced	 by	 H.	 Markowitz	 in	 a	 one-

period	decision	model.	The	simplicity	of	the	approach,	caused	by	the	static	

nature	 of	 the	 problem	 it	 tackles,	 brings	 many	 drawbacks	 since	 the	

investor’s	job	is	limited	to	the	selection	of	the	initial	portfolio.		

As	 a	 matter	 of	 fact,	 after	 the	 initial	 selection	 procedure,	 the	 investor	

become	a	passive	agent	as	he	can	only	watch	the	prices	fluctuate	without	

any	 intervention	 possibility.	 It	 is	 however	 relevant	 to	 introduce	 the	

Markowitz	model	before	the	discussion	of	a	more	advanced	intertemporal	

model.		

	

2.2			MARKOWITZ	PORTFOLIO	
		

The	mean-variance	paradigm	of	Markowitz	is	definitely	the	most	common	

formulation	of	the	portfolio	choice	problems.	It	takes	into	consideration	N	

risky	assets	with	a	random	return	vector	Rt+1	and	a	singular	riskfree	assets	

with	certain	returns	Rft.	The	excess	returns,	indicated	as	rt+1,	are	made	by	

the	 difference	 between	 Rt+1	 and	 Rft	 and	 their	 conditional	 means	 and	
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covariance	matrix	are	indicated	by	µt	and	∑t	respectively.	In	addition,	the	

excess	returns	are	also	considered	i.i.d.	with	constant	moments.		

It	 is	now	first	necessary	to	temporarily	eliminate	the	risk	free	asset	from	

the	problem	environment.	That	 is,	 it	 is	necessary	 to	 suppose	an	 investor	

which	can	only	allocate	his	wealth	to	the	N	risky	securities	available.	In	the	

absence	of	a	risk-free	asset	 ,	 the	mean-variance	problem	is	 to	choose	the	

vector	 of	 portfolio	 weights	 x,	 which	 indicate	 the	 investor’s	 relative	

allocations	of	wealth	to	the	various	risky	assets,	 in	order	to	minimize	the	

variance	 of	 the	 resulting	 portfolio	 return	 Rp,t+1	 =	 x’Rt+1	 while	 also	

generating	 the	 predetermined	 goal	 of	 expected	 return	 Rft+µ.	 That	 is	 as	

saying:	

min
�
var[𝑅½,¾k\] = x’∑x																																																									(2.1)	

	

Subject	to	

	

𝐸 𝑅Â,(k\ = 𝑥Ã 𝑅Ä + µ = 𝑅Ä + µ 	and	 𝑥� = 1�
�[\ 																											(2.2)	

	

The	first	constraint	has	the	role	of	ensuring	that	 the	expect	return	of	 the	

portfolio	is	equal	to	the	desired	target	while	the	second	constraint	ensures	

that	 all	 wealth	 is	 invested	 in	 the	 risky	 assets.	 After	 setting	 up	 the	

Lagrangian	 and	 solving	 the	 resulting	 first-order	 conditions,	 the	 optimal	

portfolio	weights	turn	out	to	be:	

	

𝑥∗ = Λ\ + Λ�µ																																																												(2.3)	

	

with	

	

Λ\ =
\
Ç
[𝐵 𝜄�\

. − 𝐴 µ�\
. ]	and	Λ� =

\
Ç
[𝐶 µ) − 𝐴( 𝜄�\

.
�\
. ]											(2.4)	
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where	𝜄	denotes	 an	 appropriately	 sized	 vector	 of	 ones	 and	 where	 A	

=𝜄′ µ�\
. 	,B=µ′ µ�\

. ,	C=	𝜄′ 𝜄�\
. 	and	D=	BC-A2.		

The	variance	of	this	portfolio,	which	is	the	lowest	variance	possible	given	

the	fixed	expected	return,	is	equal	to	x*’∑x*.	

The	 Markowitz	 paradigm	 has	 the	 virtue	 of	 highlighting	 two	 important	

economic	 insights.	 The	 first	 is	 the	 effect	 of	 diversification,	 that	 is	 the	

possibility	 of	 packaging	 imperfectly	 correlated	 assets	 into	 portfolio	with	

better	expected	return-risk	characteristics.	

The	 second	 one	 is	 the	 fact	 that	 once	 a	 portfolio	 is	 fully	 diversified,	 it	 is	

possible	to	achieve	higher	expected	returns	only	at	a	price	of	the	burden	of	

a	higher	risk,	that	is	by	adopting	more	extreme	allocations	of	the	portfolio	

weights.	 These	 two	 relevant	 insights	 are	 also	 graphically	 visible.	

	
The	 mean-variance	 frontier	 is	 here	 plotted	 as	 a	 hyperbola	 where	 every	

point	 represent	 the	 minimized	 portfolio	 return	 volatility	 for	 a	

predetermined	expected	portfolio	returns.	As	 it	can	be	seen,	portfolios	of	

the	assets	generate	better	risk-return	performances	and	it	is	necessary	to	

move	to	the	right,	that	is	to	increase	the	volatility,	in	order	to	obtain	better	

returns.		
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It	 is	 now	 possible	 to	 reintroduce	 the	 risk-free	 asset	 in	 the	 model.	

Introducing	the	risk-free	assets	introduces	also	the	possibility	of	unlimited	

risk-free	borrowing	and	lending	at	the	risk-free	rate	Rft.		

Due	 to	 the	 addition	 of	 the	 risk-free	 asset,	 any	 portfolio	 on	 the	 mean-

variance	 frontier	 generated	 by	 the	 risky	 asset	 and	 represented	 by	 the	

hyperbola	 can	 now	 be	 combined	 with	 the	 risk-free	 asset	 in	 order	 to	

generate	a	new	expected	return-risk	profile.		

The	newly	created	profile	lies	on	a	straight	line	originating	from	the	point	

indicated	 a	 risk-free	 portfolio,	 that	 is	 a	 portfolio	 fully	 composed	 of	 risk-

free	assets,	and	tangent	to	the	efficient	frontier.	The	optimal	combination	

of	the	risky	frontier	portfolios	with	risk-free	borrowing	and	lending	is	the	

one	maximizing	the	Sharpe	ratio	of	the	whole	portfolio.	The	Sharpe	ratio	is	

defined	as:	

	
·[ËÌ,ÍÎ�]
c(u[ËÌ,ÍÎ�]

																																										(2.5)	

	

and	coincide	with	the	slope	of	the	line	starting	from	the	risk-free	asset	and	

tangent	to	the	efficient	frontier	of	only	risky	assets.		

That	 line	 therefore	 represents	 the	efficient	 frontier	when	borrowing	and	

lending	is	allowed	and	is	composed	by	combinations	of	the	risk-free	asset	

and	the	portfolio	of	risky	asset	tangent	to	the	new	frontier.		

In	 the	 presence	 of	 a	 risky	 asset,	 the	 investor	 devoted	 a	 fraction	 x	 of	 his	

wealth	to	the	risky	assets	and	the	remaining	wealth,	indicated	by	(1-𝜄′x),	is	

allocated	to	the	risk-free	assets.		

The	portfolio	return	is	therefore	a	weighted	average	of	the	returns	of	the	

risk-free	asset	and	of	the	tangency	portfolio	of	risky	assets.	In	other	terms,	

the	return	of	the	newly	composed	portfolio	is:	

	

𝑅Â,(k\ = 𝑥Ã§ÍÎ� + 1 − 𝜄Ã𝑥 𝑅(
Ä = 𝑥ÃËÍÎ� + 𝑅(

Ä																															(2.6)	
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and	 the	 mean-variance	 problem	 can	 be	 expressed	 in	 terms	 of	 excess	

returns:	

	

min
�
𝑣𝑎𝑟 𝑟Â = 𝑥Ã∑𝑥	subject	to	𝐸 𝑟Â = 𝑥Ãµ = µ																										(2.7)	

	

The	solution	to	this	problem	is	represented	by:	

	

𝑥∗ = y
yÃ y��.

Ð

× µ�\
. 																																																					(2.8)	

	

where	𝜆	is	 a	 constant	 that	 scales	 proportionately	 all	 the	 elements	 in	

µ	�\
. in	order	to	achieve	the	preferred	portfolio	risk	premium	µ.	From	this	

expression	 it	 is	 possible	 to	 find	 the	weights	 of	 the	 tangency	portfolio	 by	

noting	 that	 their	 sum	must	 be	 equal	 to	 one.	 Therefore,	 for	 the	 tangency	

portfolio:	

	

𝜆(ÒÓ =
\

ÔÃ y��.
	and	µ(ÒÓ =

yÃ y��
.

�Õ y��.
																																								(2.9)	

	

It	is	not	difficult	to	identify	the	reasons	why	the	Markowitz	paradigm	is	an	

appealing	 one.	 It	 captures	 the	 two	 essential	 aspects	 of	 portfolio	 choice,	

diversification	and	risk-reward	trade-off.		

However,	several	objections	could	be	posed	to	the	paradigm.	The	main	one	

could	 be	 that	 the	 mean-variance	 problem	 is	 a	 myopic	 single-period	

problem	 in	 which	 it	 is	 impossible	 to	 rebalance	 the	 portfolio	 during	 the	

investment	horizon.		
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2.3			PREFERENCES	AND	RISK	AVERSIONS	
	

In	a	financial	market	where	investors	are	facing	uncertainty	it	 is	relevant	

to	 include	 in	 the	 portfolio	 choice	 problem	 also	 the	 preferences	 of	 the	

investor.	Von	Neumann	and	Morgenstern	have	shown	that	it	is	possible	to	

represent	 the	 preferences	 of	 an	 individual	 who	 knows	 the	 probability	

distribution	of	the	random	returns	by	and	expected	utility	criterion.	More	

precisely,	denoting	by	!	the	preference	order	on	the	set	of	random	returns,	

it	 is	 possible	 to	 state	 that	 !	 satisfies	 the	 Von	 Neumann-Morgenstern	

criterion	 if	 there	 exists	 some	 increasing	 function	 U	 fro	 R	 into	 R,	 called	

utility	function,	such	that:	

	

𝑋\ ≻ 𝑋� ⟺ 𝐸 𝑈 𝑋\ > 𝐸[𝑈 𝑋� ]																															(2.10)	

	

The	 increasing	property	of	 the	utility	 function	 indicates	 that	 the	 investor	

prefers	 more	 wealth	 to	 less	 wealth.	 The	 choice	 of	 the	 utility	 function	

allows	 to	apply	 the	notions	of	 risk	aversion	and	risk	premium	stemming	

from	the	fundamental	uncertainty.	

	

• Risk	aversion	and	concavity	of	the	utility	function	

It	 is	 legitimate	 to	 consider	 an	 investor	 who	 dislikes	 risk.	 Therefore,	 in	

respect	to	a	random	return	X,	he	will	prefer	to	receive	with	certainty	the	

expectation	 E[X]	 of	 the	 investment	 return.	 This	 means	 that	 his	 utility	

function	will	satisfy	the	Jensen’s	inequality:	

	

𝑈(𝐸 𝑋 ) ≥ 𝐸[𝑈 𝑋 ]																																												(2.11)	

	

which	stands	true	only	for	concave	functions.	Indeed,	if	a	random	return	X	

taking	 values	 x	 with	 probability	𝜆 ∈ 0,1 	and	 x’	 with	 probability	 1-𝜆	is	

chosen,	it	will	results	that:		
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𝑈 𝜆𝑥 + 1 − 𝜆 𝑥Ã ≥ 𝜆𝑈 𝑥 + 1 − 𝜆 𝑈(𝑥Ã)																								(2.12)	

	

a	fact	that	shows	the	concavity	of	the	utility	function	U.	

	

• Degree	of	risk	aversion	and	risk	premium	

	

For	a	risk-averse	agent	with	a	concave	utility	function	U,	the	risk	premium	

associated	to	a	random	portfolio	return	X	is	defined	as	the	positive	amount	

π=π(X)	 that	 the	 agent	would	 pay	 in	 order	 to	 receive	 a	 certain	 gain.	 It	 is	

defined	by	the	equation:	

	

𝑈 𝐸 𝑋 − 𝜋 = 𝐸[𝑈 𝑋 ]																																														(2.13)	

	

The	quantity	ℰ 𝑋 = 𝐸 𝑋 − 𝜋	is	called	the	certainty	equivalent	of	X	and	is	

smaller	than	the	expectation	of	X.	

Denoting	𝑋 = 𝐸[𝑋]	and	supposing	that	the	portfolio	return	X	is	lowly	risky,	

the	following	approximation	can	be	obtained:		

	

𝑈 𝑋 ≈ 𝑈 𝑋 + 𝑋 − 𝑋 𝑈Ã 𝑋 + \
�
(𝑋 − 𝑋)�𝑈′′(𝑋)																(2.14)	

	

and	so	by	taking	expectation:		

	

𝐸 𝑈 𝑋 ≈ 𝑈 𝑋 + 𝑉𝑎𝑟(𝑋) ÜÃÃ(Ý)
�
																														(2.15)	
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it	will	also	result	that	

𝑈 𝑋 − 𝜋 ≈ 𝑈 𝑋 − 𝜋𝑈′(𝑋)																																		(2.16)	

which	gives	the	approximation	for	the	risk	premium		

	

𝜋 ≈ − ÜÕÕ Ý
�ÜÕ Ý

𝑉𝑎𝑟(𝑋)																																												(2.17)	

	

Hence,	the	certainty	equivalent	of	X	is	given	approximately	by		

	

ℇ 𝑋 = 𝐸 𝑋 − \
�
𝛼 𝑋 𝑉𝑎𝑟(𝑋)																																								(2.18)	

	

where	α(x)	is	defined	as	the	local	absolute	risk	aversion	at	the	return	level	

x	:		

𝛼 𝑥 = −ÜÃÃ(�)
ÜÃ(�)

																																																						(2.19)	

	

The	coefficient	𝛼	is	also	called	the	Arrow-Pratt	coefficient	of	absolute	risk	

aversion	of	U	at	level	x.		

𝛼(𝑋)	can	 therefore	 be	 considered	 as	 the	 factor	 by	 which	 an	 economic	

agent	 with	 utility	 function	 U	 weights	 the	 risk	 and	 as	 the	 factor	 grows	

larger	so	must	 the	expectation	of	 returns	 in	order	 to	compensate	 for	 the	

risk.	When	applying	utility	theory,	it	is	possible	to	consider	the	variance	of	

the	portfolio	as	a	good	indicator	of	the	risk	being	faced	by	the	investor.	
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It	is	also	possible	to	write	the	random	return	𝑋	as	𝑋 = 	𝑋(1 + 𝜀)	where	𝜀	is	

interpreted	 as	 the	 relative	 payoff	 of	 the	 return	𝑋	with	 respect	 to	𝑋,	 and	

define	the	relative	risk	premium	𝜌	of	𝑋	as:	

	

𝑈 𝑋 1 − 𝜌 = 𝐸 𝑈 𝑋 = 𝐸[𝑈 𝑋 1 + 𝜀 ]																					(2.20)	

	

The	relative	risk	premium	is	 interpreted	as	the	proportion	of	return	that	

the	 investor	 is	ready	to	pay	in	order	to	receive	a	certain	payoff.	As	 it	has	

happened	before,	the	risk	premium	𝜌	can	be	approximated	as:	

	

𝜌 ≈ \
�
𝛾 𝑋 𝑉𝑎𝑟(𝜀)																																												(2.21)	

	

Where	

	

𝛾 𝑥 = − �ÜÃÃ(�)
ÜÃ(�)

																																														(2.22)	

	

Is	the	relative	risk	aversion	at	level	x.		

• Common	utility	functions	

o Constant	 Absolute	 Risk	 Aversion	 (CARA):	 𝛼(𝑥) 	equals	 a	

constant	𝛼>0.		

Since	𝛼 𝑥 = −(lnUÃ)′(x),	it	follows	that	𝑈 𝑥 = 𝑎 − 𝑏𝑒�â�.		

By	using	an	affine	transformation,	U	can	be	normalized	to	
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𝑈 𝑥 = 1 − 𝑒�â�																																										(2.23)	

	

o Constant	 Relative	 Risk	 Aversion	 (CRRA):	 𝛾(𝑥) 	equals	 a	

constant	𝛾 ∈ 0,1 .		

Due	to	affine	transformations,	it	is	possible	to	obtain	that	

	

𝑈 𝑥 =
ln 𝑥 ,					for	γ = 1

���ä

\�å
,					𝑓𝑜𝑟	0 < 𝛾 < 1																												(2.24)	

	

  
Example	of	a	CARA	utility	function	
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Example	of	a	CRRA	utility	function	

	

	

2.4			MERTON	PORTFOLIO	PROBLEM	
	

Another	 approach	 to	 selection	 of	 a	 portfolio	which	 includes	 for	 the	 risk	

aversion	 of	 the	 investor	 and	 is	 not	 subject	 to	 the	 static	 nature	 of	 the	

Markowitz	paradigm	was	introduced	by	Robert	Merton	in	1969.		

The	 scenario	 considered	 by	Merton	was	 one	where	 an	 investor	 had	 the	

limited	choice	of	investing	his	wealth	in	only	two	different	assets:	a	risky	

asset	 and	 a	 risk-free	 asset.	 Given	 a	 limited	 time	 horizon,	 the	 goal	 of	 the	
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investor,	who	 is	 risk	 averse,	was	 to	maximize	 the	 expected	 utility	 of	 his	

wealth	at	the	end	of	the	time	span	taken	into	consideration.		

Merton’s	 goal	 was	 to	 determine	 how	 the	 investor	 should	 allocate	 and	

reallocate	his	wealth	 at	 each	 time	point	 in	order	 to	 reach	 the	previously	

selected	goal.			

In	order	to	explain	the	solution	to	the	problem	it	is	necessary	to	recall	the	

previously	 introduced	 dynamics	 concerning	 the	 price	 of	 the	 risky	 asset.	

The	price	of	the	risky	asset	will	therefore	be	denoted	as	St	at	time	t.		

The	parameters	µ	and	σ	represent	respectively	the	drift	and	the	volatility	

of	the	risky	asset.	The	price	of	the	risk-free	asset	at	time	t	is	denoted	by	Rt	

and	satisfies	the	following	deterministic	differential	equation:	

	

𝑑𝑅( = 𝑟𝑅(𝑑t																																																				(2.25)	

	

The	 parameter	 r	 stands	 for	 the	 risk-free	 continuously	 compounding	

interest	rate.	 In	this	setting,	 it	 is	easy	to	assume	that	𝐸[𝑆(] > 𝐸[𝑅(]	which	

also	indicates	that	µ > 𝑟.	

It	is	now	necessary	to	introduce	in	the	model	the	wealth	of	the	investor	at	

time	𝑡,	 denoted	 by	 Vt.	 At	 each	 time	 point	𝑡	the	 investor	 must	 allocate	 a	

fraction	ut	of	his	wealth	in	the	risky	asset.		

The	 remaining	wealth	 1-ut	 is	 invested	 in	 the	 risk-free	 asset.	 This	means	

that	the	value	of	the	risky	investment	at	time	t	is	utVt	and	that	the	value	of	

the	risk-free	investment	is	(1 − 𝑢()𝑉( .	The	stochastic	differential	equation	

of	the	wealth	or	portfolio	value	is	therefore:	

	

𝑑𝑉( = 𝑑𝑢(𝑉( + 𝑑 1 − 𝑢( 𝑉( = µ𝑢(𝑉(𝑑𝑡 + 𝜎𝑢(𝑉(𝑑𝐵( + 𝑟 1 − 𝑢( 𝑉(𝑑𝑡 =

µ𝑢( + 𝑟 1 − 𝑢( 𝑉(𝑑𝑡 + 𝜎𝑢(𝑉(𝑑𝐵( .																					
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The	goal	is	now	to	decide	the	optimal	allocation	strategy	for	ut	at	each	time	

point	 t	 in	 order	 to	 obtain	 the	 best	 possible	 outcome	 at	 some	 future	

terminal	time	T	for	the	investor.		

However,	as	it	has	been	previously	discussed,	an	investor	is	not	concerned	

with	 wealth	 maximization	 per	 se	 but	 with	 utility	 maximization.	 It	 is	

therefore	possible	to	introduce	an	increasing	and	concave	utility	function	

U(x)	representing	the	expected	utility	of	a	risk	averse	investor.		

The	goal	of	the	problem	is	not	anymore	to	maximize	the	expected	portfolio	

value	 but	 to	maximize	 the	 expected	 utility	 stemming	 from	 the	wealth	 at	

the	terminal	time	T.		

If	a	time	horizon	restricted	by	an	initial	time	t0	and	terminal	time	T	and	an	

initial	 portfolio	 value	 Vt0	 are	 assumed,	 then	 it	 is	 possible	 to	 state	 the	

maximization	problem	as:		

	

𝐼 𝑡, 𝑥 = max
çÍ

𝐸[ 𝑈 𝑉� |𝑡n = 𝑡, 𝑉(n = 𝑥]																										(2.26)	

	

This	constitutes	an	optimal	control	problem,	where	the	allocation	strategy	

ut	is	the	actual	control	function.	Defining	

	

𝜙 𝑡, 𝑥 =
𝜕𝐼(𝑡, 𝑥)
𝜕𝑡 + µ𝑢( + 𝑟 1 − 𝑢(

𝜕𝐼 𝑡, 𝑥
𝜕𝑥 +

1
2𝜎

�𝑢(�𝑥�
𝜕�𝐼(𝑡, 𝑥)
𝜕𝑥�

=
𝜕𝐼(𝑡, 𝑥)
𝜕𝑡 + 𝑟 + µ − 𝑟 𝑢(

𝜕𝐼 𝑡, 𝑥
𝜕𝑥 +

1
2𝜎

�𝑢(�𝑥�
𝜕�𝐼(𝑡, 𝑥)
𝜕𝑥� 	

(2.27)	

	

The	optimal	solution	must	satisfy	

	

max
çÍ

𝜙 𝑡, 𝑥 = 0, 𝑡 ∈ [𝑡n, 𝑇],																																		(2.28)	

where	𝜙	indicates	 the	 cumulative	 distribution	 function	 of	 the	 standard	

normal	distribution,	
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and		

	

𝐼(𝑇, 𝑉�) = 𝑈(𝑉�).																																																			(2.29)	

	

This	maximization	problem	 is	 a	 continuous-time	version	of	 the	Bellman-

Dreyfus	 fundamental	 equation	of	optimality.	This	 requirement	 also	gives	

the	optimal	solution	to	the	problem.		

To	find	a	solution	that	is	compatible	with	the	utility	function	𝑈(𝑥),	and	that	

therefore	is	increasing	and	concave,	it	is	required	that	

	𝐼� =
�ê((,�)
��

>0	and	𝐼�� =
��ê((,�)
���

< 0.																																(2.30)	

	

Also,	a	first	order	condition	for	finding	a	maximum	is		

	

µ − 𝑟 𝐼� + 𝜎�𝑢(𝑥𝐼�� = 0																																								(2.31)	

	

which	is	equivalent	to	

	

𝑢( = − y�Ë êë
¡��êëë

																																																			(2.32)	

	

If	this	equation	is	substituted	in	the	equation	for	𝜙(𝑡, 𝑥)	it	happens	that:	

	

𝐼( + 𝑥 𝑟 + µ − 𝑟 −
µ − 𝑟 𝐼�
𝜎�𝑥𝐼��

𝐼�		𝑡 < 𝑇

+
1
2𝜎

�(−
µ − 𝑟 𝐼�
𝜎�𝑥𝐼��

)�𝑥�𝐼�� = 0

𝐼 𝑡, 𝑥 = 𝑈 𝑥 ,					𝑡 = 𝑇

	

↔ 𝐼( + 𝑟𝑥𝐼� −
µ − 𝑟 �𝐼��

𝜎�𝐼��
+
1
2
µ − 𝑟 �𝐼��

𝜎�𝐼��
= 0,				𝑡 < 𝑇

𝐼 𝑡, 𝑥 = 𝑈 𝑥 ,						𝑡 = 𝑇
	



	 -	47	-	

↔ 𝐼( + 𝑟𝑥𝐼� −
µ − 𝑟 �𝐼��

2𝜎�𝐼��
= 0,						𝑡 < 𝑇

𝐼 𝑡, 𝑥 = 𝑈 𝑥 ,								𝑡 = 𝑇
	

	

(2.34)	

	

with	

	𝐼( =
�ê((,�)
�(

.																																																				(2.35)	

	

	

	

2.4.1			POWER	UTILITY	
	

In	the	solution	to	the	Merton’s	portfolio	problem	utility	function	has	been	

left	 as	 an	 unknown	 function	U(x).	 It	 is	 now	 useful	 to	 identify	 a	 function	

which	could	be	used	in	place	of	the	generic	notation	U(x).	

	A	 classic	 solution	 to	 the	 problem	 is	 the	 use	 of	 the	 power	 function	 to	

indicate	the	utility	of	wealth	x.	In	particular,	it	could	be	said	that	

	

𝑈 𝑥 = 𝑥å,			0 < 𝛾 < 1																																														(2.36)	

	

The	 use	 of	 this	 utility	 function	 is	 coherent	 with	 assumption	 previously	

made	 concerning	 the	 increasing	 and	 concave	 characteristics	 of	 the	

function.	It	is	possible	to	refer	to	𝛾	as	the	risk	aversion	parameter.		

A	low	value	of	the	risk	aversion	parameter	is	associated	with	high	aversion	

to	risk	and	vice	versa.	In	order	to	find	a	solution	to	the	problem	using	the	

newly	 introduced	 power	 utility	 function,	 it	 is	 necessary	 to	 insert	 the	

equation	𝐼 𝑡, 𝑥 = 𝑓(𝑡)𝑥å	in	the	final	result	of	the	previous	section.		

That	leads	to	the	following	calculations:	
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𝑓Ã 𝑡 𝑥å + 𝑟𝑥𝑓 𝑡 𝛾𝑥å�\ −
µ − 𝑟 �𝑓� 𝑡 𝛾�𝑥� å�\

2𝜎�𝑓 𝑡 𝛾 𝛾 − 1 𝑥å�� = 0,			𝑡 < 𝑇

𝑓 𝑡 𝑥å = 𝑥å,						𝑡 = 𝑇
	

↔ −
𝑓Ã 𝑡
𝑓 𝑡 = 𝑟𝛾 +

µ − 𝑟 �𝛾
2𝜎� 1 − 𝛾 ,							𝑡 < 𝑇

𝑓 𝑡 = 1,				𝑡 = 𝑇.
	

	

(2.37)	

	

Solving	these	equations	with	respect	to	𝑓(𝑡)	yields	

	

𝑓 𝑡 = exp	 𝑟𝛾 + y�Ë �å
�¡� \�å

𝑇 − 𝑡 																										(2.38)	

	

Substituting	this	solution	into	the	equation		𝐼 𝑡, 𝑥 = 𝑓(𝑡)𝑥å	it	results	that	

	

𝐼 𝑡, 𝑥 = exp	 𝑟𝛾 + y�Ë �å
�¡� \�å

𝑇 − 𝑡 𝑥å																						(2.39)	

	

Finally,	it	is	possible	to	find	the	optimal	control	ut*	by	solving	the	equation		

	

𝑢( = − y�Ë êë
¡��êëë

																																																	(2.40)	

	

with	respect	to	that	last	equation	for	𝐼(𝑡, 𝑥).	

The	result	of	that	operation	is	

	

𝑢(∗ = −
y�Ë íî½ Ëåk ï�ð �ä

�ñ� ��ä
��( å�ä��

¡��ò�Â Ëåk ï�ð �ä
�ñ� ��ä

��( å å�\ �ä��
= y�Ë

¡�(\�å)
												(2.41)	
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which	 is	 a	 constant	 independent	 from	 the	 time	variable.	 It	 is	 possible	 to	

conclude	that	the	optimal	allocation	strategy	is	to	hold	a	constant	fraction	

u*	of	 the	wealth	 in	 the	risky	asset,	and	hence,	a	constant	 fraction	1-u*	 in	

the	risk-free	asset.		

The	ratio	

	

	
y�Ë

¡�(\�å)
																																																									(2.42)	

	

is	also	know	by	the	name	of	Merton	ratio.		

The	numerator	of	the	ratio	 is	the	difference	between	the	risky	asset	drift	

and	the	risk-free	rate	of	return.	In	the	case	the	numerator	is	negative,	and	

therefore	r	is	bigger	than	µ,	the	investor	will	allocate	all	his	wealth	to	the	

risk-free	 asset,	 as	 it	 is	 logical	 given	 that	 it	 would	 offer	 a	 higher	 return	

without	bearing	a	risk.		

In	the	case	instead	that	µ	is	bigger	than	r,	the	investor	will	invest	at	least	a	

fraction	of	his	wealth	on	the	risky	asset.	This	fraction	is	partly	determined	

by	the	size	of	the	difference	between	the	risky	asset	drift	and	the	risk-free	

denominator.	The	denominator	 is	 the	product	between	 the	square	of	 the	

volatility	of	the	risky	asset	and	one	minus	the	risk	aversion	coefficient.		

A	particular	 feature	of	 the	Merton	ratio	 is	given	by	the	fact	 that	the	ratio	

tends	 to	 decrease	 with	 an	 increase	 in	 volatility.	 This	 property	 of	 the	

Merton	ratio	is	an	essential	one	since	it	represents	the	higher	reluctance	in	

investing	in	the	risky	asset	from	a	risk	averse	agent	in	the	case	of	a	higher	

volatility.	One	minus	the	risk	aversion	is	instead	a	scaling	parameter	that	

has	the	role	of	adjusting	the	impact	of	the	volatility	on	the	Merton	ratio.		

It	can	be	seen	how	a	low	value	of	the	parameter	𝛾	scales	up	the	impact	of	

volatility	 in	 relative	 terms	 and	 vice	 versa.	 That	 is	 another	 relevant	

property	 since	 a	 low	 risk	 aversion	 parameter	 value	 must	 be	 associated	

with	high	risk	aversion.		
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CHAPTER	3	
3.1 TEST	OF	PERFORMANCES	

	
The	 aim	 of	 this	 third,	 and	 last,	 chapter	 is	 to	 apply	 the	 theoretical	

frameworks	 introduced	 in	 the	 previous	 chapters	 and	 to	 test	 the	

performances	 that	 they	 would	 have	 had	 if	 used	 in	 the	 real	 world.	 In	

particular,	 this	 chapter	 will	 perform	 a	 confrontation	 between	 the	

Markowitz	mean-variance	model	 and	 the	 portfolio	 solution	 provided	 by	

Merton.	 The	 test	 will	 be	 performed	 on	 the	 same	 data	 set	 previously	

introduced	and	will	deal	specifically	with	the	SPX	index.	SPX	is	the	ticker	

by	which	the	Standards	&	Poor’s	500	is	indicated.	The	S&P	500	is	based	on	

the	capitalization	of	500	large	companies	whose	stocks	are	traded	on	the	

NYSE	and	NASDAQ.	All	other	indexes	quoted	in	the	previous	section	could	

have	 been	 used	 as	 well.	 The	 application	 will	 also	 show	 how	 the	

composition	of	the	portfolio	in	the	Merton	framework	will	vary	as	the	risk	

aversion	of	the	economic	agent	varies.		

The	problem	here	represented	is	of	course	a	big	simplification	of	the	real	

world,	 since	 only	 one	 risky	 asset	 is	 taken	 into	 consideration.	 Moreover,	

transaction	costs	will	be	left	out	of	the	model,	an	assumption	which	can’t	

be	made	in	reality	as	transaction	costs	will	significantly	 limit	 the	amount	

of	rebalancing	the	agent	will	do	at	each	time	point.		

It	 is	 now	 necessary	 to	 introduce	 the	 way	 in	 which	 the	 model	 has	 been	

estimated.	The	first	important	assumption	to	make	in	order	to	run	the	two	

models	is	the	existence	of	a	risk	free	asset.		

	

3.2 RISK-FREE	ASSETS		

	
Both	 the	Markowitz	 and	 the	Merton	 portfolio	 problem	 solutions	 rely	 on	

the	existence	of	an	asset	defined	as	risk-free.	The	term	risk-free	may	mean	
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different	things	to	different	subjects.	There	may	be	a	variety	of	observable	

rates	all	of	which	may	be	described	by	some	as	“risk-free”.	The	main	goal	

in	 selecting	 an	 appropriate	 rate	 should	 be	 to	 pick	 a	 rate	 such	 that	

valuations	of	the	market	turn	out	to	be	consistent.		In	this	sense,	the	risk-

free	 rate	 may	 just	 stand	 for	 what	 could	 be	 otherwise	 described	 as	 the	

“reference	rate”.	A	good	reference	rate	may	then	be	the	yield	available	on	

government	 debt.	 One	 justification	 for	 doing	 so	 is	 that	 the	 government	

debt	 seems	 to	 fit	 more	 naturally	 the	 conventional	 meaning	 of	 the	 term	

‘risk-free’,	especially	if	the	debt	is	in	the	same	currency	of	the	one	used	by	

the	agent.		

It	 is	however	noteworthy	 to	underline	how	different	market	participants	

may	 place	 different	 interpretations	 on	what	 should	 be	 defined	 by	 “risk-

free”	 rate	 as	 the	 risks	 that	 they	 try	 to	 avoid	 may	 vary	 among	 them.	

However,	 for	the	matter	of	this	application,	 it	will	be	sufficient	to	hold	to	

common	 interpretation	and	assume	that	 the	rate	available	on	short-term	

government	bonds	of	the	same	country	of	the	index	of	reference	is	a	good	

approximation	of	a	risk-free	rate.		

Another	consideration	concerning	risk-free	rates	must	be	made	in	the	light	

of	the	recent	economic	crisis.	Since	2008	the	market	itself	is	as	a	matter	of	

fact	 questioning	 the	 level	 of	 risk	 behind	 government-backed	 securities.	

During	 late	 2008	 the	 Bank	 of	 England	 started	 observe	 same	 anomalous	

behaviour	 in	 the	 yield	 curves	 of	 Sterling-denominated	 UK	 government	

debt.	It	was	noticed	that	long-term	debt	was	trading	at	a	higher	rate	than	

overnight	index	swap	contracts,	an	event	which	indicated	that	the	markets	

were	attributing	a	non-zero	market	implied	probability	to	the	government	

altering	 downwards	 previously	 ruling	 coupon	 rates	 on	 some	 of	 their	

outstanding	 long-term	 debt.	 The	 same	 behaviour	 was	 spotted	 in	 other	

European	country	and	signalled	a	growing	concern	about	the	longer-term	

creditworthiness	 of	 the	 governments	 of	 major	 developed	 countries.	 In	

order	to	avoid	such	a	trend,	it	is	useful	to	consider	short	term	debt	since	it	
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has	been	less	influenced	by	this	market	behaviour	due	to	its	lower	level	of	

exposition	to	future	political	decisions.		

Since	the	index	taken	into	account	for	this	chapter	will	be	the	SPX,	that	is	

the	 S&P	 500,	 an	 index	 based	 on	 the	market	 capitalizations	 of	 500	 large	

company	having	 common	stock	 listed	on	 the	NYSE	or	NASDAQ,	 the	 risk-

free	 rate	 considered	 will	 be	 that	 of	 13	 weeks	 US	 government-backed	 t-

bills.	 Those	 are	 short	 term	 debit	 securities	 issued	 by	 the	 American	

government.		

The	rates	that	will	be	later	used	are	gathered	in	the	following	table.	

	

DATE	OF	ISSUANCE	 13	WEEKS	RATE	

3rd	January	2012	 0.02	

2nd	January	2013	 0.06	

2nd	January	2014	 0.06	

2nd	January	2015	 0.03	

Source:	U.S.	Department	of	the	Treasury	
	

3.3 RISK	AVERSION	COEFFICIENTS	
The	 Merton	 portfolio	 choice	 model,	 as	 it	 has	 been	 previously	 shown,	

includes	 the	 utility	 of	 the	 economic	 agents	 into	 its	 framework.	 In	

particular,	 in	 order	 to	 have	 the	 discretization	 of	 the	 problem	 shown	 in	

equation	 (2.41)	 it	 is	 necessary	 to	 select	 a	 risk	 aversion	 coefficient.	 Risk	

aversion	 is	 a	 commonly	 accepted	 notion	 in	 economics	 and	 is	 easily	

recognizable	 in	 everyday	 life.	 Both	 investors	 and	 households	 would	 be	

willing	 to	 give	 up	 at	 least	 a	 small	 fraction	 of	 their	 potential	 earnings	 in	

order	to	have	a	guaranteed	income.	In	the	aforementioned	utility	function,	

it	can	be	easily	seen	how	risk	aversion	increases	as	the	factor	𝛾	decreases.		

As	 a	 matter	 of	 fact,	 a	 value	 of	𝛾	close	 to	 one	 or	 equal	 to	 one	 would	

therefore	 be	 an	 unpractical	 one	 as	 it	 would	 make	 the	 agent	 indifferent	

between	certain	incomes	and	expected	incomes.		
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For	the	purpose	of	this	application,	different	values	of	𝛾	will	be	taken	into	

consideration.	 Those	 values	 have	 not	 been	 inferred	 from	 populations	

studies,	 as	 it	 could	be	possible,	 since	 such	an	effort	 is	 beyond	 the	 scope.	

However,	 they	 should	 be	 significant	 enough	 in	 understanding	 how	

different	 relationships	 to	 risk	 by	 economic	 agents	 can	 influence	 their	

approach	to	the	market.		

The	risk	aversion	coefficients	used	are	therefore:		

	

𝛾 ∈ 0.2; 0.3; 0.4; 0.5  

	

3.4 PROCEDURE	FOR	THE	MERTON	PORTFOLIO	
Having	 introduced	the	risk	 free	rates	and	the	values	of	risk	aversion	 it	 is	

now	possible	to	move	on	to	more	practical	matters.		

The	application	of	 the	 two	portfolio	 theories	will	be	done	 in	a	 simplified	

way,	 as	 there	will	 be	 only	 one	 risky	 asset	 considered.	 The	 risky	 asset	 of	

matter	 will	 be	 the	 SPX	 index,	 the	 index	 comprising	 the	 500	 American	

companies	with	the	highest	capitalization.		

The	 Merton	 portfolio	 will	 be	 reallocated	 for	 different	 years	 and	 its	

evolution	will	 be	 reported	 in	 order	 to	 assess	what	would	 have	 been	 the	

final	return	on	a	hypothetical	investment.	Given	the	length	of	the	data	set	

introduced	 in	Chapter	One,	 the	 first	portfolio	will	 be	 created	on	 the	 first	

available	day	of	the	year	2012	and	the	data	from	year	2000	to	year	2011	

will	be	used	as	the	background	for	the	purpose	of	estimating	the	historic	

expected	 returns	 and	 volatility	 of	 the	 market.	 As	 the	 portfolio	 will	 be	

reallocated,	 the	 additional	 year	 of	 information	 will	 be	 merged	 into	 the	

background	data	and	used	for	the	historic	estimations.	

The	same	procedure	will	be	done	for	the	different	degrees	of	risk	aversion	

selected	 so	 that	 in	 the	 end	 it	 will	 be	 possible	 to	 perform	 a	 comparison	

within	different	time	periods	and	different	typology	of	investors.		
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The	 calculations	 will	 be	 performed	 on	 the	 MATLAB	 platform	 and	 the	

commands	 used	 to	 complete	 the	 procedure	 will	 be	 reported	 in	 the	

appendix.		

	

3.5 APPLICATION	OF	MERTON	PORTFOLIO	THEORY	
The	MATLAB	codes	used	in	those	calculation	are	available	in	the	appendix.	

For	a	better	clarity,	only	 the	 findings	of	 the	applications	will	be	reported	

here	in	the	following	tables.		

	

3.5.1 𝜸 = 𝟎. 𝟐	

	

Ratio	of	portfolio	on	market	asset	for	

2012	

36.73%	

Return	of	portfolio	for	2012	 4.73%	

Ratio	of	portfolio	on	market	asset	for	

2013	

59.38%	

Return	of	portfolio	for	2013	 16.28%	

Ratio	of	portfolio	on	market	asset	for	

2014	

100%	

Return	of	portfolio	for	2014	 13.16%	

Ratio	of	portfolio	on	market	asset	for	

2015	

100%	

Return	of	portfolio	for	2015	 0.51%	

Annualized	Return	 9.6%	

	

3.5.2 𝜸 = 𝟎. 𝟑	

	

Ratio	of	portfolio	on	market	asset	for	

2012	

41.98%	

Return	of	portfolio	for	2012	 5.39%	

Ratio	of	portfolio	on	market	asset	for	 67.87%	
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2013	

Return	of	portfolio	for	2013	 18.57%	

Ratio	of	portfolio	on	market	asset	for	

2014	

100%	

Return	of	portfolio	for	2014	 13.16%	

Ratio	of	portfolio	on	market	asset	for	

2015	

100%	

Return	of	portfolio	for	2015	 0.51%	

Annualized	Return	 10.31%	

	

3.5.3 𝜸 = 𝟎. 𝟒	

	

Ratio	of	portfolio	on	market	asset	for	

2012	

48.98%	

Return	of	portfolio	for	2012	 6.27%	

Ratio	of	portfolio	on	market	asset	for	

2013	

79.18%	

Return	of	portfolio	for	2013	 21.62%	

Ratio	of	portfolio	on	market	asset	for	

2014	

100%	

Return	of	portfolio	for	2014	 13.16%	

Ratio	of	portfolio	on	market	asset	for	

2015	

100%	

Return	of	portfolio	for	2015	 0.51%	

Annualized	Return	 11.66%	

	

3.5.4 𝜸 = 𝟎. 𝟓	

	

Ratio	of	portfolio	on	market	asset	for	

2012	

58.77%	

Return	of	portfolio	for	2012	 7.51%	

Ratio	of	portfolio	on	market	asset	for	 95.01%	
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2013	

Return	of	portfolio	for	2013	 25.90%	

Ratio	of	portfolio	on	market	asset	for	

2014	

100%	

Return	of	portfolio	for	2014	 13.16%	

Ratio	of	portfolio	on	market	asset	for	

2015	

100%	

Return	of	portfolio	for	2015	 0.51%	

Annualized	Return	 13.28%	

	

3.6 PROCEDURE	FOR	THE	MARKOWITZ	PORTFOLIO	

	
The	procedure	used	 in	 the	application	of	 the	Markowitz	portfolio	 theory	

will	be	slightly	different	from	the	one	used	in	the	Merton	portfolio.	Given	

the	different	nature	of	the	two	portfolio	problem,	the	Markowitz	portfolio	

won’t	be	 reallocated	over	 the	course	of	 time	but	will	 instead	be	 fixed	on	

the	first	trading	day	of	2012	and	held	until	the	end	of	2015.	The	risk	free	

rates	used	here	will	be	the	same	as	the	one	used	in	precedence.	

However,	 another	 relevant	 difference	 must	 be	 highlighted.	 The	 main	

investor	characteristic	by	which	the	Merton	portfolio	choice	is	influenced	

is	 the	 investor	risk	aversion,	a	 factor	which	affects	 the	 final	choice	of	 the	

portfolio.	 In	 the	 Markowitz	 case	 the	 subjectivity	 of	 the	 investor	 is	

incorporated	 through	 the	 selection	 of	 the	 preferred	 volatility	 rate	 or	

return	 rate.	 As	 the	matter	 of	 fact,	 it	 is	 impossible	 to	 determine	 an	 exact	

portfolio	allocation	without	first	fixing	one	of	those	two	constraints.	

As	it	was	done	before,	those	constraints	will	be	arbitrarily	placed	in	order	

to	show	how	the	allocation	of	the	portfolio	may	vary	as	the	risk	accepted	

to	burden	by	the	investor	decreases	or	increases.		

The	volatility	rates	selected	for	the	portfolio	are	hereby	summarized:	
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Annual	Portfolio	Accepted	Variance	

5%	

10%	

15%	

17.50%	

	

	
3.7 APPLICATION	OF	MARKOWITZ	PORTFOLIO		
	

3.7.1 𝝈 = 𝟓%	

	

Ratio	invested	on	market	asset	 22.48%	

Ratio	invested	on	risk-free	asset	 77.52%	

Portfolio	return	for	2012	 2.92%	

Portfolio	return	for	2013	 6.31%	

Portfolio	return	for	2014	 3.15%	

Portfolio	return	for	2015	 0.21%	

Annualized	portfolio	return	 3.12%	

	

3.7.2 𝝈 = 𝟏𝟎%	

	

Ratio	invested	on	market	asset	 44.97%	

Ratio	invested	on	risk-free	asset	 55.03%%	

Portfolio	return	for	2012	 5.77%	

Portfolio	return	for	2013	 12.38%	

Portfolio	return	for	2014	 6.05%	

Portfolio	return	for	2015	 0.29%	

Annualized	portfolio	return	 6.04%	
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3.7.3 𝝈 = 𝟏𝟓%	

	

Ratio	invested	on	market	asset	 67.45%	

Ratio	invested	on	risk-free	asset	 32.55%	

Portfolio	return	for	2012	 8.61%	

Portfolio	return	for	2013	 18.46%	

Portfolio	return	for	2014	 8.96%	

Portfolio	return	for	2015	 0.38%	

Annualized	portfolio	return	 8.91%	

	

3.7.4 𝝈 = 𝟏𝟕. 𝟓%	
	

Ratio	invested	on	market	asset	 78.69%	

Ratio	invested	on	risk-free	asset	 21.31%	

Portfolio	return	for	2012	 10.03%	

Portfolio	return	for	2013	 21.49%	

Portfolio	return	for	2014	 10.41%	

Portfolio	return	for	2015	 0.42%	

Annualized	portfolio	return	 13.28%	

	

The	different	allocations	of	the	portfolios	created	with	the	two	models	can	

now	 be	 summarized	 in	 the	 following	 graph.	 The	 percentage	 of	 the	 risky	

asset	 is	reported	on	the	y-axis	and	the	percentage	of	risk-free	asset	 is	on	

the	x-axis.	As	it	can	be	easily	seen	all	the	portfolios	relies	on	a	straight	line	

as	they	are	simply	linear	combinations	of	the	two	assets	typology.		
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3.8 ANALYSIS	OF	THE	TWO	RESULTS		
	

It	is	now	possible	to	highlights	some	of	the	differences	that	have	arisen	in	

the	results	of	the	two	models.		

The	main	difference	consists	 in	the	 incapacity	of	 the	Markowitz	model	 in	

adapting	 to	 a	well	 performing	market.	 The	Merton	model	 as	 a	matter	 of	

fact	 partly	 “recognize”	 the	 way	 in	 which	 the	 market	 was	 strongly	

outperforming	 the	 t-bills	 returns	and	allocates	more	and	more	resources	

on	the	market	asset.	It	is	important	to	also	specify	that	in	this	application	

short-selling	 was	 not	 allowed.	 In	 2014	 and	 2015	 the	 Merton	 model	

suggested	some	amount	of	borrowing	for	all	the	investors	and	that	is	the	

reason	 behind	 the	 fact	 that	 the	 entire	 portfolios	 were	 allocated	 on	 the	

market	assets.		

Another	differences	 stems	 from	 the	higher	variations	 in	 the	allocation	of	

the	portfolio	stemming	from	changes	in	the	preference	for	volatility	in	the	

Markowitz	model	 than	those	recognizable	 for	changes	 in	risk	aversion	 in	

the	Merton	model.		

For	year	2012,	the	difference	between	the	percentage	of	risky	assets	in	the	

least	averse	agent	and	the	most	averse	agent	is	around	twenty	percent	for	

the	 Merton	 model.	 When	 the	 Markowitz	 model	 is	 instead	 taken	 into	

account,	the	same	difference	stands	at	more	than	50%.	

Some	more	clarifications	are	indeed	necessaries	concerning	the	results	of	

the	 two	 application.	 In	 particular,	 it	 is	 striking	 how	 the	 performances	 of	

the	SPX	index	in	the	analysed	years	are	incredibly	higher	than	the	historic	

records	for	the	same	asset.	Moreover,	it	is	also	relevant	to	underline	how	

substantial	in	magnitude	is	the	difference	between	the	returns	on	the	risk	

free	asset	 and	 the	 risky	asset.	While	 those	 characteristics	 are	not	 crucial	

for	the	consistency	of	this	thesis,	they	will	be	briefly	introduced.		

It	is	easy	to	identify	2013	as	the	year	where	the	performances	of	the	S&P	

500	 index	were	high	enough	 to	 increase	sensibly	 the	performance	of	 the	
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entire	portfolios.	Such	a	strong	effect	is	also	the	product	of	a	behaviour	of	

the	applied	model	which	could	be	never	experienced	in	reality	and	that	is	

the	lack	of	diversification.		

The	use	of	a	non-diversified	portfolio	obviously	exposes	the	investor,	and	

consequently	the	whole	portfolio,	to	an	outlying	behaviour	of	the	market.		

This	is	essentially	in	the	case	in	the	previous	application.		

In	2013	the	Standard	&	Poor’s	500	Index	posted	its	biggest	annual	advance	

since	 1997	 as	 an	 increase	 in	 consumer	 confidence	 and	 housing	 prices	

bolstered	the	American	economy.	

The	S&P500	jumped	30	percent	in	2013	and	ended	the	year	at	an	all-time	

high	posting	a	173	percent	increase	from	its	12-year	low	reached	in	2009.	

The	fact	that	such	a	low	was	in	the	historic	data	used	to	estimate	the	stock	

average	 return	 is	 certainly	 another	 factor	 that	 has	 had	 an	 effect	 on	 the	

applications	of	the	models.		

Additional	remarkable	events	were	the	fact	that	all	the	10	main	industries	

in	the	index	concluded	the	year	with	a	positive	increase	and	a	total	of	460	

stocks	were	up	during	2013,	a	condition	that	hadn’t	happen	since	1990.	

The	number	of	those	companies	included	astonishing	performances	from	

Netflix,	up	298	percent,	Micron,	up	243	percent	and	Best	Buy,	up	237.	

In	the	light	of	these	events,	it	is	easier	to	understand	the	reason	behind	the	

unexpected	results	of	the	two	portfolios	in	the	analysed	timespan.	

Another	 condition	 which	 is	 strongly	 different	 from	 a	 typical	 setting	 for	

those	kinds	of	portfolio	problem	is	constituted	by	the	extraordinarily	low	

rates	of	the	t-bills,	which	are	here	used	as	a	proxy	for	a	risk-free	rate.		

On	the	16th	of	December	of	2008	the	Federal	Reserve	took	the	decision	of	

cutting	 the	 funds	rate	 to	 the	band	of	0	 to	0.25%,	concluding	a	cut	of	500	

basis	 points	 over	 the	 course	 of	 the	 precedent	 year.	 This	 move	 was	 a	

reaction	 to	 the	 deepening	 recession	 that	 the	 American	 economy	 was	

experiencing.	 The	 aim	 of	 such	 a	 move	 from	 the	 FED	 was	 to	 stimulate	



	 -	61	-	

growth	by	prompting	 individuals	 and	businesses	 to	 increase	 the	 level	 of	

investment	and	spending.		

The	effect	of	such	a	policy	can	be	easily	seen	also	in	the	application	of	the	

two	portfolio	 theories	 reported	 before.	 Given	 the	 incredibly	 low	 interest	

rates,	the	risk	premium	from	an	investment	in	market	stocks	is	incredibly	

higher	and	that	is	widely	manifested	in	the	portfolio	allocation	for	Merton	

theory	during	the	years	2014	and	2015.	In	those	years,	as	a	matter	of	fact,	

the	Merton	 ratio	 suggests	 to	 short-sell	 risk	 free	 assets	 and	 invest	 on	 the	

S&P500	index,	a	condition	not	allowed	in	this	setting.		

	

	

3.9 CONCLUSION	

	
It	 is	 now	 possible	 to	 briefly	 sum	 up	 the	 topics	 discussed	 before	 in	 this	

work.	

In	 the	 first	 chapter	 the	 main	 theoretical	 frameworks	 behind	 returns	

estimation	and	prediction	have	been	introduced.	As	it	has	been	seen,	such	

models	 hardly	 adapt	 well	 when	 applied	 to	 real	 world	 assets.	 However,	

those	models	are	the	pillars	upon	which	modern	mathematical	 finance	 is	

founded	and	are	still	useful	if	properly	used.	The	main	assumption	which	

doesn’t	translate	to	the	real	financial	world	is	the	normality	of	the	return	

distribution.	 Due	 to	 a	 number	 of	 reasons	 already	 explained	 such	 an	

assumption	 is	not	 consistent	with	empirical	data	and	a	proof	of	 that	has	

been	provided	by	the	Jarque-Bera	test.		

The	second	chapter	 introduces	 the	portfolio	problem	theories	 that	are	at	

the	core	of	this	thesis.	The	Merton	portfolio	problem	in	particular	has	been	

introduced	 and	 the	mathematical	 framework	 behind	 has	 been	 explained	

and	described.	In	order	to	have	a	discrete	form	of	the	same	model,	a	power	

utility	function	has	been	adopted	and	plugged	into	the	model.	Due	to	this	

choice,	an	explicit	solution	to	the	problem	can	be	found.	
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In	 the	 third	 and	 last	 chapter	 the	 two	 portfolio	 problem	 solutions	

introduced	 in	 the	 second	 chapter,	 the	 Merton	 portfolio	 and	 Markowitz	

portfolio	models,	have	been	applied	to	real	world	data	 in	the	form	of	 the	

S&P500	index	and	the	U.S.	13-weeks	t-bills.	The	two	applications	showed	

how	 the	portfolio	 composition	 could	 vary	 as	 the	 type	 of	 economic	 agent	

changed.	This	change	was	 firstly	represented	by	different	degrees	of	risk	

aversion	 and	 then	 by	 different	 preferred	 portfolio	 volatility.	 The	

performance	 of	 the	 various	 portfolios	 has	 then	 been	 reported	 and	

analysed	both	on	a	year-by-year	basis	and	then	on	an	overall	point	of	view.	

The	main	aim	of	 this	 thesis	was	to	provide	a	 first	 look	at	more	advanced	

form	of	portfolio	 selection	 theory	 than	 the	basic	mean-variance	portfolio	

optimization	 problem.	 Many	 factors	 could	 have	 been	 added	 in	 order	 to	

further	 advance	 the	 theoretical	 framework,	 in	 particular	 the	 addition	 of	

transaction	 costs	 and	 stochastic	 volatility	 would	 have	 helped	 in	 the	

process	of	further	aligning	the	theoretical	world	with	the	real	one.		

Even	 though	 those	 elements	 were	 not	 part	 of	 the	 work,	 the	 topics	

introduced	here	 should	 still	 represent	 a	 valid	 foundation	and	are	 a	 solid	

foundation	upon	which	further	developments	could	be	made.		
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MATLAB	APPENDIX		
	

KOLOMOGOROV-SMIRNOV	TEST	

	

The	 codes	 here	 reported	 have	 been	 used	 to	 perform	 the	 Kolmogorov-

Smirnov	 test	 in	 Chapter	 One.	 The	 main	 command	 here	 used	 is	 “kstest”	

which	is	the	built-in	Matlab	command	for	said	test.	

	
standSPX=(ReturnsSPX-nanmean(ReturnsSPX))/nanstd(ReturnsSPX) 
hKSspx=kstest(standSPX) 
standUKX=(ReturnsUKX-nanmean(ReturnsUKX))/nanstd(ReturnsUKX) 
hKSukx=kstest(standUKX) 
standAS51=(ReturnsAS51-
nanmean(ReturnsAS51))/nanstd(ReturnsAS51) 
hKSas51=kstest(standAS51) 
standCAC=(ReturnsCAC-nanmean(ReturnsCAC))/nanstd(ReturnsCAC) 
hKScac=kstest(standCAC) 
standCCMP=(ReturnsCCMP-
nanmean(ReturnsCCMP))/nanstd(ReturnsCCMP) 
hKSccmp=kstest(standCCMP) 
standDax=(ReturnsDax-nanmean(ReturnsDax))/nanstd(ReturnsDax) 
hKSdax=kstest(standDax) 
standFTSEMIB=(ReturnsFTSEMIB-
nanmean(ReturnsFTSEMIB))/nanstd(ReturnsFTSEMIB) 
hKSftsemib=kstest(standFTSEMIB) 
standINDEXCF=(ReturnsINDEXCF-
nanmean(ReturnsINDEXCF))/nanstd(ReturnsINDEXCF) 
hKSindexcf=kstest(standINDEXCF) 
standMXBR=(ReturnsMXBR-
nanmean(ReturnsMXBR))/nanstd(ReturnsMXBR) 
hKSmxbr=kstest(standMXBR) 
standNKY=(ReturnsNKY-nanmean(ReturnsNKY))/nanstd(ReturnsNKY) 
hKSnky=kstest(standNKY) 
standSASEIDX=(ReturnsSASEIDX-
nanmean(ReturnsSASEIDX))/nanstd(ReturnsSASEIDX) 
hKSsaseidx=kstest(standSASEIDX) 
standSHCOMP=(ReturnsSHCOMP-
nanmean(ReturnsSHCOMP))/nanstd(ReturnsSHCOMP) 
hKSshcomp=kstest(standSHCOMP) 
standSMI=(ReturnsSMI-nanmean(ReturnsSMI))/nanstd(ReturnsSMI) 
hKSsmi=kstest(standSMI) 
standSPTSX=(ReturnsSPTSX-
nanmean(ReturnsSPTSX))/nanstd(ReturnsSPTSX) 
hKSsptsx=kstest(standSPTSX) 
standUKX=(ReturnsUKX-nanmean(ReturnsUKX))/nanstd(ReturnsUKX) 
hKSukx=kstest(standUKX) 
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JARQUE-BERA	TEST	

	

The	codes	here	reported	have	been	used	to	perform	the	Jarque-Bera	test	in	

Chapter	One.	The	main	command	here	used	is	“jbtest”	which	is	the	built-in	

Matlab	command	for	said	test.	

	

	
hJBspx=jbtest(ReturnsAS51) 
hJBcac=jbtest(ReturnsCAC) 
hJBCCMP=jbtest(ReturnsCCMP) 
hJBDax=jbtest(ReturnsDax) 
hJBFTSEMIB=jbtest(ReturnsFTSEMIB) 
hJBINDEXCF=jbtest(ReturnsINDEXCF) 
hJBMXBR=jbtest(ReturnsMXBR) 
hJBNKY=jbtest(ReturnsNKY) 
hJBSASEIDX=jbtest(ReturnsSASEIDX) 
hJBSHCOMP=jbtest(ReturnsSHCOMP) 
hJBSMI=jbtest(ReturnsSMI) 
hJBSPTSX=jbtest(ReturnsSPTSX) 
hJBSPX=jbtest(ReturnsSPX) 
hJBUKX=jbtest(ReturnsUKX) 
	

MERTON	PORTFOLIOS	

	

The	codes	here	reported	are	those	used	to	estimate	the	composition	of	the	

portfolios	 under	 the	Merton	 framework.	 First	 the	 historical	moments	 of	

the	asset	have	been	estimated	and	 then	 later	 they	have	been	 inserted	 in	

the	explicit	solution	found	in	Chapter	Two.	The	process	has	been	done	four	

times	 for	 each	 portfolio	 and	 the	 historical	 moments	 have	 been	 updated	

every	time	in	order	to	incorporate	the	additional	informations	provided	by	

the	previous	market	year.		

	
SPX2011return=price2ret(SPX2011,[],'Periodic') 
MeanRet2011=((1+(nanmean(SPX2011return))).^252)-1 
VAR2011=((1+var(SPX2011return)).^252)-1 
RiskFree2012=((1.0002).^4)-1 
MertonRatio201104=(MeanRet2011-RiskFree2012)./(VAR2011*(1-
0.4)) 
MarketReturn2012=price2ret(SPXONLY2012,[],'Periodic') 
MeanRet2012ONLY=((1+(nanmean(MarketReturn2012))).^252)-1 
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PortfolioReturn201204=(MertonRatio201104*MeanRet2012ONLY)+((1-
MertonRatio201104)*RiskFree2012) 
SPX2012return=price2ret(SPX2012,[],'Periodic') 
MeanRet2012=((1+(nanmean(SPX2012return))).^252)-1 
VAR2012=((1+var(SPX2012return)).^252)-1 
RiskFree2013=((1.0006).^4)-1 
MertonRatio201204=(MeanRet2012-RiskFree2013)./(VAR2012*(1-
0.4)) 
MarketReturn2013=price2ret(SPXONLY2013,[],'Periodic') 
MeanRet2013ONLY=((1+(nanmean(MarketReturn2013))).^252)-1 
PortfolioReturn201304=(MertonRatio201204*MeanRet2013ONLY)+((1-
MertonRatio201204)*RiskFree2013) 
SPX2013return=price2ret(SPX2013,[],'Periodic') 
MeanRet2013=((1+(nanmean(SPX2013return))).^252)-1 
VAR2013=((1+var(SPX2013return)).^252)-1 
RiskFree2014=((1.0006).^4)-1 
MertonRatio201304=(MeanRet2013-RiskFree2014)./(VAR2013*(1-
0.4)) 
MarketReturn2014=price2ret(SPXONLY2014,[],'Periodic') 
MeanRet2014ONLY=((1+(nanmean(MarketReturn2014))).^252)-1 
PortfolioReturn201404=(1*MeanRet2014ONLY)+((1-1)*RiskFree2014) 
SPX2014return=price2ret(SPX2014,[],'Periodic') 
MeanRet2014=((1+(nanmean(SPX2014return))).^252)-1 
VAR2014=((1+var(SPX2014return)).^252)-1 
RiskFree2015=((1.0003).^4)-1 
MertonRatio201404=(MeanRet2014-RiskFree2015)./(VAR2014*(1-
0.4)) 
MarketReturn2015=price2ret(SPXONLY2015,[],'Periodic') 
MeanRet2015ONLY=((1+(nanmean(MarketReturn2015))).^252)-1 
PortfolioReturn201504=(1*MeanRet2015ONLY)+((1-1)*RiskFree2015) 
  
SPX2011return=price2ret(SPX2011,[],'Periodic') 
MeanRet2011=((1+(nanmean(SPX2011return))).^252)-1 
VAR2011=((1+var(SPX2011return)).^252)-1 
RiskFree2012=((1.0002).^4)-1 
MertonRatio201105=(MeanRet2011-RiskFree2012)./(VAR2011*(1-
0.5)) 
MarketReturn2012=price2ret(SPXONLY2012,[],'Periodic') 
MeanRet2012ONLY=((1+(nanmean(MarketReturn2012))).^252)-1 
PortfolioReturn201205=(MertonRatio201105*MeanRet2012ONLY)+((1-
MertonRatio201105)*RiskFree2012) 
SPX2012return=price2ret(SPX2012,[],'Periodic') 
MeanRet2012=((1+(nanmean(SPX2012return))).^252)-1 
VAR2012=((1+var(SPX2012return)).^252)-1 
RiskFree2013=((1.0006).^4)-1 
MertonRatio201205=(MeanRet2012-RiskFree2013)./(VAR2012*(1-
0.5)) 
MarketReturn2013=price2ret(SPXONLY2013,[],'Periodic') 
MeanRet2013ONLY=((1+(nanmean(MarketReturn2013))).^252)-1 
PortfolioReturn201305=(MertonRatio201205*MeanRet2013ONLY)+((1-
MertonRatio201205)*RiskFree2013) 
SPX2013return=price2ret(SPX2013,[],'Periodic') 
MeanRet2013=((1+(nanmean(SPX2013return))).^252)-1 
VAR2013=((1+var(SPX2013return)).^252)-1 
RiskFree2014=((1.0006).^4)-1 
MertonRatio201305=(MeanRet2013-RiskFree2014)./(VAR2013*(1-
0.5)) 
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MarketReturn2014=price2ret(SPXONLY2014,[],'Periodic') 
MeanRet2014ONLY=((1+(nanmean(MarketReturn2014))).^252)-1 
PortfolioReturn201405=(1*MeanRet2014ONLY)+((1-1)*RiskFree2014) 
SPX2014return=price2ret(SPX2014,[],'Periodic') 
MeanRet2014=((1+(nanmean(SPX2014return))).^252)-1 
VAR2014=((1+var(SPX2014return)).^252)-1 
RiskFree2015=((1.0003).^4)-1 
MertonRatio201405=(MeanRet2014-RiskFree2015)./(VAR2014*(1-
0.5)) 
MarketReturn2015=price2ret(SPXONLY2015,[],'Periodic') 
MeanRet2015ONLY=((1+(nanmean(MarketReturn2015))).^252)-1 
PortfolioReturn201505=(1*MeanRet2015ONLY)+((1-1)*RiskFree2015) 
 
SPX2011return=price2ret(SPX2011,[],'Periodic') 
MeanRet2011=((1+(nanmean(SPX2011return))).^252)-1 
VAR2011=((1+var(SPX2011return)).^252)-1 
RiskFree2012=((1.0002).^4)-1 
MertonRatio201103=(MeanRet2011-RiskFree2012)./(VAR2011*(1-
0.3)) 
MarketReturn2012=price2ret(SPXONLY2012,[],'Periodic') 
MeanRet2012ONLY=((1+(nanmean(MarketReturn2012))).^252)-1 
PortfolioReturn201203=(MertonRatio201103*MeanRet2012ONLY)+((1-
MertonRatio201103)*RiskFree2012) 
SPX2012return=price2ret(SPX2012,[],'Periodic') 
MeanRet2012=((1+(nanmean(SPX2012return))).^252)-1 
VAR2012=((1+var(SPX2012return)).^252)-1 
RiskFree2013=((1.0006).^4)-1 
MertonRatio201203=(MeanRet2012-RiskFree2013)./(VAR2012*(1-
0.3)) 
MarketReturn2013=price2ret(SPXONLY2013,[],'Periodic') 
MeanRet2013ONLY=((1+(nanmean(MarketReturn2013))).^252)-1 
PortfolioReturn201303=(MertonRatio201203*MeanRet2013ONLY)+((1-
MertonRatio201203)*RiskFree2013) 
SPX2013return=price2ret(SPX2013,[],'Periodic') 
MeanRet2013=((1+(nanmean(SPX2013return))).^252)-1 
VAR2013=((1+var(SPX2013return)).^252)-1 
RiskFree2014=((1.0006).^4)-1 
MertonRatio201303=(MeanRet2013-RiskFree2014)./(VAR2013*(1-
0.3)) 
MarketReturn2014=price2ret(SPXONLY2014,[],'Periodic') 
MeanRet2014ONLY=((1+(nanmean(MarketReturn2014))).^252)-1 
PortfolioReturn201403=(1*MeanRet2014ONLY)+((1-1)*RiskFree2014) 
SPX2014return=price2ret(SPX2014,[],'Periodic') 
MeanRet2014=((1+(nanmean(SPX2014return))).^252)-1 
VAR2014=((1+var(SPX2014return)).^252)-1 
RiskFree2015=((1.0003).^4)-1 
MertonRatio201403=(MeanRet2014-RiskFree2015)./(VAR2014*(1-
0.3)) 
MarketReturn2015=price2ret(SPXONLY2015,[],'Periodic') 
MeanRet2015ONLY=((1+(nanmean(MarketReturn2015))).^252)-1 
PortfolioReturn201503=(1*MeanRet2015ONLY)+((1-1)*RiskFree2015) 
 
SPX2011return=price2ret(SPX2011,[],'Periodic') 
MeanRet2011=((1+(nanmean(SPX2011return))).^252)-1 
VAR2011=((1+var(SPX2011return)).^252)-1 
RiskFree2012=((1.0002).^4)-1 
MertonRatio201102=(MeanRet2011-RiskFree2012)./(VAR2011*(1-



	 -	67	-	

0.2)) 
MarketReturn2012=price2ret(SPXONLY2012,[],'Periodic') 
MeanRet2012ONLY=((1+(nanmean(MarketReturn2012))).^252)-1 
PortfolioReturn201202=(MertonRatio201102*MeanRet2012ONLY)+((1-
MertonRatio201102)*RiskFree2012) 
SPX2012return=price2ret(SPX2012,[],'Periodic') 
MeanRet2012=((1+(nanmean(SPX2012return))).^252)-1 
VAR2012=((1+var(SPX2012return)).^252)-1 
RiskFree2013=((1.0006).^4)-1 
MertonRatio201202=(MeanRet2012-RiskFree2013)./(VAR2012*(1-
0.2)) 
MarketReturn2013=price2ret(SPXONLY2013,[],'Periodic') 
MeanRet2013ONLY=((1+(nanmean(MarketReturn2013))).^252)-1 
PortfolioReturn201302=(MertonRatio201202*MeanRet2013ONLY)+((1-
MertonRatio201202)*RiskFree2013) 
SPX2013return=price2ret(SPX2013,[],'Periodic') 
MeanRet2013=((1+(nanmean(SPX2013return))).^252)-1 
VAR2013=((1+var(SPX2013return)).^252)-1 
RiskFree2014=((1.0006).^4)-1 
MertonRatio201302=(MeanRet2013-RiskFree2014)./(VAR2013*(1-
0.2)) 
MarketReturn2014=price2ret(SPXONLY2014,[],'Periodic') 
MeanRet2014ONLY=((1+(nanmean(MarketReturn2014))).^252)-1 
PortfolioReturn201402=(1*MeanRet2014ONLY)+((1-1)*RiskFree2014) 
SPX2014return=price2ret(SPX2014,[],'Periodic') 
MeanRet2014=((1+(nanmean(SPX2014return))).^252)-1 
VAR2014=((1+var(SPX2014return)).^252)-1 
RiskFree2015=((1.0003).^4)-1 
MertonRatio201402=(MeanRet2014-RiskFree2015)./(VAR2014*(1-
0.2)) 
MarketReturn2015=price2ret(SPXONLY2015,[],'Periodic') 
MeanRet2015ONLY=((1+(nanmean(MarketReturn2015))).^252)-1 
PortfolioReturn201502=(1*MeanRet2015ONLY)+((1-1)*RiskFree2015) 
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MARKOWITZ	PORTFOLIOS	
	
The	codes	here	reported	are	those	used	to	estimate	the	composition	of	the	

portfolios	 under	 the	 Markowitz	 framework.	 The	 previously	 estimated	

historical	 moments	 of	 the	 stock	 have	 been	 used	 and	 plugged	 into	 the	

portfolio	composition	formula.	Due	to	the	static	nature	of	the	portfolio,	the	

initial	composition	has	been	held	still	and	a	simulation	of	its	performance	

has	 been	 done	 by	 computing	 the	 performance	 which	 would	 have	 been	

registered	 on	 the	 real	 market	 for	 the	 four	 years	 considered	 in	 this	

application.	

	
RiskFreeRatio5= (1-(0.05./(sqrt(VAR2011)))) 
RiskyRatio5=(1-RiskFreeRatio5) 
MarkPortReturn20125=(RiskFreeRatio5*RiskFree2012)+(RiskyRatio5
*MeanRet2012ONLY) 
MarkPortReturn20135=(RiskFreeRatio5*RiskFree2013)+(RiskyRatio5
*MeanRet2013ONLY) 
MarkPortReturn20145=(RiskFreeRatio5*RiskFree2014)+(RiskyRatio5
*MeanRet2014ONLY) 
MarkPortReturn20155=(RiskFreeRatio5*RiskFree2015)+(RiskyRatio5
*MeanRet2015ONLY) 
TotRetMark5=(1+MarkPortReturn20125)*(1+MarkPortReturn20135)*(1
+MarkPortReturn20145)*(1+MarkPortReturn20155)-1 
AnnualRetMark5=(1+TotRetMark5).^(1./4)-1 
	
RiskFreeRatio10= (1-(0.1./(sqrt(VAR2011)))) 
RiskyRatio10=(1-RiskFreeRatio10) 
MarkPortReturn201210=(RiskFreeRatio10*RiskFree2012)+(RiskyRati
o10*MeanRet2012ONLY) 
MarkPortReturn201310=(RiskFreeRatio10*RiskFree2013)+(RiskyRati
o10*MeanRet2013ONLY) 
MarkPortReturn201410=(RiskFreeRatio10*RiskFree2014)+(RiskyRati
o10*MeanRet2014ONLY) 
MarkPortReturn201510=(RiskFreeRatio10*RiskFree2015)+(RiskyRati
o10*MeanRet2015ONLY) 
TotRetMark10=(1+MarkPortReturn201210)*(1+MarkPortReturn201310)
*(1+MarkPortReturn201410)*(1+MarkPortReturn201510)-1 
AnnualRetMark10=(1+TotRetMark10).^(1./4)-1 
	
RiskFreeRatio15= (1-(0.15./(sqrt(VAR2011)))) 
RiskyRatio15=(1-RiskFreeRatio15) 
MarkPortReturn201215=(RiskFreeRatio15*RiskFree2012)+(RiskyRati
o15*MeanRet2012ONLY) 
MarkPortReturn201315=(RiskFreeRatio15*RiskFree2013)+(RiskyRati
o15*MeanRet2013ONLY) 
MarkPortReturn201415=(RiskFreeRatio15*RiskFree2014)+(RiskyRati
o15*MeanRet2014ONLY) 
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MarkPortReturn201515=(RiskFreeRatio15*RiskFree2015)+(RiskyRati
o15*MeanRet2015ONLY) 
TotRetMark15=(1+MarkPortReturn201215)*(1+MarkPortReturn201315)
*(1+MarkPortReturn201415)*(1+MarkPortReturn201515)-1 
AnnualRetMark15=(1+TotRetMark15).^(1./4)-1 
	
RiskFreeRatio175= (1-(0.175./(sqrt(VAR2011)))) 
RiskyRatio175=(1-RiskFreeRatio175) 
MarkPortReturn2012175=(RiskFreeRatio175*RiskFree2012)+(RiskyRa
tio175*MeanRet2012ONLY) 
MarkPortReturn2013175=(RiskFreeRatio175*RiskFree2013)+(RiskyRa
tio175*MeanRet2013ONLY) 
MarkPortReturn2014175=(RiskFreeRatio175*RiskFree2014)+(RiskyRa
tio175*MeanRet2014ONLY) 
MarkPortReturn2015175=(RiskFreeRatio175*RiskFree2015)+(RiskyRa
tio175*MeanRet2015ONLY) 
TotRetMark175=(1+MarkPortReturn2012175)*(1+MarkPortReturn20131
75)*(1+MarkPortReturn2014175)*(1+MarkPortReturn2015175)-1 
AnnualRetMark175=(1+TotRetMark175).^(1./4)-1 
	
Portfoliofinalreturn02=((1+PortfolioReturn201102)*(1+Portfolio
Return201202)*(1+PortfolioReturn201302)*(1+PortfolioReturn2014
02))-1 
Portfoliofinalreturn03=((1+PortfolioReturn201103)*(1+Portfolio
Return201203)*(1+PortfolioReturn201303)*(1+PortfolioReturn2014
03))-1 
Portfoliofinalreturn04=((1+PortfolioReturn201104)*(1+Portfolio
Return201204)*(1+PortfolioReturn201304)*(1+PortfolioReturn2014
04))-1 
Portfoliofinalreturn05=((1+PortfolioReturn201105)*(1+Portfolio
Return201205)*(1+PortfolioReturn201305)*(1+PortfolioReturn2014
05))-1 
AnnualizedPortfolio02=((1+Portfoliofinalreturn02).^(1./4))-1 
AnnualizedPortfolio03=((1+Portfoliofinalreturn03).^(1./4))-1 
AnnualizedPortfolio04=((1+Portfoliofinalreturn04).^(1./4))-1 
AnnualizedPortfolio05=((1+Portfoliofinalreturn05).^(1./4))-1 
	
scatter(RFREERATIOS,RiskRATIOS) 
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