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Abstract. Indirect inference is a simulation-based method for estimating or
making inferences on the parameters of economic models. It is very useful
for estimating models for which the likelihood function (or any other criterion
function that could serve as the basis for the estimate) is analytically insoluble
or too di�cult to assess. Such models abound in the �nancial and economic
analysis and include non-linear dynamic models, latent (or unobserved) models
and models with missing or incomplete data. This thesis exposes the method-
ology behind indirect inference procedure, gives two examples and �nally an
empirical application.

1. Introduction

Most of modern researchers are, at one time or another, confronted to the task of
building generative models of a process or assemblage on which they work in the
hope to grasp a substantial bite of the nature's knowledge. Being careful scientists,
they usually do a conscientious job of trying to include their guesses for what are
all the most important mechanisms. The result is something that can possibly
be set through to produce a simulation of the process of interest. But, (realistic)
models often contain some unknown parameters, some hidden truth that we will
denominate under the vector θ.

It is desirable to tune those unknown features within models to match the data or
see if, despite researchers' best e�orts, there are aspects of the data which a model
just can't match.

Very often, models too loyally built are too complicated for the common practitioner
to appeal to any of the usual estimation methods of statistics1. Because some
models aim for scienti�c adequacy rather than statistical tractability, it will often
happen that there is no way to even calculate the likelihood of a given data set

Date: June 15, 2018.
Key words and phrases. Indirect Inference, Stochastic volatility.
1Typically, in �nance the underlying mathematical models have become more complex. They

take more and more parameters to adapt to the data. We can mention, for example, as phenomena
to be taken into account: dependence of volatility on the past, non-linear dynamics, variance,
asymmetry to identify the permanent and transient shocks, unobservable factors, leptokurtic e�ect,
etc.
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under the unknown parameters in closed form, which would rule out even numerical
likelihood maximization.

Indeed, in the over average complicated models, such as stochastic volatility models
in continuous time, ARCH factor models, nonlinear random parameter models, the
likelihood function is impossible to calculate. Procedures for estimating parame-
ters were then born. We can quote for example, the general method of moments
(GMM), the quasi-maximum likelihood (QML) method, Bayesian methods, sim-
ulated expectation maximization (SEM) method, variance reduction (Importance
Sampling, IS). The results of these di�erent methods are quite diverse. Indeed, the
IS method is complicated to implement, GMM and QML methods are not e�cient.
The SEM and Bayesian methods provide better results.

More generally there has been a division of opinion in the academies between fre-
quentist and Bayesian statisticians regarding the e�ciency of the two main inference
methods: General Method of Moments and Maximum Likelihood Estimation. Fre-
quentists dismissed the method-of-moments in favor of the MLE, Bayesians never
did so. Anyway, both sides have always thoroughly and intentionally focused on
the likelihood (frequentists on the location of its maximum and its curvature while
Bayesians focus on its entire shape). As sustained by F.Diebold on his blog2, this di-
vision is what drives the European views regarding estimation methods. Especially
American econometricians hold the GMM in high esteem, to which they attribute
almost sacred merits, this is not the case of European academicians who found the
hype about GMM exaggerated. This is mainly due to how GMM is advertised as
potentially useful when there is a likelihood at hand, in other situation the method-
of-moments loses its power. Even worse, model moments may also be analytically
intractable.

Yet simulation is possible; it seems like there should be some way of saying whether
the simulations look like the data. This is where the breaking point comes in.
The solution could �rst come out as an implementation of GMM by simulation:
Simulated Method of Moments. By simulating models, in combination with the
�ne choice of parameters minimizing divergence between simulated and data mo-
ments, one can consistently estimate those models' parameters. That is really
game-changing: we no longer need to work-out complex likelihoods (even for those
that are available in some terms).

But SSM is a peculiar case from of a more general method: Indirect Inference, which
itself can be seen as a generalized form of the method of moments of Du�e and
Singleton (1993) and has papers of Tony Smith3 and C.Gourieroux, A.Monfort and
E.Renault (1993, J. Applied Econometrics) as founding articles. It introduces a new
model, called the "auxiliary model", which is miss-speci�ed and typically not even
generative, but is easily �t to the data, and to the data alone. The auxiliary model

has its own parameter vector β, with an estimator β̂. These parameters describe
aspects of the distribution of observables, and the idea of indirect inference is that
we can estimate the generative parameters θ by trying to match those aspects of
observations. II further bases itself on a metric-set wisely chosen to minimize the

2No Hesitations, 22 July 2013,
31990, Duke Ph.D. Dissertation, and 1993, J. Applied Econometrics
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distance between the auxiliary estimators based on the observed data on one hand
and on the other hand the auxiliary estimators of the simulated data.4 Indirect
Inference assumes a relatively easy simulation of the models studied. It allows,
from a higher calculation time, a reduction of the bias compared to more traditional
methods.

Unlike other methods, the moments that guide the estimation of the parameters
of the economic model are themselves the parameters of the auxiliary model. If
the auxiliary model comes close to providing a correct statistical description of the
structural model, then indirect inference comes close to matching the asymptotic
e�ciency of maximum likelihood.

Its main advantages lie in its generality. Unlike other bias reduction methods, such
as those based on explicit analytical expressions for the bias function or key terms
in an asymptotic expansion of the bias, the indirect inference technique calibrates
the bias function by simulation and therefore does not require a given explicit form
for the bias function or its expansion.

Some sustain that evaluation of the likelihood became as trivial as simulating. As
Andrew Harvey and others have emphasized for decades, for any linear model cast
in �nite-dimensional state-space form one can simply run the Kalman �lter and
then evaluate the Gaussian likelihood via a prediction-error decomposition. These
tools can provide complete likelihood analysis in general non-Gaussian environ-
ments. But II remains a more suitable path for cases where model understanding
is of interest and is clearer in its implementation. Moreover, II achieves desirable
consistency properties under misspeci�cation more easily (as exposed in Rossi and
De Magistris 2018). Finally, even-though the more classical approaches like quasi-
maximum likelihood method or Bayesian models deliver more satisfying results in
statistical terms, there are areas where they simply cannot be used or at least not
properly.

For many decades now, interest in analysis and modeling in �nance and economics
has been growing. Financial data is growing. The emergence of computer tools has
made its further development and exploitation possible. The rising of the average
computational capacity, following the Moore's law of computing power5, has made
simulation-based procedures even more competitive than before.

The aim of this thesis is to present the II methodology and implementation (section
2: Indirect Inference, Theoretical aspects) and to discuss it around two examples
(that are moving average and Heston-model, in section 3: Examples), followed by
an attempt to apply this method on the S&P500 Index (section 4: Application). In
this paper we will discover the recipe for an II implementation, the threats to its
robustness and solutions to tackle them.

4The auxiliary estimator may be the Maximum Likelihood Estimator of the auxiliary model
(usually simpler), or the estimator corresponding to the approximate likelihood of the initial model.

5Moore's law is the observation that the number of transistors in a dense integrated circuit
doubles about every two years. The observation is named after Gordon Moore, the co-founder
of Fairchild Semiconductor and Intel, whose 1965 paper described a doubling every year in the
number of components per integrated circuit ("Moore's Law." Wikipedia, Wikimedia Foundation,
12 June 2018, en.wikipedia.org/wiki/Moore'slaw.)
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2. Indirect Inference, Theoretical aspects

2.1. Methodology.

The methodology has been extensively developed by Gouriéroux and Montfort,
(1992). For the sake of simplicity, only the most important aspects will be exposed,
but be sure that you can �nd proofs and further asymptotic analysis of the method
in the founding paper of Gouriéroux and Montfort.

Let (P) be the problem whose parameters we seek to estimate, written in the
following form:

(2.1) (P ) =

{
yt = r(yt−1, xt, ut, θ)

ut = ρ(ut−1, εt, θ),

Where xt are the observations of exogenous variables, while ut and εt are not
observed. Finally θ is the parameter we are trying to estimate. His real value
will be noted θ0. For example, θ could be simple sample means or moments, or
regression coe�cients, or more generally parameters from some sort of auxiliary

model. We will estimate a β by matching θ̂T to θ̂βS

Suppose the following hypothesis (H1),

• {xt} is an homogeneous Markov process;
• the process {εt} is a white noise with a known distribution G0;
• the process {yt, xt} is stationary.

Let f0(xt|xt−1) be the Conditional Density Function. Due to the markovian feature
of the process {xt} it can be written that f0(xt|xt−1) = f0(xt|xt−1), with x

t−1 =
(xt−1, xt−2, ...).

By increasing the size of the process, it is possible to take into account higher order
processes or processes of reduced form.

xt being an homogeneous Markov process implies that xt is a strongly exogenous
process. This means we assume that potential problems due to non-strongly ex-
ogenous variables have been solved by considering them as functions of lagged
endogenous variables. It is also worth noting that models in which non-strongly
exogenous variables appear have the drawback of not being simulable.

2.1.1. Problematic.

It is theoretically possible to determine the value of the structural parameters
{θ1, θ2, ..., θm}, (P), using a Maximum Likelihood Estimator approach. Unfortu-
nately in practice the calculation is very often impossible, so it is necessary to
circumvent this impossibility. This can be done numerically using the method stud-
ied in this report, namely the Indirect Inference method. In order to calculate the
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Figure 1. Indirect Inference, synthetic �ow chart. Handbook of
�nancial econometrics

vector of parameters θ will be introduced a new parameter, said auxiliary parame-
ter, and a criterion function. Based on the observations will be maximized a certain
amount using the criterion. Then simulated trajectories will be drawn using the
auxiliary parameters and from these simulations by criterion-maximization, we will
try to get closer to the value obtained in the case of the paths observed. The vector
of parameters and the criterion function are the key elements of the method and
are therefore called the "true parameters" of the model as opposed to "the auxiliary
parameters".

2.1.2. Execution.

First and foremost, let be noted β ∈ B ⊂ Rq the auxiliary parameter. It should be
noticed that β will be at least the same size as the parameter θ to be estimated. Let
T be the number of available observations. The criterion function will be written
QT (y

1
T , x

T
1 , β), with y

1
t = (y1, ..., yT ) and x

t
1 = (x1, ..., xT ). Let's also introduce a

positive-de�nite matrix Ω̂T converging towards the positive-de�nite matrix Ω.
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Finally let's also introduce the mapping/binding function from the θ's to the β's
de�ned by b(F,G, θ).

Should also be sustained the following additional hypotheses:

• H(2) limT→∞QT (y
1
t , x

1
t , β) = Q∞(F0, G0, θ0, β) the function Q∞ being

non-stochastic, continuous in β with a unique maximum β0;
• H(3) the function b(F,G, θ) = argmaxβ∈B Q∞(F,G, θ, β) is the biding func-
tion. Therefore: β0 = b(F0, G0, θ0);

• H(4) b(F0, G0, .) is calculable term by term and its derivative with respect
to the parameter θ is of full rank.

Assumptions H(2) to H(4) guarantee that the parameter vector is locally identi�ed
when the distance tends to zero. H(2) assumes that the criterion tends asymp-
totically (and uniformly almost certainly) to a non-stochastic limit. Limit which
depends on the unknown auxiliary parameter β, on the characteristics of the true
distribution (i.e. the transition distribution F0 of {xt}, which is unknown or not to-
tally known at maximum), on the marginal distributionG0 of {εt} (which is known),
and on the true parameter of interest θ0 and maybe also on the initial value z0. H(3)
assumes that the initial conditions have no asymptotic e�ects. To have global iden-
ti�cation b(F,G, θ) must be a one-to-one (injective) function, so that it exists only

one element of θ̂ for each respective elements of the true-parameter vector, θ0.

We know from the asymptotic theory exposed by Gallant and White (1998, Chapter

3) that under these assumptions the estimator β̂T is a consistent estimator of the
auxiliary parameter β0.

Indirect Inference consists of the two following steps:

(1) The calculation of β̂T = argmaxβ∈B QT (y
1
T , x

T
1 , β) from the observations.

β̂T is an estimator consistent of the auxiliary parameter β0 under the
assumptions made previously.

(2) (a) Simulation of S trajectories [ỹst (θ, z
s
0), t = 0, ..., T ]; s, . . . , S based on

independent draws from εt and on initial values zs0; s = 1, , S.
(b) Maximization for each of these trajectories of the criterion function,

let us note β̃s
T (θ, z

s
0) = argmaxβ∈B QT ((ỹ

h)1T , x
1
T , β)

(c) Resolution of the following minimization problem to obtain an indirect
estimator of θ

min
θ∈Θ

[
β̂T − 1

S

S∑
s=1

β̃s
T (θ, z

s
0)

]′
Ω̂T

[
β̂T − 1

S

S∑
s=1

β̃s
T (θ, z

s
0)

]
The minimum, noted θ̃ST (Ω), is a consistent estimator of θ0 under the
four previous assumptions.

Note that the second step requires S optimizations for each value of θ. It is possible
to compile this sequence of optimization to only one.
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Indeed, let us consider TS values of x (exogenous variables) obtained by repeating
S times the values x1, ..., xT , i.e. x̃1 = x1, ..., x̃T = xT , x̃ = x1, ..., x̃T = xT . Then
it is deduced that

ỹt(θ, z0), t = 0, ..., TS

with


ỹ0(θ, z0) = y0

ỹt(θ, z0) = r[ỹt−1(θ, z0), x̃t, ũt(θ, z0), θ]

ũt(θ, u0) = ρ(ũt−1(θ, u0), ε̃t, θ),

Following this, the second step can be re-written:

(2) (a) Computation of the ỹs1, ..., ỹ
s
T from the initial values

z0, zT = (yT , ũT ), ..., zT (S−1) = (yT (S−1), ũT (S−1))

(b) From those simulations, we determine

β̃TS(θ, z0) = argmax
β∈B

QT (ỹ
1
TS , x̃

1
TS , β)

(c) Resolution of the following minimization problem to get the indirect
estimator of θ

min
θ∈Θ

[
β̂T − β̃TS(θ, y0)

]′
Ω̃T

[
β̂T − β̃TS(θ, y0)

]
This estimator is a consistent estimate of θ0 under the very same hy-
potheses previously stated.

Notice that it is not necessary to calculate the values of β̃s
T (., z

h
0 ) or β̃TS(., z

h
0 ) for

all possible values of θ but only for those occurring in the minimization program.
Indeed, the minimization is applied to a neighborhood of the starting point of the
optimization. This neighborhood will be tightened from one iteration to the next
until the minimization constraint is satis�ed and that a satisfying optimum is �nd.

2.1.3. Criterion selection.

We can look for a function r∗ approximating r for which the log-likelihood condi-
tional L∗

T (β) can be easily derivable and we take QT = 1
T L

∗
T (β). Then approximate

QT by 1
T LT (β) with LT (β) the exact log-likelihood.

The value of the indirect estimator θ̂ depends on the choice of the matrix Ω̃T . Now
it is a particular frequent case where the value of θ is independent of the choice of
this matrix : when p=dim(θ) = dim(β)=q.678 Moreover, under the null hypothesis

6Which means exact identi�cation.
7With p representing the size of the vector of true parameters and q the size of the vector of

auxiliary parameters.
8When p>q, the true parameters outnumber the auxiliary parameters. In this case the bridge

relation is many-to-one and does not in general permit the construction of adjusted estimates. It
is mainly of interest for investigating the e�ects of misspeci�cation where the auxiliary estimators
are constructed under misspeci�ed models, for example. However, in such situations it may be
possible to construct consistent estimates for a subset of true parameters, which may be of interest.
In other situations, some components of the higher-dimensional true parameter are known or can
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that the model is true, the optimal weighting matrix is just the variance-covariance
of the moments in the data.

Consider for example the identity matrix as the matrix Ω̃T . Minimization of
[
β̂T −

β̃TS(θ, y0)
]′
Ω̃T

[
β̂T − β̃TS(θ, y0)

]
is equivalent to minimize the sum of squares of

the elements of the vector β̂T − β̃TS(θ, y0), and we get in this particular case β̂T =
1
S

∑s=S
s=1 β̃

s
T (θ, z

s
0).

9

There exists an equivalent method developed by Gallant and Tauchen which bases
itself on the partial derivatives of the function QT . This estimator, as opposed to
the previous two, only requires one optimization. Because this estimator has been
introduced to deal with particular cases10, it won't be described in this report any
further.

2.1.4. Asymptotic properties.

In this section are exposed the main asymptotic results, whose proofs are given by
Gouriéroux and al.11. We make the following assumptions:

• H(5)

ΞT =
√
T
∂QT

∂β
[y1Tx

1
T , β0]−

√
T
1

S

S∑
s=1

∂QT

∂β
([ỹsT (θ0, z

s
0)]

1
T , x

1
T , β0)

is asymptotically normal with zero mean, with an asymptotic variance-
covariance matrix given by

W = lim
T→∞

V(ΞT )

and independent of the initial values zs0, s = 1, ..., S;

• H(6) limT→+∞V
{√

T ∂QT

∂β (ỹsT (θ0, z
s
0), x

1
T , β0)

}
= I0 is independent of z

s
0;

• H(7) limT→+∞ Cov
{√

T ∂QT

∂β (ỹsT (θ0, z
s
0), x

1
T , β0),

√
T ∂QT

∂β (ỹlT (θ0, z
l
0), x

1
T , β0)

}
= K0 independent of the z

l
0;

• H(8) plimT→+∞ − ∂2QT

∂β∂β′ [[ỹ
s
T (θ0, z

s
0)]

1
T , x

1
T , β0] = −∂2Q∞

∂β∂β′ (F0, G0, θ0, β0) =

J0 is independent of z
s
0.

be estimated from other outside data sources or can be tailored using heuristics. This enables the
other components to be consistently estimated by inverting the bridge relation.

9Or again β̂T = β̃TS(θ, z
h
0 )

10Those cases share the following features: the criterion function is a likelihood function, no
exogenous variable, unlimited number of simulations, the model corresponding to the pseudo-
likelihood function is asymptotically well speci�ed

11See Appendix 1. of C. Gouriéroux, A. Monfort, and E. Renault. Indirect inference. Journal
of Applied Econometrics.
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Under all the above assumptions and the usual regularity conditions, when S is
�xed and T goes to in�nity, it can be a�rmed:

√
T (θST (Ω)− θ0) → N (0,W (S,Ω))

with

W (S,Ω) =
(
1 +

1

S

)(∂b′
∂θ

(F0, G0, θ0)Ω
∂b

∂θ′
(F0, G0, θ0)

)−1

(∂b′
∂θ

(F0, G0, θ0)ΩJ
−1
0 (I0 −K0)

−1J−1
0 Ω

∂b

∂θ′
(F0, G0, θ0)

)
(∂b′
∂θ

(F0, G0, θ0)Ω
∂b

∂θ′
(F0, G0, θ0)

)−1

Note that due to the conditional independence to exogenous variables of
√
T
∂QT

∂β
[[ỹsT (θ0, z

s
0)]

1
T , x

1
T , β0]

and √
T
∂QT

∂β
[[ỹlT (θ0, z

l
0)]

1
T , x

1
T , β0]

and because they share the same asymptotic distribution, we can write :

K0 = lim
T→∞

V0

(
E0

[√
T
∂QT

∂β′ [y
1
Tx

1
T , β0]/x

1
T

])
I0 −K0 = lim

T→∞
V0

(√
T
∂QT

∂β
[y1Tx

1
T , β0]− E0

[√
T
∂QT

∂β′ [y
1
Tx

1
T , β0]/x

1
T

])
The optimal choice for the matrix Ω is Ω∗ = J0(I0−K0)

−1. The asymptotic matrix
of variance-covariance is then simpli�ed by

W ∗
S =

(∂b′
∂θ

(F0, G0, θ0)J0(I0 −K0)
−1J0

∂b

∂θ′
(F0, G0, θ0)

)−1

The asymptotic aspects regarding K0 and I0 can be interpreted as the need for
the β's to converge towards an optimum. The variance of their drawings should be
�nite even when T → ∞. If the limit K0 does not exist, the indirect estimators
would not be consistent. More over this should not depend on whatever data the
inference is based on.

It is worth noting that the matrix W (∞,Ω) and W ∗
S are not, in general, the asymp-

totic variance-covariance matrices of the indirect estimators that would be based
on the binding function. It is only true when there is no exogenous variable as it is
usually the case in time series (see Gourieroux and Montfort, 1992).

We could also write these matrix using the introduced binding function supra. We
have already mentioned an important special case, when the parameter of interest
θ and the auxiliary parameter β are of the same size. Indeed we said then that
the choice of the matrix Ω did not in�uence the value of the estimator obtained by
Indirect Inference, in this case we can choose Ω equal to the identity matrix. We
obtain a new result concerning this time the variance-covariance asymptotic matrix,
namely that W (S,Ω) = W ∗

S . Let us also note that it is the variance-covariance

asymptotic matrix of the estimator solution of β̂ = β̃TS(θ, z0).
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The calculation of the optimal estimator by Indirect Inference requires a consistent
preliminary estimator of Ω∗ for initializing the calculations. Depending on the
case, we may choose such an estimator directly based on the observations or from
the simulations by taking the identity matrix in place of the matrix Ω in order to
determine the resulting estimator, or by taking the quantity

argmax
θ
QT

[
y1T , x

1
T ,

1

T

s=S∑
s=1

ỹsT (θ, z
s
0)

]

2.2. Monte Carlo Analysis.

To analyse the results of our Indirect Inference estimators, Monte Carlo simulations
are conducted. Thanks to that, the distribution of estimators can be drawn and
the bias of each estimator from its 'true' counterpart can be calculated.

Monte Carlo simulation uses repeated random sampling to simulate data for our
structural models and evaluate their outcomes. In our case, the MC will simulate
di�erent time series randomly on base of our modeling. A potential distribution of
the parameters of interest, the vector θ, can be drawn by simulating the various
sources of uncertainty a�ecting the value of the structural parameters, and then
determining the distribution of their value over the range of resultant outcomes.

One rationale for Monte Carlo simulation is its help in our estimations without the
need of a tremendous amount of experiments or building thousands of samples.

A Monte Carlo simulation boils down to four simple steps:

(1) Identify the transfer equation (i.e.: a mathematical model of the activity
or process under investigation).

(2) De�ne the parameters for each factor in the model.
(3) Create random data according to those parameters.
(4) Simulate and analyze the output of the process.

To simplify, if V represents an observable variable, the estimator V̂ with variance
E[(V̂ − V )2] by the Monte Carlo method for M paths is given by

(2.2) V̂ =
1

M

M∑
j−1

Vj

In sum, instead of being satis�ed with the conducing of only one estimation for
each parameter trough indirect inference, we will conduce M inferences based on
M di�erent simulations. This is the inherent part of randomness in each simulation
that will allow us to approach the real value of the structural parameters. The
estimators being closer and closer to the value of their underlying variable when
M → ∞ thanks to the Law of Large Numbers and the Central Limit Theorem.
This will allows us to compute the bias and the root mean square errors of our
estimates around the structural parameters.



INDIRECT INFERENCE APPLIED TO FINANCIAL ECONOMETRICS 11

Anyway the Monte Carlo tool will a only be useful for simulations-based samples. In
di�erent application case, only one sample is known. Especially in the application
that will be exposed later, trying to �nd the parameters of the S&P500 returns,
under the assumption that the process follows a speci�c model, it will not be possible
to draw di�erent paths of returns, since only one exists.
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3. Examples

3.1. Moving Average.

As a �rst (simple) example, this section will expose an indirect inference estimation
of MA(q) parameters.

Let's use a simplistic form of moving average model which will be used to simulate
several observations. This will be the structural model. On basis of the literature in
Time-Series regarding the relationship between moving-average and auto-regressive
models, we will use an AR(q) process as auxiliary model to �t the data and draw
the βs.

Here is the equation of a moving average of dimension m:

(3.1) yt = εt + ψ1εt−1 + ψ2εt−2 + ...+ ψt−mεt−m

Similarly:

(3.2) yt = εt +

m∑
j=2

ψjεt−j

Where εt ∼ N (0, σ2
ε) and with θ = [σ2

ε , ψ1, ...., ψm], the vector of structural param-
eters (of dimension p=m+1).

The auxiliary model will consist of the following Auto-Regressive process of order
q.

(3.3) yt = ρ1yt−1 + ρ2yt−2 + ...+ ρqyt−q + ηt =

q∑
j=1

ρjyt−j + ηt

With β = [ρ1, ..., ρq, σ
2
η].

As motivated in the previous section, we consider the matrix Ω̃T as equal to the

variance-covariance matrix of the β̂'s.

3.1.1. Invertibility condition.

It should be noted that, just as an in�nite-order moving average process can be
de�ned, one could also de�ne an in�nite-order auto-regressive process, AR(∞).
It turns out that any stationary MA(m) process can be expressed as an AR(∞)
process. E.g. suppose we have an MA(1) process with µ = 0.

yt = εi + ψ1εi−1

Implying

εi = yi − ψ1εi−1 = yi − ψ1(yi−1 − ψ1εi−2) = yi − ψ1yi−1 + ψ2εi−2

And, for n steps:

εi = yi − ψ1yi−1 + ψ2
1yi−2 − ψ3

1yi−3 + ...+ (−ψ1)
nyi−n + (−ψ1)

n+1εi−n−1
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Which can be written:

εi =

n∑
j=0

(−ψ1)
jyi−j + (−ψ1)

n+1εi−n−1

As a result we have12:

εi = yi − ψ1yi−1 + ψ2
1yi−2 − ψ3

1yi−3 + ... =

∞∑
j=0

(−ψ1)
jyi−j

In other words:

An MA model is invertible if it is algebraically equivalent to a converging in�nite
order AR model. By converging, it is meant that the AR coe�cients decrease to 0
as the process moves back in time.

For a MA(m) model with a speci�ed ACF13, there is only one invertible model. The
necessary condition for invertibility is that the ψ coe�cients have values such that
the equation

(3.4) 1− ψ1y − ...− ψ1y
m = 0

has solutions for y that fall outside the unit circle or, equivalently, i� all roots of
the characteristic following polynomial constructed following that the most recent
error can be written as a linear function of current and past observations

εt =

∞∑
j=0

(−ψ1)
jyi−j

lie outside unit circle in complex plain.

The essential concept is whether the innovations/noises can be inverted into a
representation of past observations. This notion is very much important if one
wants to forecast the future values of the dependent variable, a very relevant issue
for many �nancial practitioners and policy makers. Otherwise, the forecasting task
will be impossible when the innovations are not invertible (i.e., the innovations in
the past cannot be estimated, as it is cannot be observed)14. Actually, when the
model is not invertible, the innovations can still be represented by observations of
the future, this is not helpful at all for forecasting purpose.

12Equivalently:

yi = ψ1yi−1 − ψ2
1yi−2 + ψ3

1yi−3 − ...+ εi =

∞∑
j=0

(−ψ1)
jyi−j + εi

13Auto-Correlation Function
14For an invertible process, |ψ| < 1 and so the most recent observations have higher weight than

observations from the more distant past. But when |ψ| > 1, the weights increase as lags increase,
so the more distant the observations the greater their in�uence on the current error. When |ψ| = 1,
the weights are constant in size, and the distant observations have the same in�uence as the recent
observations. As neither of these situations make much sense, we prefer the invertible processes.
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A relaxation of these constraints can cause the distribution of the parameters' esti-
mates to have unwanted features such as, for example, bi-modality or identi�cation
issues.

This imposes us to put on linear nor non-linear constraints in the minimization
process. The simulations within the minimization have to take into account that

the θ̂ have to respect the invertibility constraint, otherwise we might end-up with
estimates that could lead towards an moving average time series violating the in-
vertibility condition.

3.1.2. Simulations' results.

Here are the �tted histograms of the four parameters of a model. It was generated
with 500 simulations of MA, AR and looped 500 times for the Monte-Carlo process,
with the "`true"' value of parameters being: θ1 = σ2ε = 0.2, θ2 = 0.7, θ3 = 0.2 and
θ4 = −0.3].

The bi-modality, which modes appear as distinct peaks (local maxima) of the distri-
butions, is due to the relaxation of the invertibility constraint exposed earlier. The
binding function, b(F,G, θ) = argmaxβ∈B Q∞(F,G, θ, β), is no longer injective and
the robustness of the indirect estimators is threatened by the existence of more than

one θ̂ for each θ0. In other words, the histograms should depict a unique modality
for each parameter.

Figure 2. Parameters distribution bi-modality
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Table 1. brings a synthetic view about the estimates obtained between 2 sets
of unconstrained simulations of di�erent length but with the same auxiliary pa-
rameter vector and a starting point far from the vector of true parameters (S0 =
[0.07601; 0.16805; 0.03693; 0.01207] and θ = [0.3800; 0.84025; 0.018468; 0.06036]).
The �rst column stands the number of over-identifying parameters (with p being
the numbers of lags in the structural moving average plus σε and q the order of
the auxiliary auto-regressive model). The results are quiet as expected since we
observe that a longer time series allows the indirect estimators to become more
e�cient. But we could do better since This is mainly due to the fact that these
values are derived from unconstrained optimizations.

Table 1

(q − p) θ True value θ̂100 θ̂1000

5 1 0.3801 0.3650 0.3718
2 0.8403 0.8918 0.8616
3 0.01847 0.1881 0.1823
4 0.0604 0.0518 0.0785

Table 2. shows the invertibility condition actually improves the results. Indeed, the

constrained estimates θ̂c outperform the unconstrained estimates θ̂ at guessing the
true values.

Table 2

(q − p) θ True value θ̂c
100

θ̂c
1000

Bias100 Bias1000

5 1 0.3801 0.3799 0.3649 -0.0002 -0.0152
(0.000) (0.2316)

2 0.8403 0.8812 0.8784 0.0409 0.0381
(1.6757) (1.4478)

3 0.01847 0.0312 0.0065 0.0127 -0.0120
(0.1624) (0.1430)

4 0.0604 0.0522 0.0617 -0.0082 0.0013
(0.0675) (0.0017)

Root mean square errors in parentheses.

Table 3. Depicts the improvements possible by picking an optimization starting
point closer (S0 = [0.3421; 0.7563; 0.01662; 0.05436]) to the true values. It highlights
the importance to start with already a good guess of what the parameters should be,
and the comparison between table 2. and 3. shows how the estimates are sensible
to those starting points.
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Table 3

(q − p) θ True value θ̂c
100

θ̂c
1000

Bias100 Bias1000

5 1 0.3801 0.3756 0.3802 -0.0045 0.0001
(0.0203) (0.0000)

2 0.8403 0.8665 0.8506 0.0262 0.0103
(0.6890) (0.2905)

3 0.01847 0.0214 0.0209 0.0029 0.0024
(0.0084) (0.0058)

4 0.0604 0.0466 0.0599 -0.0138 -0.0005
(0.1905) (0.0002)

Root mean square errors in parentheses, close starting optimization point.

Finally, table 4. shows the positive e�ect of adding auxiliary parameters on the
quality of the estimations. Indeed, estimates drawn on the basis of an AR(4) are
less e�cient and less consistent than those from an AR(5).

Table 4

(q − p) θ θ̂c
100

θ̂c
1000

Bias100 Bias1000

4 1 0.3721 3784 -0.0080 -0.0017
(0.0646) (0.0028)

2 0.8669 8575 0.0266 0.0172
(0.7084) (0.2955)

3 0.0389 0.0209 0.0204 0.0024
(0.0084) (0.0058)

4 0.0489 0.0605 -0.0115 0.0001
(0.1327) (0.0000)

5 1 0.3756 0.3802 -0.0045 0.0001
(0.0203) (0.0000)

2 0.8665 0.8506 0.0262 0.0103
(0.6890) (0.2905)

3 0.0214 0.0209 0.0029 0.0024
(0.0084) (0.0058)

4 0.0466 0.0599 -0.0138 -0.0005
(0.1905) (0.0002)

Root mean square errors in parentheses, close starting optimization point.

The complete tables from these simulations can be found in Appendix A.. They
compare values for more (q-m) and more times series lengths.



INDIRECT INFERENCE APPLIED TO FINANCIAL ECONOMETRICS 17

3.2. Stochastic Volatility.

3.2.1. The structural model.

As second example, we will aim to estimate the volatility dynamic of simulated
time series of stock prices.

The Heston model we use is similar to the Geometric Brownian Motion (GBM)
process15 used in the classic Black-Scholes model, such a model assumes that the
volatility of the asset is not constant, nor even deterministic, but follows a random
process.

Stochastic Di�erential Equation (SDE):

(3.5) Pt = p+

∫ t

0

µ(Pt)dt+

∫ t

0

σ(Pt)dWt,

with t ∈ [0, T ], p ∈ Rn.

or equivalenty:

(3.6) SDE =

{
dPt = µPtdt+ σPtdWt

dσ2
t = κ(ω − σ2

t )dt+ ησtdWt,

The �rst equation represents of (3.6) the stock value where Pt is observed (i.e.:
µ=rate of returns, σ=volatility, Wt= standard Brownian Motion16). The second
equation is not observed and represents the volatility features of the stock prices.

The variables of interest are therefore κ, ω and η.

With this formulation, the variance dynamics follow a square-root di�usion, also
referred to as a Cox-Ingersoll-Ross (CIR) process, or is a CIR(κ, ω, η). That square-
root di�usion process was �rst developed by Cox, Ingersoll, and Ross (1985) and
was used for interest rate modeling. In the Heston stochastic volatility setting, the
CIR process de�nes the variance dynamics. Modeled in this way, the variance has
a mean-reverting structure, with κ being the speed of mean-reversion and ω being
the long term level of variance. Intuitively, having κ > 0 and ω > 0, makes sure
that if the variance is higher than its usual values, then it will be pulled down
towards them and vice versa, if the variance is too low then the quantity ω − σ2

will be positive and the process will be dragged up towards its long term level.

The speed of mean-reversion, or κ, is a parameter that takes account of the empir-
ically observed clustered volatility. Also log returns are usually leptokurtic17 and
controlled by η, being the variance volatility. High η values provide higher peaks,

15Or also named Wiener process
16Which is used to model â��noisy �uctuationsâ�� of stocks.
17As opposed to mesokurtic distributions, a distribution is leptokurtic when its kurtosis value

is a large positive number.
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and in particular, when η = 0 the variance is deterministic18. For the variance
process to be strictly positive the following condition is needed: 2κω > η2, with
κ > 0, ω > 0 and η > 0.

What should be considered in the �rst place is a discretization of the SDE. This
method is most useful when you want to compute the path between P0 and Pt, i.e.
we want to know all the intermediary points Pi for 0 ≤ i ≤ t. More over it is a
condition to make simulations and apply Monte Carlo analysis.

Space discretization: The interval [0, T ] is divided into N equally sized subintervals
of length ∆. The price of the underlying asset will take values in the unbounded
interval [0,∞).

Fix p ∈ R and let ∆(N) be the equidistant mesh of size N, i.e. ti =
i
N T, i = 0, ..., N .

Set ∆ti and ∆Wt = Wti+1 −Wti , i = 0, ..., N − 1. De�ne the Euleur-Maruyama19

approximation to PT by P̄N
0 = p and

(3.7) P̄
(N)
i+1 = P̄

(N)
i + µ(P̄

(N)
i )∆ti + σ(P̄

(N)
i )∆Wi,

with i = 0, ..., N − 1. Or, more explicitly:

(3.8)

{
Pt = Pt−1 + µPt−1dt+ Pt−1

√
σt−1W

1
t

σt = σt−1 + κ(ω − σt−1)dt+ η
√
σt−1

√
dtW 2

t

In these simulations, we will assume µ = 0 and that we have daily sampled prices
(which means dt = 1, and N = T ).

3.2.2. The auxiliary model.

As suggested by C.Monfardini (1997), we will use a Gaussian auto-regressive rep-
resentation of a given order (i.e. an AR(m)) for ln y2t , in order to approximate the
ARMA nature of the Heston model.

(3.9) ln y2t = β0 + β1 ln y
2
t−1 + β2 ln y

2
t−2 + ...+ βm ln y2t−m + εt

With εt ∼ I.I.N(0, τ2) and y being the stock returns. By posing: xt = lny2t ;

x = (xm+1, xm+2, ..., xT )
′

x−l = (xm+1−l, xm+2−l, ..., xT−l),∀l ∈ l, ...,m

X−m = (1, x−1, x−2, ..., x−m)

β = (β∗′
, τ2)′.

18In other words, the log-returns will be normally distributed.
19The Euler-Maruyama scheme for discretization of SDEs is simple to understand and imple-

ment, but su�ers from a low order of convergence, especially in the strong sense.
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The criterion function can be written as following:

φT (x, β) = −1

2
ln(2πτ2)− 1

2τ2(T −m)
(x−X−mβ

∗)′(x−X−mβ
∗)

Leading to the estimators:

β∗ = (X ′
−mX−m)−1X ′−mx

τ̂2 =
ϵ̂′ϵ̂

T −m
with ϵ̂ = x−X−mβ̂∗

The matrix Ω∗ used is approached by a converging estimator Ω̂T ∗ = ĴT Î
−1
T ĴT with

Î−1
T = V̂ 0

T +

K∑
k=1

(V̂ k
T + V̂ −k

T )(1− k

K + 1
)

V̂ k
T =

1

T −m

T−m∑
t=k+1

∂qt
∂β

t+k

∂β′

qt = −1

2
(ln(2πτ2) +

1

τ2
(xt − β0 − β1xt−1 − ...− βmxt−m)2)

Parameters β = (β0, β1, β2, ..., βm) and τ2 can be easily estimated through the
Maximum Likelihood method, based on the sequential factorization of the density
of ln y2t given its past and conditioning on the �rst m observations. The model
considers the stock returns rather than directly the stock prices because the price
time-series under stochastic volatility are not stable but their returns are.

3.2.3. Simulations' results.

As far as the sample sizes T considered are concerned, it should be emphasized that
stochastic volatility inference is quite demanding in terms of sample information
required, due to the presence of a latent structure governing the volatility of the
modality. That is why we will use longer time series than in the previous example.

We took the assumption that µ = 0, which simpli�es the simulations. It can be
noticed that this assumption is quite often relied on, notably for European option
pricing since this assumption of µ = 0 as no impact on the results.

Of course, we should simulate the true model with parameters respecting 2κω > η2.
This is will be done by imposing a non-linear constraint in the minimization process,
as we did for the invertibility condition for the moving average example.

In table 2 can be �nd the results from a simulated Heston process with T = 2000

and 3000, dt = 1 (daily sampling) implyingN = 2000 and with [θ̂1, θ̂2, θ̂3] = [κ̂, ω̂, η̂].
The true values were κ = 0.01, ω = 0.0004 and η = 0.0015. For the starting point
of the optimization, zTS

0 , we will consider z02 = var(yt) as the starting value for
ω (it would seem that the standard measure of variance could approximate fairly
the long-term volatility). We could complete our �rst guess by trial-simulations.
Finally we took z01 = 0.005, z02 = 0.00000486 and θ03 = 0.00075 as starting points
of the optimization.
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The results are as expected and in a similar fashion than in the previous example.
Bias And the Rmse (Root mean square of errors) are reduced with the number of
auxiliary parameters. In sum, over-identi�ed auxiliary performs better in terms of

Bias and Rmse and estimates θ̂'s get closer to their true values with higher q's, at

least for θ̂1 and θ̂3. But those improvements are limited, adding an in�nite amount
of over-identifying parameters will not get us in�nitely closer. Finally, as previously,
longer time series allow us to e�ciently reduce the root mean square error, but does
not impact Bias as much.

Table 5

(q − p) θ θ̂c
1000

θ̂c
2000

Bias1000 Bias2000

10 1 0.0558 0.0284 0.0458 0.0184
(2.0938) (0.3370)

2 0.0000 0.0001 -0.0004 -0.0003
(0.0002) (0.0001)

3 0.0002 0.0002 -0.0013 -0.0013
(0.0017) (0.0017)

20 1 0.0367 0.0262 0.0267 0.0162
(0.7135) (0.2620)

2 0.0013 0.0011 0.0009 0.0007
(0.0008) (0.0006)

3 0.0002 0.0014 -0.0013 -0.0001
(0.0016) (0.0000)

Root mean square errors in parentheses, close starting optimization point.
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4. Empirical Application

In this section, we will try to estimate the underlying parameters of the S&P500
Stock Market Index returns, under the assumption it follows a Heston process.

The S&P500 observations will stand in place of the simulations developed in pre-
vious sections. We therefore do not "use" a structural model per se, the original
structural model is the one that generated those observations and thus is unknown.

4.1. Tests of hypotheses on the parameters of interest.

In this application case, no Monte Carlo analysis can be conducted since we are
not able to draw di�erent paths of data. Monte Carlo uses randomized samples in
order to approximate a deterministic process. In this application, the observations
are already "determined".

We cannot longer rely on the bene�ts of Monte Carlo simulations to ensure the in-
direct estimates robustness. An ex-post test is needed to verify that the parameters

are di�erent from zero. Since we would like to reject the hypothesis that θ̂1, θ̂2, θ̂3
are ̸= 0, We therefore need a Wald test.

Recall from the asymptotic properties that when S is �xed (and equal to 1 in this
case) and T goes to in�nity, it can be a�rmed:

√
T (θST (Ω)− θ0) → N (0,W (S,Ω))

with

W ∗
S =

(∂b′
∂θ

(F0, G0, θ0)J0(I0 −K0)
−1J0

∂b

∂θ′
(F0, G0, θ0)

)−1

The test therefore assess whether the binding function b(θ) does not θ → 1
S

∑3
i=1 βi

for values of 1
S

∑3
i = βi = 0. It further analyzes theW (S,Ω) which should be equal

to J(θ̂).Ω.J(θ̂)′ which is a p x p matrix (p is the dimension of the vector of structural

parameters), with J(θ̂) = ∂b(θ)
∂θ |θ=θ̂. As exposed in the theoretical background, this

matrix, under some general conditions, is the variance-covariance matrix of the

elements of θ :

 σ2
1 . . . cov(θ̂1, θ̂p)
...

. . .
...

cov(θ̂p, θ̂1) · · · σ2
p

.
The Wald test can be used to test a single hypothesis on multiple parameters, as
well as to test jointly multiple hypotheses on single/multiple parameters. We will
use the indirect optimal estimator obtained under constraint with the condition

θ1=0, that will be noted (θ̂0S) =

[
0
ˆθS2T

]
.

We can introduce the score statistic built as a Wald statistic ξWT :

ξWT = T ( ˆθS1T )
′Ŵ ∗−1

1 ( ˆθs1T )

Where Ŵ ∗
1 is a consistent estimator of the asymptotic covariance-variance matrix.

This test statistic has the distribution χ2(p), with p=dimθ.
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Hopefully we can approximate the same result by using a z-test. the z-test should
take the following form:

(4.1) zt =
θ̂

standard-error

with

θ =

θ1θ2
θ3


Especially, we desire to reject the hypothesis that θ = 0 ⇒H0 : θ = 0. The statistic
of test under the null-hypothesis is the following:

Z =
√
T
θ̂

σ

If |zt|, the realization of the test statistic, is higher than the quantile of order 1− α
2

of N(0,1), with α being the con�dence order, H0 can be rejected.In Extensia, H0 is
rejected if zi > 1.96.

This test could be directional. However, commonly the Wald test is generalized
to test multiple parameters by squaring the z statistics and this should have a
chi-squared distribution, asymptotically. So p parameters can be tested by a χ2

statistic equal to z21 + z22 + ...z2p comparing the result to a chi-squared distribution

with p degree of freedom.20

4.2. Block-Bootstrapping.

Despite our deception due to the fact that we cannot rely on Monte Carlo analysis
anymore, we can try to circumvent this situation by arti�cially summon di�erent
samples on which we can infer.

We can inspire ourselves by what has been done in the literature on time-series.

It comes out that, if the data is i.i.d, one could treat the sample data as the
population, and do sampling with replacement of observations and this would allow
to get multiple simulations of some statistic. This is called boot-strapping. In this
case of time series, we are clearly not allowed to do so due to the likely existence
of auto-correlations between observations. More over, a time series is essentially
a sample of size 1 issued from a stochastic process, re-sampling the same original
sample will bring no new information. Therefore, re-sampling of a time series
requires new ideas.

As developments around this purpose we can consider the re-sampling method
introduced by Efron (1979), which was designed for i.i.d. univariate data but are
easily extended to multivariate data. As discussed by the author, in the case where
x1, x2, ..., xn is a sample of vectors, in the aim to guarantee to keep the covariance

20With only one parameter, a test with 1 degree of freedom is equivalent to the z test because
the critical value +/− 1.96 for z with α = .05 is the square root of the critical value for χ2 with
1 degree of freedom (3.84). So you can get a directional Wald test by taking the square root of a
χ2 test statistic i� it has 1 degree of freedom.
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structure of the data untouched. It is not immediately obvious whether one can
re-sample a time series, but there are two ways:

• Model-based re-sampling, which is easily adopted to time series. The new
samples are obtained by simulating the time series model.

• Model-free re-sampling of time series, which is accomplished by block re-
sampling, also called block bootstrap.

Variations on the 'block bootstrap' are intuitive. Here, depending on the method,
we select stretches of the time series, either overlapping or not and of �xed length
or random, which can guarantee stationarity in the samples (Politis and Romano,
1991) then stitch them back together to create re-sampled times series on which we
can compute complementary statistics.

In itself, the simulations we conduced previously for our examples were a kind of
Model-based re-sampling procedures. For this section, even-though we started by
saying that we relied on the assumption that the observed data follow a Heston
process, we should highlight the fact that Heston models are simplistic forms of
stochastic volatility. For the boot-strapping we will thus not rely on the fact that the
time series have a speci�c structural form, since we want to estimate its structural
parameters.

For this application, we will start from an original sample of the S&P500 Stock
Market Index value on a time frame starting the 09/06/2008 and �nishing the
09/06/2018 (with daily sampling) we thus end up with 2518 observations. Relying
on the results obtained from Heston-based simulations in previous sections, we will
take a window of 2000 observations as the �xed length for our bootstrapping. These
stretches of time will be overlapping, letting the window to "roll" over the original
sample. This mean we will construct 2518-2000=518 new blocks of length 2000.
This method is known as the Moving Block Boot-strap or MBB in short.

Let be {SPt}t∈N the observed Index time series, what are observed are the prices
{P1, ..., Pn} ≡ SPn, and consider the log-returns by applying the following trans-
formation: rt = log(Pt) − (Pt−1) and yt = log(r2t ). This transformation is needed
to have stationarity.

Let l be an integer satisfying 1 ≤ l < n, here n = 2518. We de�ne the overlapping
blocks B1, ...,BN (N = 518) of length l = 2000 contained in SP2518 as

B1 = (y1, y2, ..., yl),

B2 = (y2, y3, ..., yl−1),

...
. . .

BN = (yn−l+1, ..., yn)

where N = n− l+ 1.
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After that, we will be able to draw the �tted histograms of the realizations of θ̂ on
the 518 new samples and improve our estimations. Obviously this method does not
unveil totally new information because the window considered is quite big regarding
the original sample. The MBB's improvements increase when the blocks' stretches
of time become shorter (relatively to the original sample) and when the original
sample becomes larger.
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4.3. Results.

We use as original sample, the S&P500 Stock Market Index value on a time frame
starting the 09/06/2008 and �nishing the 09/06/2018 (with daily sampling), with
2518 observations.

We conduced a �rst indirect estimation of the S&P500 parameters with a starting
point arbitrarily chosen by looking at the literature on Heston-S&P500 calibration.
this is a tricky point in the process. Indeed the results are heavily in�uenced by
the starting optimization point, which is one of the drawbacks of the technique.
Anyway, we can extrapolate the value of parameters with simple statistics, at least
for ω. We will consider 0

2 = var(rt). More over, as previously, we should take as
starting points parameters respecting 2ω > η2. With all these considerations, we
considered to use [0.05; 1.451.10−4; 0.002] as starting point of the optimization: θ0.

Table 6. Hypotheses testing

θ̂ z-stat H0 rejected

κ 0.0080 3.8593 Yes
ω 0.00062792 0.3031 No
η 0.0034 1.6282 No

With std-error = 0.1039.

The hypothesis was rejected only for κ, we cannot con�rm that ω and η are di�erent
from zero, even-though we were close to reject H0 for η.

Unfortunately the MBB did not allow us to have strictly di�erent guesses regarding

the parameters' value. We found ˆtheta = [0.01126, 0.00012333, 0.00363], but the
�tted histogram in �gure 3. clearly show a problem of consistency.
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Figure 3. Histograms of bootstrapped estimators
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5. Conclusion

Through this work, we exposed the main features of the Indirect Inference method-
ology and its underlying assumptions and hypotheses. In a nutshell, we need to
use a link-function between the auxiliary parameters and the structural parame-
ters that guarantees the uniqueness of the distance-minimization's solutions and a
certain level of consistency. Thanks to the two examples and the application, we
demonstrated that a simulation's process quality is required to implement II prop-
erly. That is interesting, because simulation ability is a �ne litmus test of model
understanding. Therefore, to attain quality estimates, one has to consider every
possible restrictions applying on the parameters values.

We observed that longer time series can improve the consistency of indirect esti-
mators but do not reduce their bias as much. Reduction of bias can be attained
through the addition of auxiliary parameters. Even though the marginal impact of
an auxiliary is decreasing and become negative as some point (likely for very long
auxiliary vectors of parameters).

In sum, we highlighted the main advantage of Indirect Inference: its generality
and the ease to adapt it to speci�c and complex models like stochastic volatility.
Nevertheless, its drawbacks and �aws should not be left aside. Firstly, the indirect
estimates demonstrated a high sensitivity to initial optimization point. This is a
necessity, before the implementation of II, to have fair and plausible guesses about
what the {theta should look like. Also, the auxiliary model only �ts the data, the
estimator obtain are also heavily in�uenced by the sample. Globally, this warns us
to take good care in the elaboration of the process and to remain vigilant about
the results.

More over, there has been a new trend these last years concerning the requirements
researchers have to face to get published. Quantity of Journals now impose the
necessity to have replicable results, for the sake of science. Researches involving
indirect estimation cannot totally satisfy this point since simulations within the
minimization are base on a part of randomness. For example, in the stochastic
volatility model exposed in the second example, each simulation uses a Brownian
motion that is di�erent from the precedent. Still this does not call into question
the results candidly drawn with indirect inference, but one should be careful to
data-mining practices that might deliver conclusions based on providential results
more than scienti�c ones.

What should keep the interest of academicians and researchers in the future is the
fact that II is an easy-access door to an area of experimentation and empirical
opportunities that was previously in-explorable for more-classical methods. II is a
�exible skeleton on which can attached other statistical tools in the aim to construct
e�cient and consistent estimators. If correctly applied, there is no doubt that
indirect inference can bring satisfying results for whatever problem where methods
relying on likelihood functions cannot �nd solutions.
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Appendix A. Complete Tables

Table 7. Results from the simulations of an MA(3) matched with
AR(q), unconstrained with remote starting point

(q-p) θ θ̂1000 T=100 T=200 T=500 T=1000

1 1 0.3776 -0.0149 -0.0137 -0.0020 -0.0025
(0.2206) (0.1884) (0.0042) (0.0064)

2 0.8487 0.0468 0.0260 0.0136 0.0085
(2.1919) (0.6760) (0.1839) (0.0717)

3 0.1807 0.0286 0.0010 0.0113 -0.0040
(0.8176) (0.0010) (0.1281) (0.0161)

4 0.0627 0.0058 -0.0031 0.0030 0.0023
(0.0336) (0.0099) (0.0093) (0.0052)

2 1 0.3682 -0.0092 -0.0185 -0.0024 -0.0119
(0.0855) (0.3427) (0.0058) (0.1406)

2 0.8605 0.0300 0.0495 0.0127 0.0203
(0.9001) (2.4503) (0.1604) (0.4111)

3 0.1959 0.0123 0.0111 0.0004 0.0112
(0.1515) (0.1232) (0.0002) (0.1265)

4 0.0454 0.0039 0.0128 -0.0014 -0.0150
(0.0152) (0.1651) (0.0019) (0.2248)

3 1 0.3718 0.0322 -0.0124 -0.0109 -0.0083
(1.0349) (0.1529) (0.1181) (0.0689)

2 0.8726 0.0536 0.0528 0.0232 0.0324
(2.8692) (2.7911) (0.5384) (1.0472)

3 0.1898 0.0089 0.0023 0.0011 0.0051
(0.0791) (0.0052) (0.0012) (0.0262)

4 0.0748 0.0213 0.0018 -0.0008 0.0144
(0.4537) (0.0033) (0.0007) (0.2076)

4 1 0.3678 -0.0126 -0.0146 -0.0073 -0.0123
(0.1590) (0.2133) (0.0531) (0.1501)

2 0.8710 0.0508 0.0287 0.0285 0.0307
(2.5837) (0.8254) (0.8149) (0.9444)

3 0.1768 0.0286 0.0006 0.0018 -0.0079
(0.8192) (0.0004) (0.0032) (0.0618)

4 0.0723 0.0147 0.0050 0.0240 0.0119
(0.2171) (0.0251) (0.5777) (0.1426)

5 1 0.3718 -0.0151 -0.0121 -0.0095 -0.0083
(0.2273) (0.1466) (0.0910) (0.0686)

2 0.8616 0.0516 0.0307 0.0183 0.0214
(2.6582) (0.9442) (0.3365) (0.4574)

3 01823 0.0034 -0.0136 -0.0048 -0.0023
(0.0117) (0.1850) (0.0234) (0.0055)

4 0.0785 -0.0086 0.0238 0.0199 0.0182
(0.0737) (0.5687) (0.3977) (0.3297)

With θ = [0.3800; 0.84025; 0.018468; 0.06036], Root mean square errors in parentheses.
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Table 8. Results from the simulations of an MA(3) matched with
AR(q), constrained with remote starting point

(q-p) θ θ̂100 T=100 T=200 T=500 T=1000

1 1 0.3789 -0.0012 -0.0029 -0.0095 -0.0045
(0.0014) (0.0083) (0.0895) (0.0200)

2 0.8663 0.0260 0.0081 0.0157 0.0209
(0.6784) (0.0648) (0.2463) (0.4255)

3 0.0585 0.0401 0.0030 0.0021 0.0002
(1.6050) (0.0090) (0.0044) (0.000)

4 0.0641 0.0037 -0.0191 -0.0099 -0.0057
(0.0137) (0.3663) (0.0980) (0.0327)

2 1 0.3843 0.0042 -0.0070 -0.0112 -0.0130
(0.0177) (0.0486) (0.1253) (0.1700)

2 0.8593 0.0190 0.0300 0.0258 0.0355
(0.3605) (0.8995) (0.6645) (1.2601)

3 0.0462 0.0277 0.0264 0.0017 0.0037
(0.7673) (0.6987) (0.0029) (0.0138)

4 0.0533 -0.0071 -0.0005 -0.0170 0.0010
(0.0501) (0.0002) (0.2876) (0.0009)

3 1 0.3676 -0.0125 -0.0148 -0.0109 -0.0097
(0.1555) (0.2205) (0.1194) (0.0932)

2 0.8705 0.0302 0.0350 0.0297 0.0230
(0.9123) (1.2241) (0.8816) (0.5287)

3 0.0635 0.0450 0.0335 -0.0120 -0.0051
(2.0232) (1.1251) (0.1431) (0.0258)

4 0.0793 0.0189 0.0008 -0.0073 -0.0016
(0.3580) (0.0007) (0.0539) (0.0025)

4 1 0.3739 -0.0062 -0.0092 -0.0113 -0.0099
(0.0387) (0.0843) (0.1282) (0.0978)

2 0.8717 0.0314 0.0375 0.0350 0.0325
(0.9853) (1.4055) (1.2264) (1.0594)

3 0.0242 0.0057 -0.0023 0.0130 -0.0066
(0.0329) (0.0052) (0.1701) (0.0435)

4 0.0538 -0.0066 -0.0009 0.0062 0.0023
(0.0434) (0.0007) (0.0388) (0.0052)

5 1 0.3799 -0.0002 -0.0168 -0.0091 -0.0152
(0.000) (0.2823) (0.0828) (0.2316)

2 0.8818 0.0409 0.0395 0.0295 0.0381
(1.6757) (1.5628) (0.8719) (1.4478)

3 0.0312 0.0127 0.0093 -0.0027 -0.0120
(0.1624) (0.0868) (0.0074) (0.1430)

4 0.0522 -0.0082 0.0020 -0.0007 0.0013
(0.0675) (0.0042) (0.0005) (0.0017)

With θ = [0.3800; 0.84025; 0.018468; 0.06036], Root mean square errors in parentheses.
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Table 9. Results from the simulations of an MA(3) matched with
AR(q), constrained with close starting point

(q-p) θ θ̂100 T=100 T=200 T=500 T=1000

1 1 0.3769 -0.0032 0.0057 -0.0003 -0.0049
(0.0103) (0.0324) (0.0001) (0.0237)

2 0.8440 0.0037 -0.0077 0.0045 0.0193
(0.0136) (0.0600) (0.0207) (0.3714)

3 0.0561 0.0376 0.0120 0.0029 0.0074
(1.4130) (0.1436) (0.0084) (0.0544)

4 0.0399 -0.0205 -0.0256 -0.0134 -0.0050
(0.4217) (0.6549) (0.1807) (0.0248)

2 1 0.3786 -0.0015 -0.0077 -0.0010 -0.0076
(0.0022) (0.0585) (0.0009) (0.0578)

2 0.8559 0.0146 0.0237 0.0100 0.0210
(0.2117) (0.5635) (0.0999) (0.403)

3 0.0512 0.0327 0.0145 0.0082 0.0020
(1.0685) (0.2112) (0.0671) (0.0039)

4 0.0484 -0.0120 -0.0052 -0.0106 0.0013
(0.1440) (0.0273) (0.1118) (0.0018)

3 1 0.3704 -0.0097 -0.0057 -0.0042 -0.0011
(0.0949) (0.0330) (0.0175) (0.0013)

2 0.8411 0.0008 0.0126 0.0117 0.0144
(0.0006) (0.1598) (0.1363) (0.202)

3 0.0351 0.0166 -0.0045 0.0079 0.0055
(0.2756) (0.0200) (0.0619) (0.0305)

4 0.0533 -0.0071 -0.0139 -0.0076 0.0004
(0.0508) (0.1926) (0.0574) (0.0002)

4 1 0.3721 -0.0080 -0.0050 -0.0074 -0.0017
(0.0646) (0.0250) (0.0541) (0.0028)

2 0.8669 0.0266 0.0247 0.0228 0.0172
(0.7084) (0.6081) (0.5197) (0.2955)

3 0.0389 0.0204 0.0115 0.0001 0.0024
(0.4161) (0.1314) (0.0000) (0.0058)

4 0.0489 -0.0115 -0.0068 0.0013 0.0001
(0.1327) (0.0466) (0.0017) (0.0000)

5 1 0.3756 -0.0045 -0.0020 -0.0046 0.0001
(0.0203) (0.0041) (0.0215) (0.0000)

2 0.8665 0.0262 0.0183 0.0170 0.0103
(0.6890) (0.3354) (0.2905) (0.1067)

3 0.0214 0.0029 -0.0002 0.0004 0.0024
(0.0084) (0.0001) (0.0001) (0.0058)

4 0.0466 -0.0138 -0.0018 0.0023 -0.0005
(0.1905) (0.0033) (0.0051) (0.0002)

With θ = [0.3800; 0.84025; 0.018468; 0.06036], Root mean square errors in parentheses.
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Appendix B. Figures
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Appendix C. Matlab codes

MA arti�cial generation

function y=MASIM_GEN(theta,z) 

 

m=length(theta)-1; 

sigma2_epsilon=theta(1); 

epsilon=z*sqrt(sigma2_epsilon); 

theta_MA=theta(2:end); 

[~,eps_lags]=newlagmatrix(epsilon,m); 

y=eps_lags*theta_MA+epsilon(m+1:end); 

Published with MATLAB® R2017b 
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MA Main �le

Setting of simulation parameters 

global V 

V=[100,200,500,1000]; % time-length of each sample 

global m; 

m=3; % number of lags 

global Q 

q=m+1; % number of auxiliary parameters 

Q=[q,q+1,q+2,q+3,q+4]; 

BVMA=zeros(m+1,length(V),length(Q)); 

global M; 

M=100; % number of Monte-Carlo iterations 

 

theta_true=[0.3801,0.8403,0.01847,0.0604]'; 

theta=0.2*theta_true; % Starting point of each optimization 

theta_hat=zeros(rows(theta_true),M); 

Generation of the simulations and estimations 

for v=1:length(V) 

for q=1:length(Q) 

global T 

T=V(v); 

hbar = parfor_progressbar(M,sprintf('Progress for sample size = %d and q = %d',V(v),Q(q))); 

 

parfor jj=1:M 

z=randn(T,1); 

y=MASIM_GEN(theta_true,z); 

 

% Fitting with AR(q) process: 

 

[y_new,y_lags]=newlagmatrix(y,Q(q)); 

results=ols(y_new,y_lags); 

beta_hat=[results.beta;results.sige]; % Estimation of beta by the auxiliary model 

 

% Simulations: 

 

S=200; % Number of optimization 

E=randn(T,S); 

options=optimset('Display','iter'); 

 

Weight=W_Matrix(beta_hat,y); 

 

% Boundaries are needed for the constraint optimisation: 

lb=[0 ;-1;-1;-1]; % Sets the lower bounds of the structural parameters 

ub=[1;1;1;1]; % Sets the upper bounds of the structural parameters 

 

theta_hat(:,jj)=fmincon('II_GENMA_AR',theta,[],[],[],[],lb,ub,NONLCON(theta,z),options,beta_ha

t,E,Weight); 

 

hbar.iterate(1); 

end 

close(hbar); 

toc 

[Bias,Rmse]=MCA(theta_hat,theta_true); 

BVMA(:,v,q)=Bias; 
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II's simulations

function Q=II_GENMA_AR(theta,beta_hat,E,W) 

beta_S=zeros(cols(E),rows(beta_hat)); 

q=rows(beta_hat)-1; 

 

for i=1:cols(E) 

    y_i=MASIM_GEN(theta,E(:,i)); 

    [y_new,y_lags]=newlagmatrix(y_i,q); 

    results=ols(y_new,y_lags); 

    beta_S(i,:)=[results.beta;results.sige]'; 

end 

Generation of the distance matrix 

beta_bar=mean(beta_S)'; 

differ=beta_bar-beta_hat; 

Q=differ'*W*differ; % Criterion 

Published with MATLAB® R2017b 



INDIRECT INFERENCE APPLIED TO FINANCIAL ECONOMETRICS 37

Simulation of discretized trajectories from the Heston model

function [p,sigma2]=SV(theta,S0,T,N,W); 

 

% S0=initial condition; 

% theta= parameters; 

% eta= vol-of-vol parameter 

% N=number of steps; 

% M=number of paths; 

% output: 

% S: N+1xM vector of simulated trajectories of prices 

% sigma2:  N+1xM vector of simulated trajectories of variances 

 

kappa=theta(1); 

omega=theta(2); 

eta=theta(3); 

dt=T/N;   % size of small interval 

p=zeros(N+1,1);  % initialize matrix of S 

sigma2=zeros(N+1,1);  % initialize matrix of variances 

p(1)=log(S0); % S(0) 

 

sigma2(1)=omega; % sigma(0) 

u1=W(:,1); % innovations to prices 

u2=W(:,2); % innovations to variances 

minvalue=0.00000001; 

 

i = 1; 

while i <= N; % loop over N 

pi = p(i); 

sigma2i = sigma2(i); 

sigma2(i+1) = sigma2i + kappa*(omega-sigma2i)*dt + sqrt(dt)*eta*sqrt(sigma2i).*u2(i+1); 

sigma2(i+1)=max(sigma2(i+1),minvalue); 

p(i+1) = pi + sqrt(dt)*sqrt(sigma2(i+1))*u1(i+1); 

i = i + 1; 

end; 

Published with MATLAB® R2017b 

The codes for the rest of the second example is similar to its equivalent from the
�rst example on MA.
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Application, without Block-Bootstrapping

load('SP'); % original sample 

dt=1;  % daily sampling 

Setting & Fitting of the auxiliary model 

logP=log(SP); 

x=diff(logP); 

x(x==0)=[]; 

x_mean=mean(x); 

x_mean=x_mean*ones(2516,1); 

omega_zero=(1/(length(SP))*sum((x-x_mean).^2)); 

theta=[0.005, omega_zero, 0.005]';% starting point of the optimization 

y=log(x.^2); 

T=length(y); 

n_lags=10; 

[y_new,y_lags]=newlagmatrix(y,n_lags,1); 

results=ols(y_new,y_lags); 

 

beta_hat=[results.beta;results.sige]; % Beta by the auxiliary model 

Simulation & Minimization 

S=200; % Number of optimizations 

Weight=W_Matrix(beta_hat,y);%W_Matrix(beta_hat,y); 

E=randn(T+1,2,S); 

% Boundaries are needed for the constraint optimisation: 

lb=[eps;eps;eps]; % Sets the lower bounds of the structural parameters 

ub=[1;1;1]; % Sets the upper bounds of the structural parameters 

options=optimset('Display','iter'); 

global s; 

s=ones(length(theta),n_lags); 

theta_hat=fmincon('II_SP',theta,[],[],[],[],lb,ub,[],options,beta_hat,E,Weight,T,SP); 

z-test 

z_t=(sqrt(T))*(theta_hat/mean(s(:,1))); 

Published with MATLAB® R2017b 
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Application, with Block-Bootstrapping

Setting the Simulation and Bootstrapping's parameters 

load('SP'); % original sample 

dt=1; % daily sampling 

logP=log(SP); 

x=diff(logP); 

x(x==0)=[]; 

x_mean=mean(x); 

x_mean=x_mean*ones(length(x),1); 

omega_zero=(1/(length(SP))*sum((x-x_mean).^2)); 

theta=[0.005, omega_zero, 0.005]';% starting point of the optimization 

 

Window=2000; 

P=ones(Window,1); 

steps=length(SP)-Window; % number of subsamples 

theta_hat=zeros(3,steps); 

Simulations & Bootstrapping 

for ii=1:steps 

    jj=1; 

    while jj<=Window 

        P(jj,1)=SP(ii+jj,1); 

        jj=jj+1; 

    end 

logP=log(P); 

x=diff(P); 

x(x==0)=[]; 

y=log(x.^2); 

T=length(y); 

n_lags=20; 

[y_new,y_lags]=newlagmatrix(y,n_lags,1); 

results=ols(y_new,y_lags); 

 

beta_hat=[results.beta;results.sige]; 

 

Weight=W_Matrix(beta_hat,y); 

E=randn(T+1,2,200); 

 

lb=[eps;eps;eps]; % Sets the lower bounds of the structural parameters 

ub=[1;1;1]; % Sets the upper bounds of the structural parameters 

options=optimset('Display','iter'); 

global s; 

s=ones(length(theta),n_lags,ii); 

theta_hat(:,ii)=fmincon('II_SP',theta,[],[],[],[],lb,ub,[],options,beta_hat,E,Weight,T,P); 

end 

mean=mean(theta_hat'); 

Published with MATLAB® R2017b 
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Appendix D. Summary

Most of modern researchers are, at one time or another, confronted to the task of
building generative models of a process or assemblage on which they work in the
hope to grasp a substantial bite of the nature's knowledge. Being careful scientists,
they usually do a conscientious job of trying to include their guesses for what are
all the most important mechanisms. The result is something that can possibly
be set through to produce a simulation of the process of interest. But, (realistic)
models often contain some unknown parameters, some hidden truth that we will
denominate under the vector θ.

It is desirable to tune those unknown features within models to match the data or
see if, despite researchers' best e�orts, there are aspects of the data which a model
just can't match.

Very often, models too loyally built are too complicated for the common practitioner
to appeal to any of the usual estimation methods of statistics21. Because some
models aim for scienti�c adequacy rather than statistical tractability, it will often
happen that there is no way to even calculate the likelihood of a given data set
under the unknown parameters in closed form, which would rule out even numerical
likelihood maximization.

Indeed, in the over average complicated models, such as stochastic volatility models
in continuous time, ARCH factor models, nonlinear random parameter models, the
likelihood function is impossible to calculate. Procedures for estimating parame-
ters were then born. We can quote for example, the general method of moments
(GMM), the quasi-maximum likelihood (QML) method, Bayesian methods, sim-
ulated expectation maximization (SEM) method, variance reduction (Importance
Sampling, IS). The results of these di�erent methods are quite diverse. Indeed, the
IS method is complicated to implement, GMM and QML methods are not e�cient.
The SEM and Bayesian methods provide better results.

More generally there has been a division of opinion in the academies between fre-
quentist and Bayesian statisticians regarding the e�ciency of the two main inference
methods: General Method of Moments and Maximum Likelihood Estimation. Fre-
quentists dismissed the method-of-moments in favor of the MLE, Bayesians never
did so. Anyway, both sides have always thoroughly and intentionally focused on
the likelihood (frequentists on the location of its maximum and its curvature while
Bayesians focus on its entire shape). As sustained by F.Diebold on his blog22,
this division is what drives the European views regarding estimation methods. Es-
pecially American econometricians hold the GMM in high esteem, to which they
attribute almost sacred merits, this is not the case of European academicians who

21Typically, in �nance the underlying mathematical models have become more complex. They
take more and more parameters to adapt to the data. We can mention, for example, as phenomena
to be taken into account: dependence of volatility on the past, non-linear dynamics, variance,
asymmetry to identify the permanent and transient shocks, unobservable factors, leptokurtic e�ect,
etc.

22No Hesitations, 22 July 2013,
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found the hype about GMM exaggerated. This is mainly due to how GMM is ad-
vertised as potentially useful when there is a likelihood at hand, in other situation
the method-of-moments loses its power. Even worse, model moments may also be
analytically intractable.

Yet simulation is possible; it seems like there should be some way of saying whether
the simulations look like the data. This is where the breaking point comes in.
The solution could �rst come out as an implementation of GMM by simulation:
Simulated Method of Moments. By simulating models, in combination with the
�ne choice of parameters minimizing divergence between simulated and data mo-
ments, one can consistently estimate those models' parameters. That is really
game-changing: we no longer need to work-out complex likelihoods (even for those
that are available in some terms).

But SSM is a peculiar case from of a more general method: Indirect Inference, which
itself can be seen as a generalized form of the method of moments of Du�e and
Singleton (1993) and has papers of Tony Smith23 and C.Gourieroux, A.Monfort and
E.Renault (1993, J. Applied Econometrics) as founding articles. It introduces a new
model, called the "auxiliary model", which is miss-speci�ed and typically not even
generative, but is easily �t to the data, and to the data alone. The auxiliary model

has its own parameter vector β, with an estimator β̂. These parameters describe
aspects of the distribution of observables, and the idea of indirect inference is that
we can estimate the generative parameters θ by trying to match those aspects of
observations. II further bases itself on a metric-set wisely chosen to minimize the
distance between the auxiliary estimators based on the observed data on one hand
and on the other hand the auxiliary estimators of the simulated data.24 Indirect
Inference assumes a relatively easy simulation of the models studied. It allows, from
a higher calculation time, a reduction of the bias compared to more traditional
methods.

Unlike other methods, the moments that guide the estimation of the parameters
of the economic model are themselves the parameters of the auxiliary model. If
the auxiliary model comes close to providing a correct statistical description of the
structural model, then indirect inference comes close to matching the asymptotic
e�ciency of maximum likelihood.

Its main advantages lie in its generality. Unlike other bias reduction methods, such
as those based on explicit analytical expressions for the bias function or key terms
in an asymptotic expansion of the bias, the indirect inference technique calibrates
the bias function by simulation and therefore does not require a given explicit form
for the bias function or its expansion.

Some sustain that evaluation of the likelihood became as trivial as simulating. As
Andrew Harvey and others have emphasized for decades, for any linear model cast
in �nite-dimensional state-space form one can simply run the Kalman �lter and
then evaluate the Gaussian likelihood via a prediction-error decomposition. These

231990, Duke Ph.D. Dissertation, and 1993, J. Applied Econometrics
24The auxiliary estimator may be the Maximum Likelihood Estimator of the auxiliary model

(usually simpler), or the estimator corresponding to the approximate likelihood of the initial model.
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tools can provide complete likelihood analysis in general non-Gaussian environ-
ments. But II remains a more suitable path for cases where model understanding
is of interest and is clearer in its implementation. Moreover, II achieves desirable
consistency properties under misspeci�cation more easily (as exposed in Rossi and
De Magistris 2018). Finally, even-though the more classical approaches like quasi-
maximum likelihood method or Bayesian models deliver more satisfying results in
statistical terms, there are areas where they simply cannot be used or at least not
properly.

For many decades now, interest in analysis and modeling in �nance and economics
has been growing. Financial data is growing. The emergence of computer tools has
made its further development and exploitation possible. The rising of the average
computational capacity, following the Moore's law of computing power25, has made
simulation-based procedures even more competitive than before.

The aim of this thesis is to present the II methodology and implementation (section
2: Indirect Inference, Theoretical aspects) and to discuss it around two examples
(that are moving average and Heston-model, in section 3: Examples), followed by
an attempt to apply this method on the S&P500 Index (section 4: Application). In
this paper we will discover the recipe for an II implementation, the threats to its
robustness and solutions to tackle them.

Through this work, we exposed the main features of the Indirect Inference method-
ology and its underlying assumptions and hypotheses. In a nutshell, we need to
use a link-function between the auxiliary parameters and the structural parame-
ters that guarantees the uniqueness of the distance-minimization's solutions and a
certain level of consistency. Thanks to the two examples and the application, we
demonstrated that a simulation's process quality is required to implement II prop-
erly. That is interesting, because simulation ability is a �ne litmus test of model
understanding. Therefore, to attain quality estimates, one has to consider every
possible restrictions applying on the parameters values.

We observed that longer time series can improve the consistency of indirect esti-
mators but do not reduce their bias as much. Reduction of bias can be attained
through the addition of auxiliary parameters. Even though the marginal impact of
an auxiliary is decreasing and become negative as some point (likely for very long
auxiliary vectors of parameters).

In sum, we highlighted the main advantage of Indirect Inference: its generality
and the ease to adapt it to speci�c and complex models like stochastic volatility.
Nevertheless, its drawbacks and �aws should not be left aside. Firstly, the indirect
estimates demonstrated a high sensitivity to initial optimization point. This is a
necessity, before the implementation of II, to have fair and plausible guesses about
what the {theta should look like. Also, the auxiliary model only �ts the data, the

25Moore's law is the observation that the number of transistors in a dense integrated circuit
doubles about every two years. The observation is named after Gordon Moore, the co-founder
of Fairchild Semiconductor and Intel, whose 1965 paper described a doubling every year in the
number of components per integrated circuit ("Moore's Law." Wikipedia, Wikimedia Foundation,
12 June 2018, en.wikipedia.org/wiki/Moore'slaw.)
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estimator obtain are also heavily in�uenced by the sample. Globally, this warns us
to take good care in the elaboration of the process and to remain vigilant about
the results.

More over, there has been a new trend these last years concerning the requirements
researchers have to face to get published. Quantity of Journals now impose the
necessity to have replicable results, for the sake of science. Researches involving
indirect estimation cannot totally satisfy this point since simulations within the
minimization are base on a part of randomness. For example, in the stochastic
volatility model exposed in the second example, each simulation uses a Brownian
motion that is di�erent from the precedent. Still this does not call into question
the results candidly drawn with indirect inference, but one should be careful to
data-mining practices that might deliver conclusions based on providential results
more than scienti�c ones.

What should keep the interest of academicians and researchers in the future is the
fact that II is an easy-access door to an area of experimentation and empirical
opportunities that was previously in-explorable for more-classical methods. II is a
�exible skeleton on which can attached other statistical tools in the aim to construct
e�cient and consistent estimators. If correctly applied, there is no doubt that
indirect inference can bring satisfying results for whatever problem where methods
relying on likelihood functions cannot �nd solutions.
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