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“What you get by achieving your goals is not as important  
as what you become by achieving your goals” 

-H. D. Thoreau 
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Introduction 
 

This research is aimed at implementing an algorithm to price European Swaption that can 

capture current market conditions, which are embedded in macro-financial variables. In the 

model built in this paper, the calibration primarily takes into account the current term structure 

and quotes for specific classes of derivatives.  

Derivatives started to be traded in the early 90s and, despite the crash related to the 2008 

financial crisis, the volume of the notional amount exchanged on OTC market reached 640 

trillion (as in June 2019). Those instruments are used from multiple individuals and corporates 

for speculation and hedging purposes. In particular, fixed income derivatives are mainly used 

for hedging the risk arising from interest rates, and, not surprisingly, interest rates derivatives 

are the most liquid sub-category. Those instruments allow investors that are exposed to interest 

rates, such as issuers of floating-rate securities or investors of callable securities, to be protected 

against fluctuations in the term structure. Swaptions are exotic options where the underlying is 

a swap contract, and the buyer of a receiver/payer swaption will have the right at maturity to 

enter in a receiver/payer swap at a pre-determined strike swap rate. Notwithstanding the 

diffusion of these instruments, their pricing process poses multiple challenges in its 

implementation, that will be examined in this paper. 

  

First of all, since the payoff depends on future interest rates, this type of derivatives requires 

an appropriate process to understand and predict the term structure. Over time, an extensive 

literature has been developed on term structure modelling, and although there are multiple 

types of models the most widespread one is the Affine class which will be thoughtfully 

analyzed.  

Furthermore, whilst in equity derivatives, the payoff and the discount factors depend on 

different variables, in fixed income derivatives both the discount factor and the payoff are built 

upon the interest rate. This peculiarity causes a non-zero correlation between these two which 

alters the discounted expected value of future outcomes. Changing the probability measure and 

obtaining the so-called Equivalent Martingale Measure result, will allow to have a deterministic 

discount factor outside the expectation operator, and consequently eliminate the problem of 

correlation. The adoption of a new probability measure, namely the T-forward measure, lays 

the groundwork for the application of Market Models such as the LIBOR Market Model and 
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the Swap Market Model. This study will analyze and compare short rates models and market 

models and their ability to price swaptions reflecting current market conditions.  

The chosen model, after a discretization procedure, is implemented through the famous 

statistical tool of Monte Carlo simulation, which allows describing the true dynamics of interest 

rates, whom advantages for swaptions will be illustrated.  

 

With the appropriate calibration, the resulting pricing algorithm performed generates an 

estimator of the price of a European receiver swaption with one year of maturity. On the result 

are performed sensitivity analyses to explain the variation of the price concerning the main 

variables: strike and tenor of the underlying swap. The variance of Monte Carlo estimators is 

determined and appears to be higher for greater tenor and strike values. Finally, to validate the 

pricing algorithm based on Monte Carlo simulation and LIBOR Market Model its outcome is 

compared with at-the-money swaptions quoted on the market at the day of evaluation. The 

Mean Squared Error is additionally investigated. 

The research structure follows the logical steps of the pricing process. The first section reviews 

extensively the most famous Affine models for term structure modelling and the different 

existing volatility structures, examining the mathematical steps needed to change the 

probability measure and obtain the solution to the stochastic differential equation for pricing. 

The second section provides the theoretical knowledge about Monte Carlo methods, 

underlining the importance of these tools in complex multidimensional integration problems 

and explaining the advantages of using Monte Carlo estimations. This chapter goes also 

through variance reduction techniques and the convenience in the application of Monte Carlo 

simulation to swaption pricing. The third chapter is aimed at performing the pricing, explaining 

the derivation of the specific discretized stochastic process simulated and its calibration on the 

current term and volatility structure. The results and the sensitivity analyses are presented 

together with the model validation. The role of modern pricing techniques in the landscape of 

global markets is explained and future challenges of the latter techniques are identified.  

Finally, the conclusions are reported and extensions of the model for future implementation are 

suggested.  
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Chapter 1 

Affine models for term structure modelling 
 

 

 

 

 

 

 

1. Exotic options and European swaptions  
The term “exotic options” includes any option type that is different from Vanilla options, from 

the perspective of payoffs and cash flows structure. This class of derivatives brings many 

advantages in term of use, because of their complex structure of payoffs and cash flows, they 

can easily meet different investors’ needs. Two main categories of exotic options can be 

distinguished: path independent are characterized by payoffs that are only function of the 

underlying asset price at maturity, whereas path dependent’s payoffs are functions of the price 

path of the underlying as whole or in some specific portion. For categorization purposes also 

the dimension and the order of the option are often taken into account. The former is the number 

of variables that characterize the payoffs, and the latter is related to the type of function that 

links those variables and the payoffs. In this paper, I will go through interest rate models and 

Monte Carlo simulation with the final intent of pricing a type of exotic option on fixed income, 

that is Bermudian and European Swaption. There exist a considerable body of literature that 

will be soon introduced, that shows the progress that have been made in term of accuracy to 

price fixed income derivatives. Notably, several theories have been dedicated to swaptions 

pricing with some remarkable results during the latest year of the XX century.  

 

2. Structural Affine Models  
Structural models for yield curve are aimed not only at characterizing but also at understanding 

the term structure and its changes, being in this way extremely useful for forecasting purposes. 

With no doubt, among many types of structural models, the most widespread class is the affine 

one. An important constraint that is imposed on these models is the no-arbitrage condition, 
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which ensures that prices do not allow no-risk profits. The no-arbitrage condition can also guide 

statistical estimates in the process of characterization of the yield curve. In this chapter I will 

analyze briefly the first generation of Affine Models, Vasicek (1977) and CIR (1985) and three 

important drivers of the yield curve, to focus later on in the chapter on more complex models 

which rely on the forward neutral probability measure. More specifically the Libor Market 

Model by Brace, Gatarek and Musiela will be used to simulate the trajectories of future spot 

Libor rates and price Bermudian Swaptions. 

 

To introduce the Affine setting, Rebonato highlights three factors which determine the structure 

of the yield curve: Expectation, Risk Premia and Convexity. Expectations are often included 

in affine models (e.g.: Vasicek) through a mean-reverting component, which is able to capture 

a long term mean reversion that unfortunately does not fit well the intuition by which 

expectation might influence the short term part of the yield curve instead of the long term one 

(Rebonato, 2016).  

Vasicek and CIR models represent the first generation of affine models, they both take into 

account the no-arbitrage condition and the main drivers of the yield curve in a one-factor 

equation, and the state variable is an affine diffusion under both physical and risk neutral 

measures.  Short rate models, in general, are highly intuitive and flexible for their ability to 

explore the dynamics of an instantaneous continuously compounded short rate 𝑟𝑡. In the 

Vasicek model, the short rate increment follows a generic Gaussian Markov process in which 

the short rate reverts to a long term fixed level J with a reversion speed of M (Cox et al., 1985). 

The SDE is the following: 

 

𝑑𝑟𝑡 = 𝜑(𝛾 − 𝑟𝑡) + 𝜎𝑟𝑑𝑧𝑡ℙ 

 

Where, in this case, 𝑑𝑧𝑡ℙ is the Markovian increment in real-world probability measure. The 

component M has central importance, precisely when the reversion speed is zero the duration 

of the security grows linearly with maturity, while at a higher reversion speed the duration 

grows less with maturity, meaning that for high reversion speeds the security is less sensitive 

to changes in the yield (Vašíček, 1977). 

The risk premia is the excess return required from investors to bear some specific level of risk, 

and the compensation related to each risk factor per unit risk is determined in the following 

way: 
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𝑢𝑗
𝑡,𝑇 =

𝜕𝑃𝑡𝑇

𝜕𝑥𝑗
𝜎𝑗𝑡𝜆𝑗𝑡 

Where  𝜕𝑃𝑡
𝑇

𝜕𝑥𝑗
 is the price sensibility of the specific bond to the 𝑗𝑡ℎ risk factor, 𝜎𝑗𝑡 is the volatility 

of the risk factor, and 𝜆𝑗𝑡 is the market price of one unit of that risk. Considering all the risk 

factors that characterize a security, the expected return at time t can be defined as the sum 

between the compensations of all the risk factors: 

 

𝐸[𝑑𝑃𝑡𝑇]
𝑃𝑡𝑇

= 𝑟𝑡 +∑
1
𝑃𝑡𝑇

𝜕𝑃𝑡𝑇

𝜕𝑥𝑗
𝜎𝑗𝑡𝜆𝑗𝑡

𝑛

𝑗=1

 

 

The market price of risk 𝜆𝑗𝑡 is assumed to be constant in the first generation of Affine Models. 

A number of questions regarding this assumption remain to be addressed, and even though this 

approach is particularly straight forward it does not capture the shown trend of positive excess 

return when the yield curve is steep and zero or negative excess returns when the curve is flat 

or downward sloping (Rebonato, 2014).  

Convexity captures the non-linear relationship between yields and prices and might be 

responsible for the shape of the term structure for long maturities. The above mentioned non-

linear effect in the Vasicek model is observed in the volatility of the yield, which depends 

quadratically on the volatility of the state variable and on the sensitivity term (Rebonato, 1999).  

The no-arbitrage assumption, that represents an important landmark in pricing is translated in 

the equation below, which in simple words states that the return on a security should equate 

the sum of the compensation for every source of risk (Kim & Wright, 2005).  

 

𝐸𝑡ℙ[𝑃𝑡+𝑑𝑡𝑇−𝑑𝑡] − 𝑃𝑡𝑇

𝑃𝑡𝑇
= 𝑟𝑡𝑑𝑡 +

1
𝑃𝑡𝑇

(∑
𝜕𝑃𝑡+𝑑𝑡𝑇−𝑑𝑡

𝜕𝑥𝑖
𝜆𝑡𝑖 (𝑥)𝜎𝑥𝑖

𝑖
) 𝑑𝑡 

 

At this point it is important to underline that there is a trade-off regarding the type of variables 

(or factors) on which the model should depend. From one perspective, choosing variables 

which derive from macroeconomic equilibrium models surely simplifies the intuition behind 

the model, yet it is important to double-check the robustness of the macroeconomic 

assumptions behind them. From the other perspective choosing variables that come from 
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statistical and econometric analyses, such as Principal Component analysis (Rebonato et al., 

2014), adds opaqueness and introduces the problem of overparameterization (Rebonato, 2016).  

 

3. Ho-Lee, Hull-White and Black, Derman, Toy models 
Models such as Vasicek and Cox, Ingersoll and Ross are not able to exactly fit the dynamic of 

the current yield curve, luckily other studies carried by Ho and Lee, Hull and White and Black 

Derman and Toy proposed new models that were not only able to fit the term structure, but 

once revisited and extended were also able to fit the observed volatility structure.  

Ho Lee model, from 1986, is the most straight forward and the first one able to fit the term 

structure of interest rates. The short rate follows a stochastic process with drift 𝜃𝑡 and diffusion 

V. 

 

𝑑𝑟𝑡 = 𝜃𝑡𝑑𝑡 + σ𝑑𝑊 

 

Where the drift  𝜃𝑡 is chosen exactly to fit the term structure. Those parameters are found using 

a bootstrapping procedure that starts from zero-coupon bonds’ prices, and with the use of a 

searching algorithm, the first parameter 𝜃0 is found so that the price of the first ZCB is returned 

from the risk-neutral tree. Afterwards, the second parameter is found, and so on (Ho & Lee, 

1986). 

The estimate for 𝜃𝑡 can also be obtained in a less time-consuming process from the forward 

rates structure. Recalling that the forward rate is equal to the short rate plus the slope of the 

spot curve: 

𝑓(0, 𝑡) = 𝑟(0, 𝑡) + 𝑡
𝜕𝑟(0, 𝑡)
𝜕𝑡  

 

Applying the pricing equation from the Ho Lee model is obtained the following equation for 

the 𝜃𝑡  term. 

 

𝜃𝑡 =
𝜕𝑓(0, 𝑡)

𝜕𝑡 + 𝜎2𝑡 

 

Despite the intuitive nature of the Ho Lee model, there are some flaws due to its simplicity. In 

fact, the model allows a positive probability of negative interest rates because of the 

symmetrical distribution. Furthermore, it uses the empirical volatility, computed from 
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historical interest rates assuming a flat volatility structure (Veronesi, 2005a). Therefore, it tends 

to overprice low maturity caps, floors and swaption and underprice long maturity ones. 

The Hull White model, introduced in 1990, extends the Vasicek model in order to fit the term 

structure. With respect to the Ho Lee model, it presents a mean reversion component. 

 

𝑑𝑟𝑡 = (𝜃𝑡 − 𝛾∗𝑟)𝑑𝑡 + σ𝑑𝑊 (4.0) 

 

The parameter 𝜃𝑡 can be as well estimated with a bootstrapping procedure or directly from the 

forward curve with the same procedure of the previous model, with the following result (Hull 

& White, 1990). 

 

𝜃𝑡 =
𝜕𝑓(0, 𝑡)

𝜕𝑡 + 𝜎2𝑓(0, 𝑡) +
𝜎2

2𝛾∗ (2 − 𝑒−2𝛾∗𝑡) 

 

In 1994 the same model was broadened to a two factor model, to give a better shape of the term 

structure. Unfortunately, it still allows negative values for the short rate. On the positive side, 

one can choose the parameters  𝛾∗ and σ to best fit the forward volatility structure. 

 

The Black, Derman and Toy (BDT)  model, introduced in 1990 as well, applies a 

transformation to the short rate defining a new variable, 𝑧𝑡 = ln⁡(𝑟𝑡). The logarithmic 

transformation gives the variable a distribution with positive skewness that changes the result 

of the estimate. This procedure gives a zero probability to negative interest rates, however 

assigns higher probabilities to high levels of interest rates and lower probability to low interest 

rates. The stochastic process followed by the increment of the variable 𝑧𝑡 is the following 

(Black et al., 1990): 

 

𝑑𝑧𝑡 = [𝜃𝑡 +
𝜎′𝑡
𝜎𝑡

𝑧𝑡] 𝑑𝑡 + 𝜎𝑡𝑑𝑊 

 

When volatility is considered constant the mean reversion component drops to zero, and the 

model becomes simply a logarithmic version of the Ho Lee model [Hull, 2018 p. 738]. This 

model tends to underprice for all maturities derivatives such as Caps, Floors and Swaptions. 

The model allows fitting exactly not only the term structure but also the volatility structure. 
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However, the simple version of the BDT model does not fit the volatility structure, because 

when substituting the diffusion term V with 𝜎𝑖 the resulting tree is not recombining anymore 

(Veronesi, 2005a).    

 

4. Flat and Forward volatilities 
Notwithstanding the fact that the above models are able to fit the term structure and 

consequently correctly price bonds, they still do not correctly price the type of interest rate 

derivatives that are being analyzed in this paper. This is due to the lack of matching with the 

volatility implied by market prices of those securities. The implied volatility is indeed the 

volatility implied by the dollar price, that if applied to the pricing formula gives back the exact 

same price quoted on market. Often derivatives quotes are expressed in terms of implied 

volatility, as for swaption contracts. If we consider different caps, one for each maturity, 

starting from their prices we can extract with the use of the Black formula the implied volatility 

for each cap. The issue related to this specific volatility is that each one is able to price only a 

single cap because with this process it is of necessity assumed a different flat volatility structure 

for each cap. However each cap has different caplets at different maturities, and recalling that 

the price of the cap is equal to the sum of the single caplets’ prices, it is inconsistent to price 

with different volatilities two caplets with identical maturities coming from two different caps 

having different maturities. Accordingly, it is reasonable to extract from implied volatilities the 

structure of Forward volatilities so that to each point in time corresponds a volatility that is able 

to price all the caplets for that maturity. This is implemented through a bootstrapping procedure 

where the starting point is the cap with the closest maturity, whose flat volatility corresponds 

to the first step forward volatility. Generalizing, the dollar value of the 𝑖-th caplet is found in 

the following way from the dollar price of the cap (Veronesi, 2005a); 

 

𝑇𝑖⁡𝑐𝑎𝑝𝑙𝑒𝑡⁡𝑑𝑜𝑙𝑙𝑎𝑟⁡𝑣𝑎𝑙𝑢𝑒 = 𝐶𝑎𝑝(𝑇𝑖) −∑𝐶𝑎𝑝𝑙𝑒𝑡(𝑇𝑗, 𝑟𝐾,𝑖, 𝜎𝑓𝐹𝑤𝑑(𝑇𝑗))
𝑖−1

𝑗=1

 

Where 𝜎𝑓𝐹𝑤𝑑(𝑇𝑖) is the forward volatility for maturity 𝑖, nonetheless our unknown. Once the 

value of the caplet of interest is found it is possible to find the value of the forward volatility 

from the Black formula. Then the procedure is repeated for each maturity. 
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5. Probability measures 
The price of a derivative is equal to the discounted expectation of payoffs under the risk neutral 

measure. The most common measure of value, that is the one used under the traditional risk 

neutral measure, is the risk free rate of return. The risk neutral pricing methodology starts from 

a generic stochastic processes: 

 𝑑𝑟𝑡 = 𝑚(𝑟𝑡,𝑡)𝑑𝑡 + 𝑠(𝑟𝑡, 𝑡)𝑑𝑋𝑡 (4.1) 

 

Where 𝑑𝑋𝑡 is a Wiener component, and the drift m and the diffusion s are functions of the short 

rate and of the time. Considering now a portfolio made of two derivatives dependent on the 

short rate, 𝑓 and 𝑔. The latter securities follow the processes 

 

 𝑑𝑓
𝑓 = 𝜇1(𝑟𝑡,𝑡)𝑑𝑡 + 𝜎𝑓(𝑟𝑡,𝑡)⁡𝑑𝑋𝑡 (4.2) 

 

 𝑑𝑔
𝑔 = 𝜇2(𝑟𝑡,𝑡)𝑑𝑡 + 𝜎𝑔(𝑟𝑡,𝑡)⁡𝑑𝑋𝑡 

 
(4.3) 

 

where 𝜇1, 𝜇2, 𝜎1⁡and 𝜎2 are functions of the short rate and of the time. Now an instantaneous 

riskless portfolio can be constructed, with 𝜎𝑔𝑔⁡unit of  𝑓, and −𝜎𝑓𝑓 unit of 𝑔 (Hull, 2018b). 

The process that this portfolio follows can be obtained applying Ito’s lemma, imposing the no-

arbitrage condition, so that the portfolio return must equal the risk free rate, one can obtain the 

PDE that every security must satisfy. This steps, similar to the Black and Scholes setting, bring 

to the  Fundamental Pricing Equation. 

 

𝑟𝑉 =
𝜕𝑉
𝜕𝑡

+
𝜕𝑉
𝜕𝑟

𝑚∗(𝑟, 𝑡) +
1
2
𝜕2𝑉
𝜕𝑟2

𝑠(𝑟, 𝑡)2 

With the boundary condition of 𝑉(𝑟, 𝑇) = ℎ𝑇, where ℎ𝑇 is the payoff. The Feynman-Kac 

theorem provides us with a general solution to the PDE,  

𝑉(𝑟𝑡, 𝑡) = 𝔼∗[𝑒−∫ 𝑅(𝑟𝑢)𝑑𝑢
𝑇
𝑡 ℎ(𝑟𝑡, 𝑡)|𝑟𝑡] 

The expectation operator is with respect to the risk neutral interest rate process, that has the 

risk neutral adjusted drift (Veronesi, 2005b). 

Regrettably, the Fundamental Pricing Equation is not easily applicable to interest rate 

derivatives, whose pricing is the aim of this thesis. In fact, in that case both the discount factor 
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and the payoff depend on the interest rate, consequently there is a positive correlation element 

that should be taken into account.  

𝑉(𝑟, 𝑡; 𝑇) = 𝔼∗ [𝑒−∫ 𝑟𝑢𝑑𝑢
𝑇
𝑡 ℎ𝑇] = 𝔼∗ [𝑒−∫ 𝑟𝑢𝑑𝑢

𝑇
𝑡 ] ∗ 𝔼∗[ℎ𝑇] + 𝑐𝑜𝑣(𝑒−∫ 𝑟𝑢𝑑𝑢

𝑇
𝑡 , ℎ𝑇) 

The change of numeraire allows a simplification of the pricing formula in this situation.  

Assuming the security 𝑍(𝑟, 𝑡; 𝑇) as a numeraire, the normalized value of  the derivatives 

becomes 𝑉̃(𝑟, 𝑡; 𝑇) = 𝑉(𝑟,𝑡;𝑇)
𝑍(𝑟,𝑡;𝑇)

, where V(r,t;T) is the dollar value. The normalized value satisfies 

the following partial differential equation 

0 =
𝜕𝑉̃
𝜕𝑡 +

𝜕𝑉̃
𝜕𝑟 (𝑚

∗(𝑟, 𝑡) + 𝜎𝑍(𝑟, 𝑡)𝑠(𝑟, 𝑡)) +
1
2
𝜕2𝑉̃
𝜕𝑟2 𝑠(𝑟, 𝑡)

2 

where 𝜎𝑍 = ⁡ 1
𝑍
𝜕𝑍
𝜕𝑟
𝑠(𝑟, 𝑡) is the diffusion of the numeraire. The equivalent martingale measure 

result shows that for a given numeraire, and a particular choice of the market price of risk, the 

normalized price 𝑉̃(𝑟, 𝑡; 𝑇) is a martingale for all the securities (Musiela & Rutkowski, 1997). 

The change of measure in the case of constant market price of risk is applied in the stochastic 

process of interest with a parallel shift  of the drift. For instance, considering again the Vasicek 

process it is possible to observe that when moving from the real world to the traditional risk 

neutral world  changes the reversion level by Δ𝛾 = 𝜆0𝜎𝑟 (Veronesi, 2005b) 

𝑑𝑟𝑡 = ⁡𝜑(𝛾 − 𝑟𝑡 + 𝜆0𝜎𝑟) + 𝜎𝑟𝑑𝑧𝑡
ℚ 

If the market price of risk is positive, the shift will be positive as well, meaning that extra return 

is required. This results in a higher reversion level and consequently higher levels of rates. Now 

that it is clear how the probability measure changes the drift in the simple Vasicek model, it is 

possible to observe the important result of the Equivalent Martingale Result. Considering the 

two securities analyzed in equation 4.2 and 4.3, and choosing 𝑔 as numeraire and 𝜆0 = 𝜎𝑔 as 

the market price of risk, then applying Ito’s Lemma to the normalized price 𝑓
𝑔
  it is possible to 

prove that the latter is a martingale (equation 4.2). This is called the forward-risk neutral world 

with respect to the security 𝑔 (Hull, 2018a).  

𝑑𝑓 = (𝑟 + 𝜎𝑓𝜎𝑔)𝑓𝑑𝑡 + 𝜎𝑓⁡𝑑𝑋𝑡 

𝑑𝑔 = (𝑟 + 𝜎𝑔2)𝑑𝑡 + 𝜎𝑔⁡𝑑𝑋𝑡 

 𝑑
𝑓
𝑔 = (𝜎𝑓 − 𝜎𝑔)⁡

𝑓
𝑔 𝑑𝑋𝑡 (4.2) 

The price of the derivative 𝑓
𝑔
 is given by: 

𝑓0
𝑔0

= 𝔼𝑔∗ [
𝑓𝑇
𝑔𝑇
] 
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Likewise, the normalized price of the portfolio considered before 𝑉̃(𝑟, 𝑡; 𝑇), recalling that the 

chosen numeraire was 𝑍(𝑟, 𝑡; 𝑇), is equal to: 

 

𝑉̃(𝑟, 𝑡; 𝑇) = 𝔼𝑓∗[ℎ𝑡] 

𝑉(𝑟, 𝑡; 𝑇) = 𝑍(𝑟, 𝑡; 𝑇)⁡𝔼𝑓
∗[ℎ𝑡] 

 

The important result is that now the discount factor is outside the expectation operator. This 

allows further manipulation that will be shown in the next paragraph. 

 

6. Forward neutral models 

The LIBOR Market Model from Brace, Gatarek and Musiela (1997), uses the Equivalent 

Martingale Measure result to price fixed income derivatives using the dynamics of the LIBOR  

forward rate as a starting point. Considering a derivative whose payoffs are function of the 

LIBOR, the present value of the contract today is equal to  

𝑉(𝑟, 𝑡; 𝑇) = 𝑍(𝑟, 𝑡; 𝑇)N∆𝔼𝑓
∗[𝑟𝑛(𝜏, 𝑇) − 𝑟𝐾] 

Where the expectation is taken with respect to the T-forward risk neutral dynamics. Recalling 

that the forward rate is equal to the expected future spot rate, which is itself the specific strike 

rate that makes the value of the derivative equal to zero. Since the forward rate has to move 

towards the spot rate while maturity is approaching, It is also possible to state that the T-

forward rate is a martingale and it is assumed to follow a lognormal drift-less diffusion process 

under the T-forward risk neutral dynamics. Since as just mentioned the forward rate converges 

to the spot rate, the LIBOR rate has a log normal distribution as well (Alan Brace et al., 1997). 

𝑟𝑛(𝜏, 𝑇)~𝐿𝑜𝑔𝑁 (𝑓𝑛(0, 𝜏, 𝑇);⁡⁡∫ 𝜎𝑓(𝑡)2𝑑𝑡
𝜏

0
) 

This key assumption is not only useful because it yields the straight forward Black Formula, 

but it is also useful in its applications to Monte Carlo method and to more complex derivatives 

depending on the LIBOR rate, such as Swaptions.  

When pricing derivatives depending on a single LIBOR rate, the forward volatility structure 

extracted from caps as explained in paragraph 4 is considered. The latter is enough to have a 

full characterization of the process of the forward rate, and can be assumed equal to the 

volatility of the forward rate. Knowing the lognormal distribution, even if the final payoff is 

more complex it is possible to simulate the final LIBOR rate on which the payoff depends on 
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using a Monte Carlo simulation, where each simulated path 𝑠 can be obtained with the 

following formula (Veronesi, 2005b): 

𝑟𝑛𝑠 = 𝑒log(𝑓(0,𝜏,𝑇))−
1
2𝜎𝑓

𝐹𝑤𝑑(𝑇)2𝜏+𝜎𝑓
𝐹𝑤𝑑(𝑇)√𝜏𝜀𝑠 

Once all the trajectories are simulated the value of the derivative can be easily obtained 

discounting the payoffs and plugging them in the Monte Carlo estimator formula. However, 

the application of this model to derivatives whose payoffs depend on multiple LIBOR rates 

might require some adjustments that are explained in the next paragraph.  

 

7. Forward Rates distribution under the LIBOR Market Model 

A swaption gives the option to enter into a swap contract with swap rate equal to a 

predetermined strike rate, at the exercise date. If at the exercise date the current swap rate on 

the market is less convenient (higher/lower swap rate observed on the market in case of a 

payer/receiver) the option will be exercised. Thus, the payoff value at the exercise date can be 

computed as the value of the exchange of two coupon bonds: one for the fixed leg characterized 

by a coupon rate equal to the option strike, and one for the floating leg that is at-par by 

definition. However to compute the present value of this bond is necessary to have as many 

discount factors as the number of payment of the bond. It is obvious that the final payoff of this 

derivative depends on multiple future LIBOR rates. For this reason under the T-forward risk 

neutral measure there is only one forward rate that is a martingale, while all the other rates are 

no more log-normally distributed. Therefore only one Forward rate will be drift less, with the 

other rates having a more complex stochastic process. 

By choosing as numeraire the 𝑇̅-forward rate by which for every i+1 𝑇̅ < 𝑇𝑖+1 is true, that 

means choosing as numeraire the smallest of the discount factors of interest, the process 

followed by the increment of the forward rate is (Alan Brace et al., 1997): 

𝑑𝑓𝑛(𝑡, 𝑇𝑖, 𝑇𝑖+1)
𝑓𝑛(𝑡, 𝑇𝑖, 𝑇𝑖+1)

= (∑
∆𝑓𝑛(𝑡, 𝑇𝑗, 𝑇𝑗+1)𝜎𝑓𝑖+1(𝑡)𝜎𝑓

𝑗+1(𝑡)
1 + ∆𝑓𝑛(𝑡, 𝑇𝑗, 𝑇𝑗+1)

𝑖

𝑗=𝑖̅

) 𝑑𝑡 + 𝜎𝑓𝑖+1(𝑡)𝑑𝑋𝑡 

This process will be applied to the forward rate in Monte Carlo simulations explained in the 

third chapter. Furthermore, the LMM is not the only Market Model that can be used to price 

swaptions, and when explaining the implementation of a pricing algorithm for swaptions in 

Chapter 3 I will also go through the advantages of using the LMM instead of other models. 
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8. Volatility Structures 
In the simplest application of the model, the instantaneous volatility was considered to be 

constant in each forward rate, independently of the time t at which that specific forward rate is 

observed. However, the forward volatility structure extracted from caplets is characterized by 

a bump which is not coherent with the assumption just explained. Furthermore, in a swaption 

the payoff is not only function of a single LIBOR, therefore the simplistic assumption made in 

the previous paragraph is not feasible anymore. Alternatively, in the application of the model 

that this paper follows there are two other assumptions to be made, for the volatility of the 

forward rate used in the final the simulation.  

The first assumption is that the volatility of the forward rates has a dependence only with the 

time to maturity, through a specific function 𝑆(∙). The second assumption is that the function 

is constant in each period. These assumptions give as a result a semi-linear volatility structure 

with 𝑆𝑖 being the volatility of the forward rate 𝑓𝑛(𝑡, 𝑇𝑖, 𝑇𝑖+1) (Brigo & Mercurio, 2001b). The 

result of these assumption is summarized by the following equation: 

𝜎𝑘(𝑡) = 𝜎𝑘,𝛽(𝑡) ≔ 𝑆𝑘 

To extract this volatility structure is sufficient to have the forward volatility structure 

mentioned in paragraph 4, and then apply a bootstrapping procedure. The first step of the 

bootstrapping is similar to the one already presented for Forward volatilities: 

𝑆1 = 𝜎𝑓𝐹𝑤𝑑(𝑖Δ) 

While the other steps are obtained with the following formula, assuming that 𝑡 = 0: 

𝑆𝑖 = √
1
∆(𝜎𝑓

𝐹𝑤𝑑(𝑇𝑖+1)𝑇𝑖 −∑𝑆𝑗2∆
𝑖−1

𝑗=1

) 

Yet convenient, this volatility structure has some flaws. In fact, when the Forward volatility 

declines fast the function S drops to zero by its own nature (Brigo & Mercurio, 2001b). This 

function will be used in the Monte Carlo simulation run for the empirical analysis in support 

of this paper, and its application will be better explained in the last chapter when dealing with 

calibration of the model.  

 



Chapter 2 

Monte Carlo Methods in finance 
 

 

 

 

 

 

 

1. An introduction to Monte Carlo 
Monte Carlo methods are statistical tools to estimate a deterministic quantity. The oldest 

acknowledged use of Monte Carlo methods is traced back to the famous Buffon’s needle 

problem to estimate 𝜋. More recent applications are attributed to the period between 1930 and 

1950 and come from the field of physics. Nowadays, the use of Monte Carlo is diffused in 

many field, including financial engineering. They are based on the mathematical intuition that 

the probability of an event happening is represented by the volume of the possible outcomes 

that make the event happen. Monte Carlo methods start from the volume of a set of outcomes 

to estimate the volume of the probability. In simple words, it randomly samples outcomes and 

picks up only the ones of interest (i.e.: a given set of outcomes), to interpret their volume as 

the probability of that set of outcomes. Considering an interval [𝑖; 𝑖 + ∆] and a function 𝑓, the 

actual value of the volume of this function over the integral is represented by the following 

integral (Glasserman, 2003): 

𝛼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑖+∆

𝑖
 

Since the volume represents the probability, 𝛼 is equal to the expectation of X,  𝔼[𝑓(𝑋)], where 

X is uniformly distributed over the mentioned interval. What Monte Carlo sampling does is 

simulating random points of X and then computing the value of the function at those points 

that fall in the interval [𝑖; 𝑖 + ∆] (Tezuka, 1998). It is then possible to characterize an estimate 

of the expectation 𝛼 by taking an average of the value of 𝑓 as follows: 

𝛼𝑛̂ =
1
𝑛∑𝑓(𝑋𝑖)

𝑛

𝑖=1
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By the law of large number when 𝑛 → ⁡∞ then 𝛼𝑛̂ → ⁡𝛼. It is possible to show that the error of 

the estimate is 𝜀~𝑁 (0;⁡
𝜎𝑓
2

𝑛
) where 𝜎𝑓 is the standard deviation of the function over the specific 

interval and can be estimated with the sample standard deviation (Glasserman, 2003). 

It is easy to see from this example that the application of Monte Carlo in derivatives pricing 

opens many doors.  

There is a subtle difference between the terms Monte Carlo sampling and simulation. The 

former  includes all those cases in which is not necessary to simulate overtime, whereas the 

latter provides for sample paths that might be particularly useful in derivatives pricing where 

the final payoffs depends on the price path (e.g.: path-dependent exotic options) or in the case 

of American style derivatives. 

The simulation of path can be of three types: discrete time models, continuous time models and 

discrete time event. For discrete time models the interval of time is divided in discrete time 

steps, that usually have the same length. The transition between states happens at every step 

based on the dynamics of the models.  

In continuous time models the dynamics are described by a differential equation. The 

simulation is used when the differential equation is not only composed by a deterministic part, 

but also by a stochastic one (Brandimarte, 2006). To simulate continuous time models a 

discretization method is necessary. Since discretization bias plays its role in the simulation 

estimate, the choice of a discretization method must be made wisely. The two most widespread 

methods are Euler and Milstein schemes (Frey, 2008). 

Considering a generic Stochastic Differential Equation for any variable X, as in formula 4.1. If 

one wants to find a solution for the distribution of the variable a Monte Carlo simulation might 

be needed, and to simulate the variable in continuous time we need to estimate an 

approximation 𝑋̂𝑇 of it through a discretization scheme. 

 

𝑑𝑋𝑡 = 𝑚(𝑋𝑡,𝑡)𝑑𝑡 + 𝑠(𝑋𝑡, 𝑡)𝑑𝑊𝑡 

 

The starting point of Euler scheme is 𝑥̂0 = 𝑥0, then it is possible to proceed by time steps ∆𝑡 

of constant width. The discrete approximation {𝑋1𝑖, 𝑋2𝑖,… ,𝑋𝑚𝑖} will run on the interval needed 

[0; 𝑇], where m is the number of total steps and 𝑖 denotes the length of each step so that 𝑚𝑖 =

𝑇. The approximation is the following. 

𝑋̂(𝑡𝑖+1) = 𝑋̂(𝑡𝑖) + ⁡𝑚(𝑋̂(𝑡𝑖); 𝑡𝑖)𝑖 + 𝑠(𝑋̂(𝑡𝑖); 𝑡𝑖)√𝑖𝑊(𝑡𝑖+1) 
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Milstein scheme also takes into account Ito’s Lemma and Taylor expansion, in fact Euler 

scheme does not consider any term of subsequent order. Milstein scheme also considers next 

order terms eliminating the inconsistency as follows (Brandimarte, 2014). 

𝑋̂(𝑡𝑖+1) = 𝑋̂(𝑡𝑖) + ⁡𝑚(𝑋̂(𝑡𝑖); 𝑡𝑖)𝑖 + 𝑠(𝑋̂(𝑡𝑖); 𝑡𝑖)√𝑖𝑊(𝑡𝑖+1)

+
1
2 𝑠′(𝑋̂

(𝑡𝑖); 𝑡𝑖)𝑠(𝑋̂(𝑡𝑖); 𝑡𝑖)𝑖(𝑊2(𝑡𝑖+1) − 1) 

For the purposes of this analysis the simple Euler scheme will be used.  

The third category of models, discrete event, are substantially continuous time models where 

the time step is not constant, but the state changes only when a certain event happens. 

To conclude this introduction, it is important to underline how Monte Carlo simulation is an 

extremely powerful tool in finance and other fields, but it has some inefficiencies  and technical 

issues related to sampling, variance of the estimator and computational time (Brandimarte, 

2014). 

 

2. Monte Carlo Integration  
Monte Carlo methods become particularly useful when it comes to numerical integration. At 

the beginning of this chapter, it was given an example about the computation of an expected 

value. Recalling this example and knowing the frequency with which the expectation operator 

is used in financial problems, the usefulness of Monte Carlo in financial engineering is evident. 

It is important to underline that sometimes integrals can be solved in analytical or semi-

analytical way, that may need complex computational derivation such as the stochastic 

averaging method, but on the other side often there are no analytical solutions (Dostal & 

Kreuzer, 2016). Taking as an example the Black Scholes Merton formula, the density function 

Φ(𝑧) has a solution that does not have any analytical expression but there is still no need to go 

through complex numerical integration since there are sufficiently accurate ways to 

approximate the expression. These type of solutions are called semi-analytical (Judd, 1998). 

However, in other cases it is needed to go through numerical procedures such as Classical 

Quadrature formulas like The rectangle rule, the Interpolatory Quadrature formulas or the 

Gaussian Quadrature (Davis & Rabinowitz, 1984). Those deterministic approaches consist in 

approximating the value of the integral through interpolation based on polynomials or more 

sophisticated orthogonal polynomials. The above mentioned method are the most 

straightforward approaches to use when handling low dimensional integration problems. 

However, integration through Monte Carlo becomes useful or even necessary when 



 21 

considering high dimensional problems as illustrated in the following example (Lapeyre et al., 

1998). Supposing having a vector random variable X with support Ξ, and  the following integral 

at the core of the problem to solve: 

𝔼[𝑔(𝑥)] = ∫ 𝑔(𝑥)𝑓(𝑥)𝑑𝑥
Ξ

 

Quadrature formulas in this multidimensional case require an high number of points, and 

Monte Carlo integration is the most efficient solution. On the other end, sometimes Monte 

Carlo integration might require a significant sample size to reach a certain level of precision. 

This is the reason why Monte Carlo integration does not always result to be the best solution, 

but it is important to have in mind the link between these Methods and numerical integration 

that is now shortly illustrated.  

Defining the random variable X, defined over the probability space (Ω, ℱ, ℙ), where Ω is the 

state space that is a set comprising all the possible outcomes of the random variable, ℱ is the 

set of measurable events and ℙ is the probability measure (Munk, 2013). 

𝑋:⁡Ω → ℝ𝑑 

The set of possible outcomes 𝜔 belonging to the state space has a correspondent X(𝜔) ∈ ℝ𝑑, 

and X(𝜔) must be ℱ- measurable, namely it should be possible to assign a probability to the 

event X(𝜔) = 𝑥𝑖. The total mass of the probability is equal to 1. The random variable is 

assigned with a probability distribution and a density function that allow to compute the 

expected value of X. In the continuous setting, as already emphasized, the expected value 

follows the formula: 

𝔼(𝑋) = ∫ 𝑋(𝜔)𝑑𝑃(𝜔)
Ω

 

It is possible to define in the same way the expected value of g(X): 

𝔼(𝑔(𝑋)) = ∫ 𝑔(𝑋(𝜔)𝑑𝑃(𝜔)
Ω

 

The two integrals above are with respect to the probability measure. Calling ℎ𝑋 the distribution 

of X under P it is possible to switch measure of the integral and write: 

𝔼(𝑔(𝑋)) = ∫ 𝑔(𝑋(𝜔)𝑑ℎ𝑋(x)
ℱ

 

Monte Carlo integration starts from the volume of a set of outcomes to estimate the volume of 

the probability. Considering a vector of variables 𝑥 = 𝑢1, 𝑢2,…𝑢𝑑 and the function of it 𝑓(𝑥) =

𝑓(𝑢1, 𝑢2,…𝑢𝑑), square-integrable over the hypercube [0; 1]𝑑(Brandimarte, 2006).  
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𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
[0;1]𝑑

= ∫ 𝑓(𝑢1, 𝑢2,…𝑢𝑑)𝑑𝑢1 …𝑑𝑢𝑑
[0;1]𝑑

 

Monte Carlo estimate of the above integral would be obtained by collecting an independent 

and identically distributed sample of points of x over the unit hypercube and computing 𝐼𝑛: 

𝐼𝑛 =
𝑉𝑜𝑙([0; 1]𝑑)

𝑛 ∑𝑓(𝑥𝑖

𝑛

𝑖=1

) 

The volume of the unit hypercube is equal to one, consequently taking the limit of the estimator 

for 𝑛 → ∞ gives the following result: 

lim
𝑛→∞

(
1
𝑛∑𝑓(𝑥𝑖

𝑛

𝑖=1

)) = 𝐼 

When the number of simulation goes to infinity the estimator converges to the true value, the 

estimator is therefore unbiased. In the next paragraphs the criteria of choice between unbiased 

estimators will be presented, and additionally variance reduction techniques will be compared. 

 

3. The efficiency of the estimator 
In the previous example the limit shows that the estimator is unbiased and converges to the 

exact value of I. The sample points were independent and identically distributed. Applying the 

central limit theorem to the estimator, as n increases the standardized estimator converges to 

the standard normal distribution. 

𝐼𝑛 − 𝐼
𝜎𝐼/√𝑛

⇒ 𝑁(0; 1) 

Consequently, the error of the estimator 𝜀 =  𝐼𝑛 − 𝐼 has a distribution that can be computed by 

a simple manipulation of the above convergence.  

⁡𝜀~𝑁(0;
𝜎𝐼
√𝑛

) 

The convergence rate is then 𝑂 ( 1
√𝑛
), and it is possible to observe that the rate does not depend 

on the dimension of the integral. This feature is  the central advantage of Monte Carlo methods. 

Other than comparing the bias of different estimators to evaluate their efficiency, estimators 

are also compared with respect to their computational time and variance. To choose between 

two unbiased estimators a criterion can be derived. Assuming that per each replication 𝐼𝑖 it 

takes a computing time 𝜏 and the and 𝑠 is the computational budget. The number of replication 

that are allowed by our budget will be 𝑠/𝜏 . When the computational budget tends to infinity 

the following convergence is defined: 
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√𝑠/𝜏⁡[𝐼𝑠
𝜏
− 𝐼] ⇒ 𝑁(0, 𝜎𝐼2) 

And consequently, 

√𝑠⁡[𝐼𝑠
𝜏
− 𝐼] ⇒ 𝑁(0, 𝜎𝐼2) 

Therefore, the estimator will be also normally distributed with variance 𝜎𝐼2𝜏/𝑠. Now consider 

two estimators, both unbiased, with computing time per replication respectively equal to 𝜏1 and 

𝜏2 and variance per replication equal to 𝜎1 and 𝜎2. The best estimator among the two will be 

the one that has the lowest value of 𝜏𝑖𝜎𝑖 , because it will give a more accurate estimate and a 

smaller confidence interval (Glasserman, 2003).  

 

4. Generation of random numbers  

At this point, it should be clear that the central issue of the simulation is the generation of 

uniformly distributed random variables. The simulation and the sample are treated as they were 

completely random, but it is necessary to notice that the algorithms that generate random 

numbers on different programs are completely deterministic. However, their ability to simulate 

pseudorandom variables is good enough to treat the variables as authentically random. A 

generator of authentically random variables is a process to generate random variables which 

present two properties:  

o each variable is uniformly distributed between 0 and 1; 

o the variables are independent with respect to each other.  

The second property implies that any i-th variable should be impossible to predict from the 

previous random variables. Accordingly, one should not be able to distinguish any trend among 

the variables. Some characteristics of a good generator are related to:  

o period length, as generators with longer periods are better (i.e. generators that repeat 

themselves after a long number of steps);  

o replicability, as it might be required to run a simulation with identical inputs;  

o  speed, as an high number of simulations is often needed the generator must be fast; 

o portability, it should generate the same values on different computing platforms; 

o randomness both from the theoretical properties perspective and statistical test 

perspective (Glasserman, 2003).  

The simplest category of random number generators is the Linear congruential generators. 

Their logic is captured by the pure linear form below: 
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𝑥𝑖+1 = 𝑎𝑥𝑖𝑚𝑜𝑑(𝑚) 

𝑢𝑖+1 = 𝑥𝑖+1/𝑚 

They might also take a semi-linear form: 

𝑥𝑖+1 = (𝑎𝑥𝑖 + 𝑐)𝑚𝑜𝑑(𝑚) 

Where a, m and c are integer and constants, and the random number generated is determined 

by these parameters given an 𝑥0 that is the initial value, also called seed. With some constraints 

to these numbers the generator is ensured to have full period (i.e.: it start repeating its sequence 

only after m-1 steps). The conditions imply that c and m should not have any common divisor 

except 1, every prime number that divides m should also divide a-1, and if m is divisible by 4 

also a-1 should be (Lehmer, 1949). 

Specifically, if 𝑐 = 0 the generator has full period for 𝑥0 ≠ 0, if 𝑎𝑚−1 − 1 is a multiple of m, 

and 𝑎𝑗 − 1 is not a multiple of m for any 𝑖 = 1, 2…𝑚 − 2 (Niederreiter, 1992). In this case 𝑎 

is a primitive root of 𝑚, and it is ensured that the structure will not return 𝑥0 until 𝑎𝑚−1𝑥0. 

Moreover, when 𝑎 is a primitive root of 𝑚 it is possible to demonstrate that if the seed is 

different from zero also all the generated numbers will be different from zero, and this is 

important because if  one of the generated number is zero all the subsequent numbers will be 

zero. The semi-linear form of the linear congruential generator, when 𝑐 is different from zero, 

is demonstrated to add few generality to the model and slow the model down (Marsaglia, 1972). 

When plotting consecutive random numbers generated by the linear congruential generator, it 

is possible to observe the so called lattice structure that distinguish them from authentically 

random numbers (Figure 1).  

 
Figure 1: Lattice Structure Hyperplanes  (Aljahdali & Mascagni, 2017) 

In fact, consecutive outputs of the generator lies on parallel hyperplanes of the d-dimensional 

unit cube (Marsaglia, 1968). This structure can be used to compare outputs and choose 

parameters of the generator. The spectral test is one of the most famous way to analyze if the 

points in the lattice are equally distributed, specifically, it takes into account the distance of 

adjacent hyperplanes and take the maximum of this measure over all the parallel hyperplanes, 

providing  a measure of how much the points are uniformly distributed. 
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Another way to obtain random numbers is to combine different linear congruential generator 

by summing them. This technique allows to keep the qualitative characteristics of linear 

congruential generators by slightly reducing the lattice structure.  

Considering a number J of linear congruential generators and their sets: 

 

𝑥𝑗,𝑖+1 = 𝑎𝑗𝑥𝑗,𝑖𝑚𝑜𝑑(𝑚𝑗),           𝑢𝑗,𝑖+1 = 𝑥𝑗,𝑖+1/𝑚𝑗 

 

For Wichmann and Hill combined generator the combined set is obtained by summing the 

linear generators 𝑢𝑖+1 = 𝑢1,𝑖+1 + 𝑢2,𝑖+1 +⋯𝑢𝐽,𝑖+1.Alternatively, L’Ecruyer method firstly 

develops the sum and then obtain the combined set, as follows: 

𝑥𝑖+1 = ∑ −1𝑗−1𝑥𝑗,𝑖+1
𝐽
𝑗=1 𝑚𝑜𝑑(𝑚1 − 1), 

𝑢𝑖+1 = {
𝑥𝑖
𝑚1

,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥𝑖+1 > 0

(𝑚1 − 1)/𝑚1,⁡⁡⁡𝑥𝑖+1 = 0
 

 

Alternative methods to generate random numbers may include linear recursion. Assuming to 

have available an ideal sequence of random variables a simulation can use this as an input to 

generate sample stochastic paths, transforming the available sample uniformly distributed into 

a sample that has another distribution. The inverse-transform method and the acceptance 

rejection methods are among the most widespread techniques. The aim of the former is to 

generate random variables that follow a given cumulative distribution function 𝐹(𝑥). The 

function is non-negative, non-decreasing and continuous between [0; 1]. It is possible therefore 

to compute its inverse function. Starting from a percentile level this methods can bring to the 

associated value of the random variable until it is possible to compute an explicit formula for 

the inverse function.  

The acceptance rejection method firstly generates random variables that do not follow the 

target cumulative distribution, but uses a more convenient distribution to do so. Afterwards 

variables belonging to a subsample of the obtained set is rejected. The rejection criteria is built 

so that the remaining sample follows the target. This method is highly applicable (Glasserman, 

2003). 
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5. Variance reduction techniques  
As already mentioned, to evaluate the efficiency of a model one must take into account both 

the variance and the computational time per replication of the estimator. Therefore, multiple 

methods were developed to reduce the variance of the estimators in order to obtain a higher 

level of efficiency. The most straightforward method to reduce the variance of the estimator is 

surely by increasing the number of simulations. However this approach is not reasonable 

considering the computational efficiency of the algorithm. Variance reduction techniques can 

be classified in two main categories: the first branch tries to exploit tractable characteristic of 

the model to adjust the output; while the second one tries to curtail the volatility of the inputs. 

In this paragraph I will go through the most common ones, that are Control Variates method, 

Antithetic Variates method and Stratified Sampling method. 

The method of Control Variates falls under the first category. It consists in using information 

available of a simpler variable to reduce the variance of the estimator. Considering 

𝑌1, 𝑌2, 𝑌3, 𝑌4 …⁡𝑌𝑛 as outputs of n simulations, and another type of output 𝑋1,𝑋2, 𝑋3, 𝑋4 …⁡𝑋𝑛, 

that has known expectation. Supposing that the pair made of the two variables are independent 

and identically distributed, the method exploits the deterministic information available of the 

other variable to reduce the variance. Constructing the i-th Y as follows: 

𝑌𝑖(𝑏) = 𝑌𝑖 − 𝑏(𝑋𝑖 − 𝐸[𝑋]) 

The known error of X will serve as “control” of the variable Y. The estimate of  𝑌(𝑏) is still 

unbiased with variance equal to: 

𝑉𝑎𝑟[𝑌𝑖(𝑏)] = 𝑉𝑎𝑟[𝑌𝑖 − 𝑏(𝑋𝑖 − 𝐸[𝑋])] = 𝜎𝑌2 − 2𝑏𝜎𝑌𝜎𝑋𝜌𝑋𝑌 + 𝑏2𝜎𝑋2 

Therefore if 𝑏2𝜎𝑋 < 2𝑏𝜎𝑌𝜌𝑋𝑌  the variance of this estimator will be lower. The parameter 𝑏 

can be chosen to minimize the variance of this new estimator, the optimal choice is given by: 

𝑏∗ =
𝜎𝑌
𝜎𝑋

𝜌𝑋𝑌 

Substituting this optimal value it is possible to find that the ratio of  𝑉𝑎𝑟[𝑌𝑖−𝑏(𝑋𝑖−𝐸[𝑋])]
𝑉𝑎𝑟[𝑌𝑖(𝑏)]

 is equal 

to 1 − 𝜌𝑋𝑌2 . Hence, it is possible to conclude that the effectiveness of the reduction depends on 

the correlation between the output variables 𝑋 and 𝑌. Yet, in practice the covariance between 

the variables is rarely known and is estimated through a least-squares regression. A substantial 

improvement to Control Variates is given by non-linear Control Variates, especially for small 

sample (Perninge et al., 2008).  

Another widespread method is the Antithetic Variates one. It is based on the assumption that if 

the output variable 𝑈 is uniformly distributed between [0; 1], also 1 − 𝑈 will be uniformly 
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distributed in the same interval. In particular the variance reduction is implemented by pairing 

sequences of Brownian increments 𝑍1, 𝑍2, 𝑍3 …⁡𝑍𝑛 and increments of the path’s reflection with 

respect to the origin −𝑍1,−⁡𝑍2,−⁡𝑍3 …− 𝑍𝑛. If the objective of the simulation is to obtain an 

estimate of 𝐸[𝑌] and pairs of antithetic observations (𝑌1, 𝑌̃1), (𝑌2, 𝑌̃2)…⁡(𝑌𝑛, 𝑌̃𝑛)⁡, where each 

pair is independent and identically distributed and each 𝑌𝑖⁡has the same distribution of its 

antithetic. The antithetic estimator will simply be the average of all the variables.   

𝑌̂𝐴𝑉 =
1
𝑛∑(

𝑌𝑖 + 𝑌̃𝑖
2 )

𝑛

𝑖=1

 

Assuming that the computational time needed to generate the antithetic random variables is 

exactly doubled it can be concluded that the method is effective in reducing the variance when  

𝑉𝑎𝑟[𝑌̂𝐴𝑉] < 𝑉𝑎𝑟 [
1
2𝑛∑𝑌𝑖

2𝑛

𝑖=1

]. 

This means that a negative dependence of each 𝑌𝑖⁡𝑎𝑛𝑑⁡𝑌̃𝑖 is needed so that 𝐶𝑜𝑣(𝑌𝑖, 𝑌̃𝑖) < 0 

(Glasserman, 2003). 

The last type of approach is stratified sampling, that selects subsets of the input sample space 

to make them more regular. The sample space is divided in m partitions 𝛼1, 𝛼1 …⁡𝛼𝑚 called 

strata. Afterwards, a number m Monte Carlo simulations are performed, constraining the 

random variable X to be on 𝛼1, 𝛼1 …⁡𝛼𝑚. Neyman allocation can be used to choose the 

variables over each partition to minimize the variance (Perninge et al., 2008). The 

multidimensional extension of this sampling method is called Latin Hypercube Sampling, 

although in principle the multidimensional application is feasible, it is in practice often  

inapplicable. The optimal choice of the appropriate technique to reduce the variance is crucial, 

and it depends on the specific application. Furthermore, combining different techniques might 

be the optimal choice in some cases.  

 

6. Monte Carlo simulation to price Swaptions 

In conclusion, Monte Carlo methods have an high level of flexibility, and their use in finance 

is necessary when considering more complex derivatives. Specifically, when considering fixed 

income derivatives the use of the simulation allows to describe the true dynamics of interest 

rates incorporating also the instantaneous correlation between the multiple rates that might be 

needed to price a more complex derivative. A correct calibration of the model in use will also 
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give dynamics that are coherent with some observed market data. Monte Carlo standard error 

can be reduced with the application of variance reduction techniques.  

The next chapter will be fully dedicated to explain the implementation of the pricing algorithm 

for swaptions. Under the T-Forward-neutral measure I will generate m different realization of 

the k different Forward rates needed to compute each payoff of the option, that is the Swap 

expected future price. The following forward rates are simulated to obtain the value of the 

corresponding forward rates observed at the exercise date 𝑇𝑂, that is equal to the maturity of 

the forward rate chosen as numeraire 𝑇𝛼.  

𝐹𝛼+1(𝑇𝛼), 𝐹𝛼+2(𝑇𝛼),… , 𝐹𝛽(𝑇𝛼) 

The Forward rates trajectories will follow the stochastic process implied by the LMM. Since 

the mentioned dynamics do not have a distribution that is known, it is necessary to discretize 

the process. The latter, with some algebraic manipulations, will yield an equation with 

deterministic diffusion coefficient for which Euler discretization scheme correspond to 

Milstein one. In this case The simulated forward rates will be used as input for the computation 

of the payoff. Each one of the m simulation will lead to a different  future Swap value, and the 

average of their discounted prices will be the Monte Carlo estimate (Brigo & Mercurio, 2001b).  

 



Chapter 3 

Swaptions pricing 
 

 

 

 

 

 

 

1. European Swaptions and their use 
In this paragraph the structure and the use of a swaption will be explained in detail. A swaption 

contract is a contract that gives its buyer the right to enter the underlying Swap with a given 

strike swap rate at the exercise date. The underlying contract can be a payer or a receiver Swap, 

that is a swap that pays or receive the fixed swap rate against a floating rate determined at the 

previous payment date depending on the reset frequency. The floating rate is determined in the 

contract and can be indexed to one of the most famous benchmark rates, such as LIBOR, 

EURIBOR and EONIA rates. Due to recent European regulation, a transition to new risk free 

indices is taking place. The new risk free benchmark to be used for the Eurozone is defined in 

Regulation (EU) 2016/1011 and it is called ESTER, European Short Term Rate. Therefore, the 

old rates are no more compliant with new regulations and all the entities exposed to those rate 

must transition to the new ones (Zaegel et al., 2019).  

Swaption contracts are useful instruments of insurance and hedging against any interest rates 

rise or fall (Akume et al., 2003). For instance, the issuer of a floating rate bond might want to 

be protected against a rise in interest rates in the future. She can buy a payer swaption with 

strike rate 𝑟𝐾, that will be the swap rate to be payed if the option is exercised. If at the exercise 

date the interest rates are higher and, consequently, the swap strike rate is lower than the current 

swap rate implied by current market condition, then the option can be exercised. The gain will 

be equal  to the difference between the two swap rates: the strike and the current swap rate.  

In the same manner a swaption can be useful to an investor of a callable security. In fact, with 

this type of instrument in case of a fall in interest rates the issuer will be able to obtain funding 

at cheaper rates, and for this reason will call back the security. The investor would receive her 

capital earlier than maturity with the possibility to reinvest the capital at the current market 



 30 

conditions, namely lower rates. To hedge this risk the investor can buy a receiver swaption to 

exercise in case interest rates drop. Thus, the investor will receive the fixed strike rate and pay 

a floating rate, that can be offset by reinvesting the capital received at the floating rate.  

The pricing process for the swaption implies the computation of all the payoffs at maturity, that 

are themselves based on the pricing of the Swap at each final node. To price a Swap at a reset 

date, the key observation is that at every reset date the floating leg will be at par, therefore it is 

sufficient to compute the price of the bond corresponding to the fixed leg and subtract the 

notional. The setting becomes more complicated when pricing a Swap contract at a future date, 

because the different future discount factors must be computed.  

The option that will be priced in this analysis is a receiver swaption with floating rate equal to 

the LIBOR rate. The valuation date is the 1st of September 2020, the exercise date is in one 

year, the underlying Swap tenor, i.e. the length of the swap contract, is four years and the 

contract has a semi-annual reset frequency. The analysis will be conducted on different 

parameters of the strike swap rate. For the sake of pricing the number of forward rates to 

simulate is eight. The next paragraph will highlight the reason behind the choice of the model 

used to simulate and the difference between the use of different models. 

  

2. The choice of the model 
The LIBOR Market Model was introduced at the end of the first chapter, and it is built around 

the change in the probability measure. The use of the T-Forward rate as numeraire allows to 

characterize the process of forward LIBOR rates. The Swap Market Model instead uses a 

different numeraire, that is equal to the sum of multiple discount factors, so that it is possible 

to characterize the process of forward Swap rates (Veronesi, 2005a). To understand the 

importance of the introduction of Market Models, and which one should be chosen to price the 

swaption introduced in the previous paragraph, it is useful to remind that until those models 

were introduced Short Rates model were the main choice to price interest rates derivatives. 

Short Rates Models introduced in the first chapter describe the instantaneous interest rate 

through the definition of a diffusion process, the latter stochastic process explains the evolution 

of the yield curve and gives as outcome an analytical formula for forward LIBOR rates. The 

interest rates derivatives can be priced using these inputs and computing a risk neutral 

expectation, assuming a deterministic discount factor equal to de ZCB price. This last 

assumption generates inconsistencies in the pricing process. Those inconsistencies can be 

solved with the use of a different probability measure instead of the traditional risk neutral one.  
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The main advantage of Market Models introduction is that, unlike Short Rate models, they are 

compatible with the widespread Black’s market formula. In fact, LMM can correctly price caps 

and SMM can correctly price swaptions consistently with the corresponding Black’s formulas. 

While Short Rate models cannot be compatible with the distribution implied by the Black’s 

formula for any 𝜃𝑡 (Formula 4.0). The only way to calibrate short term models is to choose the 

parameters that match both initial term structure and observed cap prices. This calibrating 

process however is way more complex than choosing the LIBOR Market Model and focusing 

on the instantaneous volatility parameter. Nonetheless, this model is only compatible with a 

part of interest rates derivatives market, that includes caps, while SMM is compatible with the 

other part, that is made by swaptions. The incompatibility of the two models forces to choose 

one of the two for the entire market of interest rates derivatives, because a joint lognormal 

assumption would be inconsistent. Forward rates are considered to be  more explanatory about 

the yield curve, and taking into account the fact that the LIBOR Market model is easier to 

handle from a mathematical point of view, it is more smooth to use the numeraire implied by 

the LMM also for swaption market instead of doing the opposite (A. Brace et al., 1998). 

Therefore, the  simulation to price the swaption will be based on the LIBOR Market Model.  

The complexity of swaptions pricing with the use of the latter relies in the fact that the future 

swap price depends on multiple forward rates, specifically, for the option considered in this 

implementation there are eight different forward rates involved in the computation. When 

taking expectation of the payoff, unlike caps, those forward rates are not independent from 

each other and  their joint distribution influences the final price. Different instantaneous 

volatility structure and consequently different correlation structure can be used. In the next 

paragraph the process used in the simulation will be illustrated and It will be shown how 

previous forward rates enter in the drift of subsequent ones, determining their path to an extent 

determined by their correlation (Brigo & Mercurio, 2001b). The stochastic process derived for 

this implementation relies on a basic assumption regarding the structure of instantaneous 

correlations on which the model is calibrated, that allows to simplify the more generic process 

of the LIBOR Market Model.  

 

3. Model Calibration 
The first step in the direction of running the entire simulation in order to obtain the actual price 

is to determine the input data and calibrate the model. 
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The specific discretized process that will be used to simulate the trajectories of the forward 

rates will be explained in details in the next paragraph, while now I will focus solely on the 

steps needed to be able to simulate those trajectories. 

First and foremost, as clarified in the previous paragraph, the model matches the Black’s 

formula for caps, and the implied volatilities in the  market prices of those caps will be the 

input of the model1. Therefore, the calibration to  caps and floors volatility surface is 

straightforward. The quotes semi-annual for at-the-money caps on LIBOR with six months to 

six years maturity were extracted from Thomson Reuters in terms of implied volatilities. To 

obtain the corresponding dollar price it was used as an input the quoted implied volatility in 

the Black’s closed formula for caps. Additionally, the latter formula requires LIBOR based 

discount factors to be implemented. 

Therefore, LIBOR rates corresponding to discrete points in time were retrieved from 

Bloomberg, and the transition to continuous time LIBOR based yield curve required a Cubic 

Spline Interpolation, that is one of the most widespread method. The result obtained is showed 

in Figure 2.  

 
Figure 2: Cubic Spline LIBOR Interpolation 

Once those input for the Black formula were defined, a function to extract dollar prices of at 

the money caps was constructed in Python and with the use of a stripping algorithm the forward 

volatility structure was extracted. The forward volatility structure can be used to compute the 

volatility structure that is the input of this model, as it was explained at the end of chapter 1.  

 
1 Caps quotes are found in term of implied volatilities. However, considering the current transitional market 
situation to the new risk-free rate ESTER, some maturities may be characterized by temporarily illiquidity. 
Therefore, for the less liquid maturities the implied volatility might correspond to older market status quo. Due 
to this temporal misalignment, for one value that was incoherent with the whole volatility structure, linear 
interpolation was used to balance this bias. (Brigo & Mercurio, 2001a) 
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The instantaneous volatility surface at the date of the calibration, September 1 2020, is 

illustrated in figure 3  

 
Figure 3: Market Volatility Surface (Bloomberg) 

 

Figure 4 shows a comparison between the three different volatility structure obtained, flat 

volatilities extracted from at-the-money caps, forward volatilities and volatilities of the forward 

rates. When the flat volatility is upward shaped the forward volatility curve lies above the 

former, and in the same way the semi-linear volatilities S will be above the forward volatility 

curve.  

 
Figure 4: Volatility Structures 

Considering this calibration the next step is to simulate forward rates trajectories, that will be 

explained in the next paragraph. 
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4. Derivation of the specific stochastic process used in Monte Carlo 

simulation 
Under the forward measure, solving the stochastic differential equation yields the process that 

can be used to run a Monte Carlo simulation, as introduced in the first chapter. Nonetheless, 

there is a specific assumption to be made to be able to simulate forward rates without the use 

of an instantaneous correlation matrix. In fact, from Brigo & Mercurio, the generic stochastic 

process obtained in the LIBOR Market Model is the following for any 𝑇𝑖 < 𝑇𝑘, where 𝑇𝑘 is the 

option exercise date. 

𝑑𝑓𝑛(𝑡, 𝑇𝑖, 𝑇𝑖+1)
𝑓𝑛(𝑡, 𝑇𝑖, 𝑇𝑖+1)

= (∑
∆𝑓𝑛(𝑡, 𝑇𝑗, 𝑇𝑗+1)𝜎𝑓𝑖+1(𝑡)𝜎𝑓

𝑗+1(𝑡)𝜌𝑖+1,𝑗+1
1 + ∆𝑓𝑛(𝑡, 𝑇𝑗, 𝑇𝑗+1)

𝑖

𝑗=𝑖̅

) 𝑑𝑡 −
𝜎𝑓𝑖+1(𝑡)2

2

+ 𝜎𝑓𝑖+1(𝑡)𝑑𝑋𝑖(𝑡) 

 

Where 𝜌𝑖+1,𝑗+1 is the correlation element, for which it would be needed a correlation structure 

between the forward rates.  

By assuming that 𝑑𝑋𝑖(𝑡) = 𝑑𝑋𝑡, we assume that all forward rates have the exact same 

Brownian Increment, or namely, that all the forward rates for different maturities are perfectly 

correlated. This assumption, whilst simplistic and not coherent with true market dynamics is 

necessary to make the implementation feasible, and still allows to compute a representative 

result of the swaption price. 

The derivation of the stochastic process under the forward probability measure and with perfect 

correlation between the different rates is now shown. 

Considering the dynamics of a variable Y induced by 𝑍(0, 𝑇𝑖+1) and 𝑍(0, 𝑇𝑖̅), under the forward 

probability measure. 

 𝑑𝑌𝑡 = (𝑚∗(𝑌, 𝑡) + 𝜎𝑍,𝑇𝑖+1(𝑡)𝑠(𝑌, 𝑡)) 𝑑𝑡 + 𝑠(𝑌, 𝑡)𝑑𝑋𝑡 3.1 

 

 𝑑𝑌𝑡 = (𝑚∗(𝑌, 𝑡) + 𝜎𝑍,𝑇𝑖̅(𝑡)𝑠(𝑌, 𝑡)) 𝑑𝑡 + 𝑠(𝑌, 𝑡)𝑑𝑋𝑡 3.2 

Where 𝜎𝑍,𝑇𝑖̅ and 𝜎𝑍,𝑇𝑖+1 are the diffusion terms of the securities, which themselves follow the 

risk neutral process below. 

𝑑𝑍(𝑡, 𝑇)
𝑍(𝑡, 𝑇) = 𝑟𝑑𝑡 + 𝜎𝑍,𝑇(𝑡)𝑑𝑋𝑡 
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Taking the difference between equations 3.2 and 3.1 it is possible to derive the change in drift 

showed below, which is the change ∆𝑑𝑌𝑡 that should be taken into account when moving from 

the dynamics implied by the first security to the dynamics implied by the second security. 

∆𝑑𝑌𝑡 = (𝜎𝑍,𝑇𝑖̅ − 𝜎𝑍,𝑇𝑖+1) 

The variable we are considering in this model is the forward rate, whose dynamics are implied 

by the numeraire 𝑍(𝑇𝑖, 𝑇𝑖+1).  

𝑑𝑓𝑛(𝑡, 𝑇𝑖, 𝑇𝑖+1) = 𝜎𝑓𝑖+1𝑓𝑛(𝑡, 𝑇𝑖, 𝑇𝑖+1)𝑑𝑋𝑡 

Considering that it is possible to write: 

𝑍(0, 𝑇𝑖+1)
⁡𝑍(0, 𝑇𝑖̅)

=
1

1 + ∆𝑓𝑛(𝑡, 𝑇𝑖̅, 𝑇𝑖̅+1)
∙

1
1 + ∆𝑓𝑛(𝑡, 𝑇𝑖̅+1, 𝑇𝑖̅+2)

∙ …
1

1 + ∆𝑓𝑛(𝑡, 𝑇𝑖, 𝑇𝑖+1)
 

And consequently, taking logs we obtain the following equation. 

log (
𝑍(0, 𝑇𝑖+1)
⁡𝑍(0, 𝑇𝑖̅)

) = −∑𝑙𝑜𝑔(1 + ∆𝑓𝑛(𝑡, 𝑇𝑗, 𝑇𝑗+1))
𝑖

𝑗=𝑖̅

⁡ 

Applying Ito’s lemma allows to see that the diffusion term of the right hand side of the equation 

above  is equal to: 

∑
1

1+ ∆𝑓(𝑡, 𝑇𝑗, 𝑇𝑗+1)

𝑖

𝑗=𝑖̅

∆𝜎𝑗+1(𝑡)𝑓(𝑡, 𝑇𝑗, 𝑇𝑗+1) 

Since this must also be the diffusion term of the left hand side of the equation, we obtain: 

(𝜎𝑍,𝑇𝑖̅ − 𝜎𝑍,𝑇𝑖+1) =∑
1

1 + ∆𝑓(𝑡, 𝑇𝑗, 𝑇𝑗+1)

𝑖

𝑗=𝑖̅

∆𝜎𝑗+1(𝑡)𝑓(𝑡, 𝑇𝑗, 𝑇𝑗+1) 

To conclude, the change in drift of the process of the forward rate should be  

(𝜎𝑍,𝑇𝑖̅ − 𝜎𝑍,𝑇𝑖+1)𝑠(𝑌, 𝑡) which is equal to: 

(∑
1

1 + ∆𝑓(𝑡, 𝑇𝑗, 𝑇𝑗+1)

𝑖

𝑗=𝑖̅

∆𝜎𝑗+1(𝑡)𝑓(𝑡, 𝑇𝑗, 𝑇𝑗+1))𝜎𝑓𝑖+1𝑓𝑛(𝑡, 𝑇𝑖, 𝑇𝑖+1) 

Which gives the equation below to use in the simulation of the forward rates. (Veronesi, 2005b) 

 
𝑑𝑓𝑛(𝑡, 𝑇𝑖, 𝑇𝑖+1)
𝑓𝑛(𝑡, 𝑇𝑖, 𝑇𝑖+1)

= (∑
∆𝑓𝑛(𝑡, 𝑇𝑗, 𝑇𝑗+1)𝜎𝑓𝑖+1(𝑡)𝜎𝑓

𝑗+1(𝑡)
1 + ∆𝑓𝑛(𝑡, 𝑇𝑗, 𝑇𝑗+1)

𝑖

𝑗=𝑖̅

) 𝑑𝑡 + 𝜎𝑓𝑖+1(𝑡)𝑑𝑋𝑡 3.3 
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5. Model implementation and results interpretation 
To implement the pricing algorithm I started with equation 3.3, deriving the discretized process 

to which the simulation should be applied. The key step of the algorithm is to simulate random 

shocks, 𝜀𝑡~𝑁(0,1)  to be used in place of the Brownian increment of the stochastic process. 

The following scheme, derived with a logarithmic transformation, is the discretized 

implementation of equation 3.3. 

𝑓𝑛𝑚(𝑡 + 𝛿, 𝑇𝑖, 𝑇𝑖+1) = 𝑓𝑛𝑚(𝑡, 𝑇𝑖, 𝑇𝑖+1)𝑒𝜇𝑖+1
𝑚 (𝑡)𝛿+𝑆(𝑇𝑖−1−𝑡)√𝛿𝜀𝑡  

Where the drift 𝜇 is equal to: 

𝜇𝑖+1𝑚 (𝑡) = ∑
∆𝑓𝑛𝑚(𝑡, 𝑇𝑗, 𝑇𝑗+1)𝑆(𝑇𝑖+1 − 𝑡)𝑆(𝑇𝑗+1 − 𝑡)

1 + ∆𝑓𝑛𝑚(𝑡, 𝑇𝑗, 𝑇𝑗+1)

𝑖

𝑗=𝑖̅

−
1
2 𝑆(𝑇𝑖+1 − 𝑡)2 

Where m indicates the specific simulation number of which the equations refer. I simulated ten 

thousand trajectories of the eight forward rates needed to price a swaption with exercise date 

the 1st of September 2021, which gives the right to enter in a receiver swap with 4 years tenor. 

The simulated forward rates will then be used to compute the corresponding discount factors 

with the following formula, where M is the maturity date of the underlying swap and 𝑂 = 𝑖 ̅is 

the exercise date. 

𝑍(𝑇𝑜,𝑇𝑀) =
1

1 + ∆𝑟𝑛(𝑇𝑖̅, 𝑇𝑖̅+1)
∙

1
1 + ∆𝑓𝑛(𝑇𝑖̅, 𝑇𝑖̅+1, 𝑇𝑖̅+2)

∙ …
1

1 + ∆𝑓𝑛(𝑇𝑖̅, 𝑇𝑖̅+𝑚−1,𝑇𝑖̅𝑚)
 

 

Each simulation was run through 252 steps, which is the notation for actual days in one year. 

The drift 𝜇 changes every step and for each one of the eight forward rates, retrieving a 252 

rows and 8 columns matrix of drifts per each of the ten thousand simulations. The following 

sample graph shows the 888-th simultaneous simulation of the forward rates.  

 
Figure 5: One Simulation of The Eight Forward Rates 
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The assumption of perfect correlation can be easily spotted observing the movements of the 

trajectories of the forward rates.  

Figure 6 shows 10 sample simulations of the first forward rate. The simulation shows the 

dynamics of the forward 𝑓(0,1𝑦, 1.5𝑦). The starting point is the forward rate observed the 1st 

of September 2020. Each step represents the value of the same forward rate observed one day 

later, until the last step at which the forward rate will converge to the future spot rate. 

 
Figure 6: Ten Different MC Simulations for the First Forward Rate 

Once the forward rates trajectories are estimated, the future swap price can be computed. 

Afterwards, is the maximum between the price and zero is estimated computing ten thousand 

different payoff. The last step consists in computing Monte Carlo estimator by discounting and 

computing an average of all the different payoffs, as follows. 

𝑉̂𝑆𝑤𝑎𝑝𝑡𝑖𝑜𝑛 =
1

10000 ∑ 𝑍(0,1)𝑃𝑎𝑦𝑜𝑓𝑓1⁡𝑦𝑒𝑎𝑟𝑖
10000

𝑖=1

 

Where, 

𝑃𝑎𝑦𝑜𝑓𝑓1𝑦𝑒𝑎𝑟𝑖 = max(∑Δ𝑟𝐾𝑍(1,0.5(𝑗 + 1))
𝑚

𝑗=2

+ 𝑍(1,𝑚) − 1; 0) 

 

The prices of the European Swaptions with maturity 1 year were computed for different strike 

levels and different tenors, as it is illustrated Figure 7. 

The result indicates that to higher levels of strikes correspond higher prices, and that for higher 

tenors, which means higher maturities of the underlying swap, the prices are higher for all the 

strike levels. This is because higher level of volatility correspond to higher tenors, and price 

and volatility are directly related.  
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Figure 7: Swaption Prices Plot 

The table below illustrates the obtained prices to whom Figure 7 refers, for different tenors 

(columns) and strike rates (rows).  

 
Figure 8: Swaption  Prices Table 

 

 To analyze in deep the obtained estimator I computed its variance, using the  sample variance 

formula. The result confirm that the variance of the estimator is significantly high, especially 

for high tenor levels and high strike levels. In order to reduce the variance it is possible to  

apply one of the variance reduction techniques mentioned in paragraph 3.5. Estimator variances 

had been plotted in a 3-D graph (Figure 3.8) to show the relation with the parameters 

considered, which are tenor and strike. Variance values in the graph are scaled. 

Strike/Tenor 1Y 2Y 3Y 4Y
0.001000 €68,20 €186,09 €408,08 €765,76
0.001571 €705,38 €1.565,81 €2.855,28 €4.585,94
0.002143 €2.592,69 €4.954,48 €8.124,18 €12.104,65
0.002714 €5.926,76 €10.430,61 €16.165,86 €22.915,11
0.003286 €10.715,34 €17.879,88 €26.440,31 €36.148,70
0.003857 €16.868,27 €26.866,33 €38.455,09 €51.347,18
0.004429 €241.333,26 €37.126,48 €51.904,67 €67.977,89
0.005000 €32.299,64 €48.479,00 €66.442,30 €85.685,92
0.005571 €41.318,38 €60.682,09 €81.821,71 €104.280,37
0.006143 €51.009,71 €73.570,23 €97.921,11 €123.640,47
0.006714 €61.268,54 €87.021,17 €114.624,80 €143.535,88
0.007286 €719.999,87 €100.965,14 €131.823,50 €163.866,81
0.007857 €83.124,84 €115.361,20 €149.394,01 €184.556,36
0.008429 €94.621,74 €130.107,92 €167.281,44 €205.534,14
0.009000 €106.420,62 €145.132,59 €185.435,90 €226.757,99
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Figure 9: Monte Carlo Estimators Variances 

Last but not least, to validate the solution given by the model I compared the values of ATM 

swaptions quoted on the market with the corresponding swaptions priced by the implemented 

model. Since swaptions are quoted on the market through Black’s implied volatilities I 

extracted the dollar price by applying the Black formula (Monoyios & Hambly, 2017). The 

obtained results of the comparison are shown in Figure 10. The exercise date of the option is 

one year from the valuation date which is 1st of September 2020. 

Figure 10: Monte Carlo Estimator Validation 
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The graph above shows the level of accuracy of the model. It is possible to see that for higher 

tenors the distance between the values increases, which means that the precision of the model 

decreases. The root mean squared error of the model is equal to 77613.19€. It must be 

underlined that the model tends to underprice the derivative for every tenor, and this might be 

due to a lack of convergence between the LMM and the SMM, since the model implemented 

is calibrated only on Cap volatilities.  

 

6. Modern pricing techniques in the global markets’ landscape 
Structured products started to be transacted in the UK in the early 90s, and at the time those 

banks who had the chance to develop the most sophisticated mathematical models for pricing 

and structuring those products were one step ahead in the industry (Walker & Keohane, 2020). 

Derivatives had been used for hedging and speculation purposes and since then this market 

grew 24% per year on average, reaching €457 trillion of notional outstanding in 2008 (Mai, 

2008). The crash of 2008 moved the markets in one negative direction, creating a feeling of 

distrust towards the derivatives and structured instruments markets. After the crisis, the spread 

and use of data science and machine learning techniques has given a significant turn to the 

reality of the financial markets, bringing the trading of these products towards increasingly 

sophisticated and automated processes (Dizard, 2019). In this context market models and the 

use of Monte Carlo simulation represented one of the most important steps given their ability 

to take into account current market variables such as the term structure and the implied 

volatilities quoted on the market for some specific instruments. It is known that the slope of 

the volatility and term structures are together good indicators of macroeconomic conditions 

and compensation for volatilities at specific maturities. The implementation of the model was 

showed and its accuracy was demonstrated in the previous paragraph. With some extensions 

the results obtained from the model can be used in multiple ways. In fact, fixed income 

derivatives by definition are highly connected with interest rates and consequently strongly 

influenced by monetary policy. This characteristic makes them good candidates to be used to 

interpret market sentiment and expectations with respect to macroeconomic news and business 

cycles (Fang et al., 2007). Swaptions together with Caps are among the most liquid derivatives 

of this category, and they are available on a broad range of interest rates.  

Now there are new challenges for fixed income derivatives’ pricing models, which are related 

to recent market changes. The first will be the transition to new European risk free benchmarks 

(Jones & Stafford, 2020). In fact, as new regulation is imposing new characteristics on these 
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rates . Secondly, with the coronavirus outbreak many central banks implemented or started to 

consider a negative interest rates policy (Kochkodin, 2020). NIRP is known to be a good 

stimulus for the economy allowing for the propagation of monetary accommodation through 

the whole yield curve and avoiding  further downward pressure on the term premium 

(Schnabel, 2020). However, from the perspective of fixed income derivative prices negative 

interest rates policy means that Black formula, used to quote securities in term of implied 

volatility, is no longer applicable. The model implemented in this research does not allow either 

changes in the sign of forward rates in the simulation. In the next paragraph I will briefly go 

through direction in which the research of this paper can be extended. 

 

7. Suggestions for future researches: Bermudian Swaptions, Longstaff-

Schwartz algorithm and Least Squares Monte Carlo 
Further steps forward in this research could be done considering a Bermudian swaption, that 

by definition can be exercised earlier than the option maturity at pre-determined dates. Since 

Monte Carlo simulation by construction is an algorithm that only goes forward in time while 

usually Bermudian and American derivatives are priced backwards and, additionally, it is 

needed to simultaneously price the swaption at different points in time and compute its 

continuation value and compare them in order to define an optimal stopping frontier. The early 

exercise possibility adds challenges to the pricing and there are multiples approaches to address 

these issues, such as the Stochastic Tree Method, the Stochastic Mesh Method and the 

Longstaff-Schwartz algorithm (LSM). In this paragraph the last method will be briefly 

introduced as it represents a possible extension of the implementation carried in this paper.  

Least Squares Monte Carlo method simply estimates the continuation using cross-sectional 

information from the simulation with a least squares regression. The algorithm works 

backwards and at each exercise date it compares the continuation value with the swaption 

value, and in the case the former is smaller than the latter the option is exercised immediately. 

The unbiased estimate of the continuation value is obtained as a function of a number k of basis 

functions, which are usually quadratic, and depend themselves on the underlying variable. 

Starting from the last step of the simulation the algorithm begins a recursion scheme that works 

backwards and where each continuation value is estimated by the fitted values from the 

regression. The recursion breaks when the first exercise date possible is reached (Longstaff & 

Schwartz, 2001). The convergence and the robustness of the algorithm were addressed by a 
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series of more recent studies that show their dependence on the number of basis functions used 

and the specific type of derivative instrument taken into account (Frey, 2008). 

 

 

 



Conclusions 
 
The objective of this research was to implement an algorithm to price European Swaption 

taking into account current values of volatility and term structures. Thanks to the change of the 

probability measure it was possible to overcome the problems related to the correlation between 

payoffs and the discount factors, and the inconsistent assumption of a deterministic discount 

factor under the traditional risk-neutral measure. The adoption of the T-forward measure opens 

a range of possibilities concerning the use of Market Models. The latter models, unlike Short 

Rate models, are compatible with the distribution implied by Black’s formula, and can 

therefore be calibrated both on the term structure and on caps and swaptions prices quoted on 

the market. LIBOR Market Model and Swap Market Model and the inconsistency of their 

simultaneous use forced us to choose one model for the whole interest rates derivatives market. 

The evidence extracted from previous studies showed the convenience of adopting the LIBOR 

Market Model because of its mathematical tractability and the intuition in using forward rates 

to explain the term structure. 

Furthermore, thanks to the adoption of Monte Carlo methods, the true dynamics of interest 

rates can be simulated including an instantaneous correlation structure between the multiple 

rates, that is needed when pricing more complex derivatives like swaptions.  

After an appropriate calibration of the input parameters on the current market conditions of 

term and volatility structures, the implementation of the algorithm generated ten thousand 

trajectories per each simulation of the different forward rates, needed to price swaptions with 

different tenors. The swaption analyzed had a maturity of one year and the price was computed 

for different values of the tenor, with the need to generate up to 8 rates simultaneously.  

The swaption price estimator was computed for different strike rates and tenors, and the 

variance of the estimator was investigated, observing an increase for higher values of tenor and 

strike rate. 

To validate the model the obtained prices for at-the-money swaptions were compared with 

quoted prices of the corresponding swaptions. The validation showed the accuracy of the model 

and its implementation, and the Mean Squared Error was computed giving a satisfactory result 

that is illustrated. From the comparison of obtained and quoted prices, it can be observed that 

the model tend to slightly underprice the swaption for every tenor, and when the tenor increases 

the amount of the underpricing increases as well. This might be due to a lack of convergence 
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between the LIBOR Market Model and the Swap Market Model, a matter of internal coherence 

which finds its roots in the calibration on caps’ volatilities. 

Moreover, the model presents some limitations related to the assumption of a perfect 

correlation between the different forward rates. In fact, each simulation was performed using 

the same random numbers in place of the Brownian increments, which implies a perfect 

correlation between the different rates, that are subject to the same random shocks. This 

simplification was fundamental to avoid the need to derive an instantaneous correlation 

structure on which the model should have been further calibrated. The complexity in defining 

such a structure represents one of the different directions in which the implementation can be 

extended. 

For further exploration of the topic, the analysis could be also carried out for a Bermudian or 

American swaption with the possibility of early exercise, using the Longstaff-Schwartz 

algorithm and Least Squares Monte Carlo method.  

The current landscape of global markets introduces new challenges for pricing algorithms 

concerning the input term structure, which is globally going towards strong reductions of 

interest rates, that are very close to zero or negative.  Furthermore, the transition to the new 

European risk-free benchmarks represents another challenge for interest-rate derivatives 

market. Given the strong connection, explained in the last chapter, between those instruments 

and interest rate risks, monetary policy, and business cycles, the centrality of modern pricing 

models that are able to adapt to rapid changes is undoubted.   

 



Appendix – Python code 
""" 

Created: Thu Aug 20 17:57:31 2020   

Last Modified: Thu Sep 24 2020 

 

This code contains an algorithm to price, at valuation date 1st of 

September 2020, 

a Swaption with maturity one year for different tenors. The file is 

divided in  

different parts, firs the data are imported from excel. Some necessary 

pricing  

functions based on the Black's formula are created and tested. Afterwards 

the data 

are cleaned manipulated and adjusted. The Forward volatility structures is  

derived through a bootstrapping procedure. Random numbers trajectories are 

generated 

to be used in the Monte Carlo Simulation for forward rates. Discount rates 

are derived  

and the swaptions are priced and plotted. The model is validated with 

quoted swaptions 

prices. 

 

@author: Laura Bruno 

""" 

import numpy as np 

import pandas as pd 

import scipy.stats 

from scipy.optimize import minimize 

import matplotlib.pyplot as plt 

import scipy 

import math 

import sympy as sp 

import pdb 

 

########################################################################## 

"Import excel file" 

DF1=pd.read_excel('/Users/Laura/Desktop/Data 

thesis/LIBOR_and_VOLATILITY.xlsx',  

sheet_name = "Volatility") 

DF1=pd.DataFrame(DF1) 

DF2=pd.read_excel('/Users/Laura/Desktop/Data 

thesis/LIBOR_and_VOLATILITY.xlsx',  

sheet_name = "Libor") 

 

########################################################################## 
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"Create arrays with volatilities, strikes, discount factors" 

VOLdf=DF1.iloc[0:11,0:3] 

Cap_Strikes=np.asarray(VOLdf.drop(columns=["Maturity","Flat 

Volatility"]))/100 

Flat_vol=np.asarray(VOLdf.drop(columns =["Maturity", "Strike"]))/10000 

Maturities=np.asarray(DF2.drop(columns =["Scad", "Tasso mercato", 

"Sconto", "Spos", "Ts spostato", "Tasso zero"])) 

Spot_Libor=np.asarray(DF2.drop(columns =["Scad", "maturity (YR)", 

"Sconto", "Spos", "Ts spostato", "Tasso zero"]))/100 

Discount=np.asarray(DF2.drop(columns =["Scad", "Tasso mercato", "maturity 

(YR)", "Spos", "Ts spostato", "Tasso zero"])) 

#print(Maturities) 

#print(Discount) 

#print(Spot_Libor) 

#print(Cap_Strikes) 

#print(Flat_vol) 

 

########################################################################## 

"Libor and Discount factors interpolation, periodical Volatility" 

 

f=scipy.interpolate.splrep(Maturities, Spot_Libor) 

Maturities_new=np.arange(0.5,6, 0.5) 

Libor_new= np.asarray(scipy.interpolate.splev(Maturities_new, f, der=0)) 

#print(Libor_new) 

 

""" 

#Plot the libor interpolation 

plt.figure() 

plt.plot(Maturities, Spot_Libor, 'co', Maturities_new, Libor_new, "navy") 

plt.legend(['Libor', 'Cubic Spline', 'True']) 

plt.title('Cubic-spline Libor interpolation') 

plt.show() 

""" 

f1=scipy.interpolate.splrep(Maturities, Discount) 

Maturities_new=np.arange(0.5,6.5, 0.5) #Nb: I need an extra discount 

factor 

Discount_new= np.asarray(scipy.interpolate.splev(Maturities_new, f1, 

der=0)) 

 

#VOLATILITY *SQRT(DAYS) 

Flat_volP=np.empty([11,1]) #Volatility relative to the period 

for index in range(11): 

    V=Flat_vol[index] 

    PeriodV=V*math.sqrt(252*Maturities_new[index]) 

    print(PeriodV) 

    Flat_volP[index]=PeriodV 
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########################################################################## 

"Function for Caplet and Cap dollar price using black formula" 

#Creation of pricing functions for Caplets and Caps 

 

def Caplet_fun(Ti,sigma, rK, delta_step, Notional, discount0_Ti, 

discount0_Ti1): 

    forward_rateTiTi1=discount0_Ti1/discount0_Ti #forward rate between Ti 

and Ti+1 

    forward_rateTiTi1=(1/delta_step)*((1/forward_rateTiTi1)-1) #Correct 

compounding fwd rate 

    

d1=math.log(forward_rateTiTi1/rK)/(sigma*math.sqrt(Ti))+0.5*sigma*math.sqr

t(Ti)  

    d2=d1-sigma*math.sqrt(Ti) 

    Nd1=scipy.stats.norm(0,1).cdf(d1) #density function of d1 and d2 

    Nd2=scipy.stats.norm(0,1).cdf(d2) 

    dollarprice= 

(Notional*delta_step*discount0_Ti1)*(forward_rateTiTi1*Nd1-rK*Nd2) 

    return dollarprice 

 

def CAP(Tn, sigma, rK, delta_step, Notional, Discount_vector): 

    Cap=0 

    t=0 

    for i in np.arange(int(Tn/delta_step)): 

        t=delta_step*(i+1) 

        Cap+= Caplet_fun(t, sigma, rK, delta_step, Notional, 

Discount_vector[i], Discount_vector[i+1]) 

    return Cap 

 

def ATMCaplet_fun(Ti,sigma, rK, delta_step, Notional, discount0_Ti1): 

    forward_rateTiTi1 = rK 

    

d1=math.log(forward_rateTiTi1/rK)/(sigma*math.sqrt(Ti))+0.5*sigma*math.sqr

t(Ti)  

    d2=d1-sigma*math.sqrt(Ti) 

    Nd1=scipy.stats.norm(0,1).cdf(d1) #density function of d1 and d2 

    Nd2=scipy.stats.norm(0,1).cdf(d2) 

    dollarprice= 

(Notional*delta_step*discount0_Ti1)*(forward_rateTiTi1*Nd1-rK*Nd2) 

    return dollarprice 

 

def ATMCAP(Tn, sigma, rK, delta_step, Notional, Discount_vector): 

    Cap=0 

    t=0 

    for i in np.arange(int(Tn/delta_step)): 
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        t=delta_step*(i+1) 

        Cap+= ATMCaplet_fun(t, sigma, rK, delta_step, Notional, 

Discount_vector[i+1]) 

    return Cap 

 

def ATMSwaption_Black(Tn, sigma, rK, delta_step, Notional, 

Discount_vector,OptMatur): 

    forward_rateTiTi1 = rK 

    

d1=math.log(forward_rateTiTi1/rK)/(sigma*math.sqrt(OptMatur))+0.5*sigma*ma

th.sqrt(OptMatur)  

    d2=d1-sigma*math.sqrt(OptMatur) 

    Nd1=scipy.stats.norm(0,1).cdf(d1) #density function of d1 and d2 

    Nd2=scipy.stats.norm(0,1).cdf(d2) 

    A=0 

    for index in range(1,Tn*2-1): 

        A+=delta_step*Discount_vector[index] 

    dollarprice= (Notional*A)*(forward_rateTiTi1*Nd1-rK*Nd2) 

    return dollarprice 

     

def Swaption_Black(Tn, sigma, rK, forward,delta_step, Notional, 

Discount_vector,OptMatur): 

    forward_rateTiTi1 = forward 

    

d1=math.log(forward_rateTiTi1/rK)/(sigma*math.sqrt(OptMatur))+0.5*sigma*ma

th.sqrt(OptMatur)  

    d2=d1-sigma*math.sqrt(OptMatur) 

    Nd1=scipy.stats.norm(0,1).cdf(d1) #density function of d1 and d2 

    Nd2=scipy.stats.norm(0,1).cdf(d2) 

    A=0 

    for index in range(1,Tn*2-1): 

        A+=delta_step*Discount_vector[index] 

    dollarprice= (Notional*A)*(forward_rateTiTi1*Nd1-rK*Nd2) 

    return dollarprice 

 

#TEST     

""" 

discount=[99.4580,98.8510,97.6673] 

discount=discount/100 

 

A=Caplet_fun(0.25,0.235, 0.02555,0.25,100,0.994580,0.988510) 

print(A)  #Test Caplet function, ok 

 

B=CAP(0.25,0.235, 0.02555,0.25,100,discount) 

print(B) #Test CAP function check 1, ok 
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C=CAP(0.5,0.235, 0.02555,0.25,100,discount) 

print(C) #TEST Cap function check 2, ok 

 

B1=Caplet_fun(0.5,0.235, 0.02555,0.25,100,98.8510,97.6673) 

print(B1+A) #Cap functions counter check 2, B1+A must be equal to C, OK 

""" 

 

 

########################################################################## 

"Forward Volatilities Bootstrapping" 

#Input-> np arrays for ZCB(n+1), Strikes(n), Flat Vol (n) for ATM 

instruments 

#where n is the number of maturities of interest. 

#NB: I need data for one extra maturity: If I want to price a swap that 

#has payments 

#until 2.5 years I need data until year 3! 

#DATA: 

Discount_factors6M=Discount_new 

Flat_volP=Flat_volP 

Cap_Strikes=Cap_Strikes 

N_maturities=11 # n in this case is 5, meaning that I enter in a swap with 

in 1 year with 3 payment dates 

Delta_step=0.5 

Notional=10000000 #10M 

 

Cap_Prices=np.empty([N_maturities,1])   

for index in range(0,N_maturities): #range must be (1, n+1), index is the 

i-th time step 

    Cap = ATMCAP(Delta_step*(index+1), Flat_volP[index], 

Cap_Strikes[index], Delta_step, Notional, Discount_factors6M) 

    #NB ZCB vector must be n+1-dimensional, Flat_vol and Cap_Strikes being 

np.array 

    Cap_Prices[index] = Cap  #Creates a vector with cap prices per each 

maturity 

print(Cap_Prices) 

 

#Bootstrapping 

Fwd_vol = np.zeros([N_maturities,1])  

Fwd_vol[0]=Flat_volP[0] 

for maturity in range(1,N_maturities+1): 

    SUM=0 

    matur=maturity   

    for i in range(1,matur): 

        SUM+=ATMCaplet_fun(i*Delta_step,Fwd_vol[i-1],Cap_Strikes[matur-

1],Delta_step,Notional,Discount_factors6M[matur-1]) 

    Final=Cap_Prices[matur-1]-SUM 
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    aim = Final 

    check = np.zeros((1500,3)) 

    if maturity == 1: 

        sigma_range=np.linspace(Fwd_vol[maturity-1],Fwd_vol[maturity-

1]+0.04,1500) 

    else: 

        sigma_range=np.linspace(Fwd_vol[maturity-2],Fwd_vol[maturity-

1]*2,1500) 

 

    for i in range(len(sigma_range)): 

        try_sigma = sigma_range[i] 

        Price = ATMCaplet_fun(matur-1,try_sigma, Cap_Strikes[matur-

1],Delta_step,Notional,Discount_factors6M[matur-1]) 

        check[i,0] = Price #Cap function check 1, ok 

        check[i,1] = Price - aim 

        check[i,2] = try_sigma 

        minimum = np.min(check[:,1]) 

        min_list=check[:,1].tolist() 

        location=min_list.index(minimum) 

        result = check[location,2] 

    Fwd_vol[maturity]=result 

print(Fwd_vol) 

#I obtain n (11) Fwd Volatilities 

 

########################################################################## 

"Volatility structure of Forward Rates Bootstrapping" 

 

S_vol = np.empty([N_maturities-1,1]) 

#NB: for n forward volatilities I can extract n-1 volatilities of fwd 

rates 

#Look Veronesi book p.722 

for index in range(N_maturities-1): 

    Sum=0 

    if index == 0: 

        S_vol[index] = Fwd_vol[index+1] 

         

    else: 

        Sum+=S_vol[index-1]*S_vol[index-1]*Delta_step 

        S=math.sqrt((Fwd_vol[index+1]*index*Delta_step-Sum)/Delta_step) 

        S_vol[index] = S 

print(S_vol) 

print(Fwd_vol) 

print(Flat_volP) 

len(S_vol) 

#I obtain n-1 (10) volatilities 
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"Plot Volatilities" 

#plt.figure() 

#plt.plot(Maturities_new[0:10], Flat_volP[0:10]*100, 'navy', 

Maturities_new[0:10], Fwd_vol[0:10]*100, "cornflowerblue", 

Maturities_new[0:10],S_vol[0:10]*100, "co") 

#plt.legend(['Flat Vol', 'Fwd Vol', 'S vol']) 

#plt.title('Volatilities') 

#plt.xlabel("Time, years") 

#plt.ylabel("Volatility level(%)") 

#plt.show() 

 

########################################################################## 

"Random number generation, Monte Carlo" 

avg = 0 

std_dev = 1 

num_reps = 250 

num_simulations = 10000 

random_num_matrix=np.empty([num_reps,num_simulations]) 

np.random.seed(1234) 

for i in range(num_simulations): 

    random_num_matrix[:,i] = np.random.normal(avg, std_dev, 

num_reps).round(4) 

#I obtain a matrix of 10k trajectories made of 250 steps 

 

#plt.plot(random_num_matrix[:,150]) 

#plt.show() 

 

########################################################################## 

"Forward Rates Simulation" 

#Simulation of the eight forward rates, to obtain the forward rates for 

the  

#same period but observed in one year 

#Find start forward rates F(0,1,i): 

     

MC_simulation=np.empty([250,8,num_simulations]) 

Start_forward_rates=np.empty([N_maturities-3]) #NB I need 8 forward rates 

 

for rate in range(2,10): 

    forward_rate1_T=Discount_factors6M[rate]/Discount_factors6M[rate-1] 

#forward rate between Ti and Ti+1 

    forward_rate1_T=(1/Delta_step)*((1/forward_rate1_T)-1) 

    Start_forward_rates[rate-2]=forward_rate1_T 

 

#Check initial forward rates       

#print(Start_forward_rates) 
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for simulation in range(num_simulations): 

    for i in range(8): 

        MC_simulation[0,i,simulation]=Start_forward_rates[i] 

#Add the forward rates as starting point of the empty matrix in EACH 

simulation    

 

 

delta=1/250 

m=0 

 

#Run the simulation for 10k times 

for simulation in range(num_simulations): 

    for step in range(1,250): 

        for column in range(8): 

            m_start=(Delta_step*MC_simulation[step-

1,column,simulation]*(S_vol[column+2]**2))/(1+Delta_step*MC_simulation[ste

p-1,column,simulation])-(S_vol[column+2]**2)*0.5 

            if column == 0: 

                m = m_start 

            else:  

                m = 

(m/S_vol[column+1]+S_vol[column+1]*0.5+(Delta_step*MC_simulation[step-

1,column,simulation]*S_vol[column+2])/(1+Delta_step*MC_simulation[step-

1,column,simulation])-S_vol[column+2]*0.5)*S_vol[column+2] 

            forward=MC_simulation[step-

1,column,simulation]*math.exp(m*delta+S_vol[column+2]*math.sqrt(delta)*ran

dom_num_matrix[step,simulation]) 

            MC_simulation[step,column,simulation] = forward 

 

#Check Simulation 

#plt.plot(MC_simulation[:,:,888]) 

#plt.title('One simulation of the eight forward rates') 

#plt.ylabel('Forward_rates') 

#plt.show() 

 

#plt.plot(MC_simulation[:,0,700:710]) 

#plt.title('Ten different simulations for the first forward rate') 

#plt.ylabel('Forward_rates') 

#plt.show() 

 

"TENOR 5Years" 

########################################################################## 

"Computation of discount factors Z between To and Tm (pag. 724 Veronesi)" 

 

Z_discount_forward=np.empty([num_simulations,N_maturities-3]) 
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for simulation in range(num_simulations): 

    Z=1 

    for rate in range(8): 

        Z=Z*1/(1+MC_simulation[249,rate,simulation]*Delta_step) 

        Z_discount_forward[simulation,rate] = Z   

         

         

#print(Z_discount_forward) 

"TENOR 5Years" 

########################################################################## 

"Computation of the final payoff (Swap value in To) in each simulation 

(x10k payoffs)" 

 

Swaption_values=np.empty([15,4]) 

Estimator_variance=np.empty([15,4]) 

Tenor_difference=np.array([6,5,4,3]) 

Tenors=np.array([1,2,3,4]) 

 

Strike=np.linspace(0.001,0.009,15) 

Final_payoff=np.empty([num_simulations]) 

"""Swap_rates=np.empty([num_simulations]) 

Swap_rates=MC_simulation[249,0,:]""" 

 

for Tenor in range(len(Tenor_difference)): 

    for strike in range(len(Strike)): 

        Curr_strike=Strike[strike] 

        #NB the eight forward rates in each simulation will be used to 

compute one payoff 

        for simulation in range(num_simulations): 

            Payoff=0 

            for maturity in range(N_maturities-Tenor_difference[Tenor]): 

                

Payoff+=Delta_step*Curr_strike*Z_discount_forward[simulation,maturity] 

                if maturity == N_maturities-Tenor_difference[Tenor]-1: 

                    

Payoff=(Payoff+Z_discount_forward[simulation,N_maturities-4]-1)*Notional   

#Subtract notional 

            Final_payoff[simulation]=Payoff 

        #print(Final_payoff) 

        "Receiver European Swaption value" 

        European_swaption=0 

        for simulation in range(num_simulations): 

            European_swaption+=max(Final_payoff[simulation],0) 

        

European_swaption=European_swaption*Discount_factors6M[1]/num_simulations  

        Swaption_values[strike,Tenor]=European_swaption 
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        variance=0 

        for simulation in range(num_simulations): 

            variance+=(Swaption_values[strike,Tenor]-

Discount_factors6M[1]*max(Final_payoff[simulation],0))**2 

        Estimator_variance[strike,Tenor]=variance/num_simulations 

 

print(Swaption_values) 

print(Estimator_variance) 

 

from matplotlib import cm 

from mpl_toolkits.mplot3d import Axes3D 

 

X=Tenors 

Y=Strike*100 

X, Y = np.meshgrid(X, Y) 

Z=Estimator_variance 

fig = plt.figure() 

ax = Axes3D(fig) 

ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.viridis) 

plt.xlabel("Tenors") 

plt.ylabel("Strikes (%)") 

plt.show() 

 

 

 

plt.plot(Strike,Swaption_values[:,0],"paleturquoise",Strike,Swaption_value

s[:,1],"c",Strike,Swaption_values[:,2],"royalblue",Strike,Swaption_values[

:,3],"navy") 

plt.xlabel("Strike") 

plt.ylabel("European Swaption Value(€)") 

plt.title("Price of a Swaption on 10,000,000€ notional") 

plt.legend(['1Y Tenor', '2Y Tenor', '3Y Tenor',"4Y Tenor"]) 

plt.show() 

 

 

Data={"Strike/Tenor": Strike, "2Y": Swaption_values[:,0], 

"3Y":Swaption_values[:,1], "4Y":Swaption_values[:,2], 

"5Y":Swaption_values[:,3]} 

Data_frame_swaption=pd.DataFrame(Data, columns = 

["Strike/Tenor","2Y","3Y","4Y","5Y"]) 

 

print(Data_frame_swaption) 

 

#Price Quoted Swaptions 

ATM_Strikes=np.empty([4]) 

for i in range(2,6): 
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    a=Discount_new[i*2-1]/Discount_new[1] 

    atmstrike=(1/Delta_step)*((1/a)-1) 

    ATM_Strikes[i-2]=atmstrike 

 

Implied_vol=np.array([21.49,27.21,33.84,39.95]) 

 

Quoted_swaptions=np.empty([4]) 

for index in range(4): 

    

Swaption=ATMSwaption_Black(2+index,Implied_vol[index],ATM_Strikes[index],D

elta_step,Notional,Discount_factors6M,1) 

    Quoted_swaptions[index]=Swaption 

 

 

#Price Corresponding model swaptions    

         

Swaption_values=np.empty([4,4]) 

Tenor_difference=np.array([6,5,4,3]) 

 

StrikeATM=ATM_Strikes 

Final_payoff=np.empty([num_simulations]) 

"""Swap_rates=np.empty([num_simulations]) 

Swap_rates=MC_simulation[249,0,:]""" 

 

for Tenor in range(len(Tenor_difference)): 

    for strike in range(len(StrikeATM)): 

        Curr_strike=StrikeATM[strike] 

        #NB gli otto forward rates ad ogni simulazione serviranno a 

calcolare 1 payoff 

        for simulation in range(num_simulations): 

            Payoff=0 

            for maturity in range(N_maturities-Tenor_difference[Tenor]): 

                

Payoff+=Delta_step*Curr_strike*Z_discount_forward[simulation,maturity] 

                if maturity == N_maturities-Tenor_difference[Tenor]-1: 

                    

Payoff=(Payoff+Z_discount_forward[simulation,N_maturities-4]-1)*Notional   

#Add notional 

            Final_payoff[simulation]=Payoff 

        #print(Final_payoff) 

        "Receiver European Swaption value" 

        European_swaption=0 

        for simulation in range(num_simulations): 

            European_swaption+=max(Final_payoff[simulation],0) 

        

European_swaption=European_swaption*Discount_factors6M[1]/num_simulations  
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        Swaption_values[strike,Tenor]=European_swaption 

         

print(Swaption_values) 

 

My_values=np.array([Swaption_values[0,0],Swaption_values[1,1],Swaption_val

ues[2,2],Swaption_values[3,3]])     

Tenor1=np.array([Quoted_swaptions[0],My_values[0]]) 

Tenor2=np.array([Quoted_swaptions[1],My_values[1]]) 

Tenor3=np.array([Quoted_swaptions[2],My_values[2]]) 

Tenor1=np.array([Quoted_swaptions[3],My_values[3]]) 

Names=np.array(["Quoted","Model result"]) 

 

Tenors=np.array([1,2,3,4]) 

 

Data={"Tenor": Names, "2Y": Tenor1, "3Y":Tenor2, "4Y":Tenor3, "5Y":Tenor3} 

Data_frame_comparison=pd.DataFrame(Data, columns = 

["Tenor","2Y","3Y","4Y","5Y"]) 

"#Comparison Quotes e prices ATM" 

 

var=0 

for i in range(4): 

    var+=(Quoted_swaptions[i]-My_values[i])**2 

MSE=var/4 

     

 

plt.plot(Tenors,My_values,"c",Tenors,Quoted_swaptions,"navy") 

plt.xlabel("Tenor") 

plt.ylabel("European Swaption Value(€)") 

plt.title("Quoted Prices vs. Model Results") 

plt.legend(["Model results","Quoted"]) 

plt.show() 

#Quoted Swaption prices for all strikes 
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Introduction 
 

This research is aimed at implementing an algorithm to price European Swaption that can capture 

current market conditions, which are embedded in macro-financial variables. In the model built in 

this paper, the calibration primarily takes into account the current term structure and quotes for 

specific classes of derivatives.  

Derivatives started to be traded in the early 90s and, despite the crash related to the 2008 financial 

crisis, the volume of the notional amount exchanged on OTC market reached 640 trillion (as in June 

2019). Those instruments are used from multiple individuals and corporates for speculation and 

hedging purposes. In particular, fixed income derivatives are mainly used for hedging the risk arising 

from interest rates, and not surprisingly interest rates derivatives are the most liquid sub-category. 

Those instruments allow investors that are exposed to interest rates, such as issuers of floating-rate 

securities or investors of callable securities, to be protected against fluctuations in the term structure. 

Swaptions are exotic options where the underlying is a swap contract, and the buyer of a 

receiver/payer swaption will have the right at maturity to enter in a receiver/payer swap at a pre-

determined strike swap rate. Notwithstanding the diffusion of these instruments, their pricing process 

poses multiple challenges in its implementation, that will be examined in this paper. 

  

First of all, since the payoff depends on future interest rates, this type of derivatives requires an 

appropriate process to understand and predict the term structure. Over time, an extensive literature 

has developed on term structure modelling, and although there are multiple types of models the most 

widespread one is the Affine class which will be thoughtfully analyzed.  

Furthermore, whilst in equity derivatives, the payoff and the discount factors depend on different 

variables, in fixed income derivatives both the discount factor and the payoff are built upon the 

interest rate. This peculiarity causes a non-zero correlation between these two which alters the 

discounted expected value of future outcomes. Changing the probability measure and obtaining the 

so-called Equivalent Martingale Measure result, will allow to have a deterministic discount factor 

outside the expectation operator, and consequently eliminate the problem of correlation. The adoption 

of a new probability measure, namely the T-forward measure, lays the groundwork for the application 

of Market Models such as the LIBOR Market Model and the Swap Market Model. This study will 

analyze and compare short rates models and market models and their ability to price swaptions 

reflecting current market conditions.  

The chosen model, after a discretization procedure, is implemented through the famous statistical tool 

of Monte Carlo simulation, which allows describing the true dynamics of interest rates, whom 

advantages for swaptions will be illustrated.  
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With the appropriate calibration, the resulting pricing algorithm performed generates an estimator of 

the price of a European receiver swaption with one year of maturity. On the result are performed 

sensitivity analyses to explain the variation of the price concerning the main variables: strike and 

tenor of the underlying swap. The variance of Monte Carlo estimators is determined and appears to 

be higher for greater tenor and strike values. Finally, to validate the pricing algorithm based on Monte 

Carlo simulation and LIBOR Market Model its outcome is compared with At-the-money swaptions 

quoted on the market at the day of evaluation. The Mean Squared Error is additionally investigated. 

The research structure follows the logical steps of the pricing process. The first section reviews 

extensively the most famous Affine models for term structure modelling and the different existing 

volatility structures, examining the mathematical steps needed to change the probability measure and 

obtain the solution to the stochastic differential equation for pricing. The second section provides the 

theoretical knowledge about Monte Carlo methods, underlining the importance of these tools in 

complex multidimensional integration problems and explaining the advantages of using Monte Carlo 

estimations. This chapter goes also through variance reduction techniques and the convenience in the 

application of Monte Carlo simulation to swaption pricing. The third chapter is aimed at performing 

the pricing, explaining the derivation of the specific discretized stochastic process simulated and its 

calibration on the current term and volatility structure. The results and the sensitivity analyses are 

presented together with the model validation. The role of modern pricing techniques in the landscape 

of global markets is explained and future challenges of the latter techniques are identified.  Finally, 

the conclusions are reported and extensions of the model for future implementation are suggested.  

 

Chapter 1: Affine Models for term structure modelling 
 

1. Exotic options and European swaptions  

The term “exotic options” includes any option type that is different from Vanilla options, from the 

perspective of payoffs and cash flows structure. This class of derivatives brings many advantages in 

term of use, because of their complex structure of payoffs and cash flows they can easily meet 

different investors’ needs. Two main categories of exotic options can be distinguished: path 

independent are characterized by payoffs that are function only of the underlying asset price at 

maturity, whereas path dependent’s payoffs are functions of the price path of the underlying as whole 

or in some specific portion. For categorization purposes also the dimension and the order of the option 

are often taken into account. The former is the number of variables that characterize the payoffs, and 

the latter is related to the type of function that links those variables and the payoffs. In this paper, I 

will go through interest rate models and Monte Carlo simulation with the final intent of pricing a type 

of exotic option on fixed income, that is Bermudian and European Swaption. There exist a 
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considerable body of literature that will be soon introduced, that shows the progress that have been 

made in term of accuracy to price fixed income derivatives. Notably, several theories have been 

dedicated to swaptions pricing with some remarkable results during the latest year of the XX century.  

 

2. Structural Affine Models  
Structural models for yield curve are aimed not only at characterizing but also at understanding the 

term structure and its changes, being in this way extremely useful for forecasting purposes. With no 

doubt, among many types of structural models, the most widespread class is the affine one. An 

important constraint that is imposed on these models is the no-arbitrage condition, which ensures that 

prices do not allow no-risk profits. The no-arbitrage condition can also guide statistical estimates in 

the process of characterization of the yield curve. In this chapter I will analyze briefly the first 

generation of Affine Models, Vasicek (1977) and CIR (1985) and three important drivers of the yield 

curve, to focus later on in the chapter on more complex models which rely on the forward neutral 

probability measure. More specifically the Libor Market Model by Brace, Gatarek and Musiela will 

be used to simulate the trajectories of future spot Libor rates and price Bermudian Swaptions. 

To introduce the Affine setting, Rebonato highlights three factors which determine the structure of 

the yield curve: Expectation, Risk Premia and Convexity. Expectations are often included in affine 

models (e.g.: Vasicek) through a mean-reverting component, which is able to capture a long term 

mean reversion that unfortunately does not fit well the intuition by which expectation might influence 

the short term part of the yield curve instead of the long term one (Rebonato, 2016).  

Vasicek and CIR models represent the first generation of affine models, they both take into account 

the no-arbitrage condition and the main drivers of the yield curve in a one-factor equation, and the 

state variable is an affine diffusion under both physical and risk neutral measures.  Short rate models, 

in general, are highly intuitive and flexible for their ability to explore the dynamics of an 

instantaneous continuously compounded short rate 𝑟𝑡. In the Vasicek model, the short rate increment 

follows a generic Gaussian Markov process in which the short rate reverts to a long term fixed level 

J with a reversion speed of M (Cox et al., 1985).  

The component M has central importance, precisely when the reversion speed is zero the duration of 

the security grows linearly with maturity, while at a higher reversion speed the duration grows less 

with maturity, meaning that for high reversion speeds the security is less sensitive to changes in the 

yield (Vašíček, 1977). 

The risk premia is the excess return required from investors to bear some specific level of risk, and 

the compensation related to each risk factor per unit risk is determined as 𝑢𝑗
𝑡,𝑇 = 𝜕𝑃𝑡

𝑇

𝜕𝑥𝑗
𝜎𝑗𝑡𝜆𝑗𝑡 
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Where  𝜕𝑃𝑡
𝑇

𝜕𝑥𝑗
 is the price sensibility of the specific bond to the 𝑗𝑡ℎ risk factor, 𝜎𝑗𝑡 is the volatility of the 

risk factor, and 𝜆𝑗𝑡 is the market price of one unit of that risk. Considering all the risk factors that 

characterize a security, the expected return at time t can be defined as the sum between the 

compensations of all the risk factors. 

The market price of risk 𝜆𝑗𝑡 is assumed to be constant in the first generation of Affine Models. A 

number of questions regarding this assumption remain to be addressed, and even though this approach 

is particularly straight forward it does not capture the shown trend of positive excess return when the 

yield curve is steep and zero or negative excess returns when the curve is flat or downward sloping 

(Rebonato, 2014).  

Convexity captures the non-linear relationship between yields and prices and might be responsible 

for the shape of the term structure for long maturities. The above mentioned non-linear effect in the 

Vasicek model is observed in the volatility of the yield, which depends quadratically on the volatility 

of the state variable and on the sensitivity term (Rebonato, 1999).  

The no-arbitrage assumption, that represents an important landmark in pricing is translated in the 

equation below, which in simple words states that the return on a security should equate the sum of 

the compensation for every source of risk (Kim & Wright, 2005).  

At this point it is important to underline that there is a trade-off regarding the type of variables (or 

factors) on which the model should depend. From one perspective, choosing variables which derive 

from macroeconomic equilibrium models surely simplifies the intuition behind the model, yet it is 

important to double-check the robustness of the macroeconomic assumptions behind them. From the 

other perspective choosing variables that come from statistical and econometric analyses, such as 

Principal Component analysis (Rebonato et al., 2014), adds opaqueness and introduces the problem 

of overparameterization (Rebonato, 2016).  

Models such as Vasicek and Cox, Ingersoll and Ross are not able to exactly fit the dynamic of the 

current yield curve, luckily other studies carried by Ho and Lee, Hull and White and Black Derman 

and Toy proposed new models that were not only able to fit the term structure, but once revisited and 

extended were also able to fit the observed volatility structure.  

Ho Lee model, from 1986, is the most straight forward and the first one able to fit the term structure 

of interest rates. Despite the intuitive nature of the Ho Lee model, there are some flaws due to its 

simplicity. In fact, the model allows a positive probability of negative interest rates because of the 

symmetrical distribution. Furthermore, it uses the empirical volatility, computed from historical 

interest rates assuming a flat volatility structure (Veronesi, 2005a). Therefore, it tends to overprice 

low maturity caps, floors and swaption and underprice long maturity ones. 
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The Hull White model, introduced in 1990, extends the Vasicek model in order to fit the term 

structure. In 1994 the same model was broadened to a two factor model, to give a better shape of the 

term structure. Unfortunately, it still allows negative values for the short rate. On the positive side, 

one can choose the parameters  𝛾∗ and σ to best fit the forward volatility structure. 

The Black, Derman and Toy (BDT)  model, introduced in 1990 as well, applies a transformation to 

the short rate defining a new variable, 𝑧𝑡 = ln⁡(𝑟𝑡). The logarithmic transformation gives the 

variable a distribution with positive skewness that changes the result of the estimate. This 

procedures gives a zero probability to negative interest rates, however assigning higher probabilities 

to high levels of interest rates and lower probability to low interest rates. 

 

3. Probability measures and forward neutral models 

Regrettably, the Fundamental Pricing Equation is not easily applicable to interest rate derivatives, 

whose pricing is the aim of this thesis. In fact, in that case both the discount factor and the payoff 

depend on the interest rate, consequently there is a positive correlation element that should be taken 

into account.  

𝑉(𝑟, 𝑡; 𝑇) = 𝔼∗ [𝑒−∫ 𝑟𝑢𝑑𝑢
𝑇
𝑡 ℎ𝑇] = 𝔼∗ [𝑒−∫ 𝑟𝑢𝑑𝑢

𝑇
𝑡 ] ∗ 𝔼∗[ℎ𝑇] + 𝑐𝑜𝑣(𝑒−∫ 𝑟𝑢𝑑𝑢

𝑇
𝑡 , ℎ𝑇) 

The change of numeraire allows a simplification of the pricing formula in this situation. The 

equivalent martingale measure result, which is fully derived in the full text of this paper, shows that 

for a given numeraire, and a particular choice of the market price of risk, the normalized price 

𝑉̃(𝑟, 𝑡; 𝑇) is a martingale for all the securities (Musiela & Rutkowski, 1997). 

The change of measure in the case of constant market price of risk is applied in the stochastic 

process of interest with a parallel shift  of the drift. The important result is that now the discount 

factor is outside the expectation operator.  

A swaption gives the option to enter into a swap contract with swap rate equal to a predetermined 

strike rate, at the exercise date. If at the exercise date the current swap rate on the market is less 

convenient (higher/lower swap rate observed on the market in case of a payer/receiver) the option 

will be exercised. Thus, the payoff value at the exercise date can be computed as the value of the 

exchange of two coupon bonds: one for the fixed leg characterized by a coupon rate equal to the 

option strike, and one for the floating leg that is at-par by definition. However to compute the present 

value of this bond is necessary to have as many discount factors as the number of payment of the 

bond. It is obvious that the final payoff of this derivative depends on multiple future LIBOR rates. 

For this reason under the T-forward risk neutral measure there is only one forward rate that is a 

martingale, while all the other rates are no more log-normally distributed. Therefore only one Forward 

rate will be driftless, with the other rates having a more complex stochastic process. 
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By choosing as numeraire the 𝑇̅-forward rate by which for every i+1 𝑇̅ < 𝑇𝑖+1 is true, that means 

choosing as numeraire the smallest of the discount factors of interest, the process followed by the 

increment of the forward rate is (Alan Brace et al., 1997): 

𝑑𝑓𝑛(𝑡, 𝑇𝑖, 𝑇𝑖+1)
𝑓𝑛(𝑡, 𝑇𝑖, 𝑇𝑖+1)

= (∑
∆𝑓𝑛(𝑡, 𝑇𝑗,𝑇𝑗+1)𝜎𝑓𝑖+1(𝑡)𝜎𝑓

𝑗+1(𝑡)
1 + ∆𝑓𝑛(𝑡, 𝑇𝑗, 𝑇𝑗+1)

𝑖

𝑗=𝑖̅

)𝑑𝑡 + 𝜎𝑓𝑖+1(𝑡)𝑑𝑋𝑡 

 

4. Volatility Structures 
Notwithstanding the fact that the above models are able to fit the term structure and consequently 

correctly price bonds, they still do not correctly price the type of interest rate derivatives that are 

being analyzed in this paper. This is due to the lack of matching with the volatility implied by market 

prices of those securities. The implied volatility is indeed the volatility implied by the dollar price, 

that if applied to the pricing formula gives back the exact same price of the market. Often derivatives 

quotes are expressed in terms of implied volatility, such as for swaption contracts. If we consider 

different caps, one for each maturity, starting from their prices we can extract with the use of the 

Black formula the implied volatility for each cap. The issue related to this specific volatility is that 

each one is able to price only a single cap because with this process it is of necessity assumed a 

different flat volatility structure for each cap. However each cap has different caplets at different 

maturities, and recalling that the price of the cap is equal to the sum of the single caplets’ prices, it is 

inconsistent to price with different volatilities two caplets with identical maturities coming from two 

different caps having different maturities. Accordingly, it is reasonable to extract from implied 

volatilities the structure of Forward volatilities so that to each point in time corresponds a volatility 

that is able to price all the caplets for that maturity. This is implemented through a bootstrapping 

procedure where the starting point is the cap with the closest maturity, whose flat volatility 

corresponds to the first step forward volatility. In the simplest application of the model, the 

instantaneous volatility was considered to be constant in each forward rate, independently of the time 

t at which that specific forward rate is observed. However, the forward volatility structure extracted 

from caplets is characterized by a bump which is not coherent with the assumption just explained. 

Furthermore, in a swaption the payoff is not only function of a single LIBOR, therefore the simplistic 

assumption previously made is not feasible anymore. Alternatively, in the application of the model 

that this paper follows there are two other assumptions to be made, for the volatility of the forward 

rate used in the final the simulation. The first assumption is that the volatility of the forward rates has 

a dependence only with the time to maturity, through a specific function 𝑆(∙). The second assumption 

is that the function is constant in each period. These assumptions give as a result a semi-linear 

volatility structure with 𝑆𝑖 being the volatility of the forward rate 𝑓𝑛(𝑡, 𝑇𝑖, 𝑇𝑖+1) (Brigo & Mercurio, 

2001b). To extract this volatility structure is sufficient to have the forward volatility structure 
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mentioned above and then apply a bootstrapping procedure. The first step of the bootstrapping is 

similar to the one already presented for Forward volatilities: 
𝑆1 = 𝜎𝑓𝐹𝑤𝑑(𝑖Δ) 

While the other steps are obtained with the following formula, assuming that 𝑡 = 0: 

𝑆𝑖 = √
1
∆(𝜎𝑓

𝐹𝑤𝑑(𝑇𝑖+1)𝑇𝑖 −∑𝑆𝑗2∆
𝑖−1

𝑗=1

) 

Yet convenient, this volatility structure has some flaws. In fact, when the Forward volatility 

declines fast the function S drops to zero by its own nature (Brigo & Mercurio, 2001b). 

 

Chapter 2: Monte Carlo methods 
 

1. Introduction to Monte Carlo methods  
The use of Monte Carlo is diffused in many field, including financial engineering. They are based on 

the mathematical intuition that the probability of an event happening is represented by the volume of 

the possible outcomes that make the event happen. Monte Carlo methods start from the volume of a 

set of outcomes to estimate the volume of the probability. In simple words, it randomly samples 

outcomes and picks up only the ones of interest (i.e.: a given set of outcomes), to interpret their 

volume as the probability of that set of outcomes. Monte Carlo simulation provides for sample paths 

that might be particularly useful in derivatives pricing where the final payoffs depends on the price 

path (e.g.: path-dependent exotic options) or in the case of American style derivatives. In continuous 

time models the dynamics are described by a differential equation. The simulation is used when the 

differential equation is not only composed by a deterministic part, but also by a stochastic one 

(Brandimarte, 2006). To simulate continuous time models a discretization method is necessary. Since 

discretization bias plays its role in the simulation estimate, the choice of a discretization method must 

be made wisely. The two most widespread methods are Euler and Milstein schemes (Frey, 2008). For 

the purposes of this analysis the simple Euler scheme will be used.  

Monte Carlo methods become particularly useful when it comes to numerical integration, it becomes 

useful or even necessary when considering high dimensional problems.  

Monte Carlo estimate of the an integral would be obtained by collecting a independent and identically 

distributed sample of points of x over the unit hypercube and computing 𝐼𝑛: 

𝐼𝑛 =
𝑉𝑜𝑙([0; 1]𝑑)

𝑛 ∑𝑓(𝑥𝑖

𝑛

𝑖=1

) 

The volume of the unit hypercube is equal to one, consequently taking the limit of the estimator for 

𝑛 → ∞ gives the following result: 
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lim
𝑛→∞

(
1
𝑛∑

𝑓(𝑥𝑖

𝑛

𝑖=1

)) = 𝐼 

When the number of simulation goes to infinity the estimator converges to the true value, the 

estimator is therefore unbiased. In the full text the thesis the criteria of choice between unbiased 

estimators is be presented, and additionally variance reduction techniques are be compared. 

To evaluate the efficiency of a model one must take into account both the variance and the 

computational time per replication of the estimator. Therefore, multiple methods were developed to 

reduce the variance of estimators in order to obtain a higher level of efficiency. The most 

straightforward method to reduce the variance of the estimator is surely by increasing the number of 

simulations. However this approach is not reasonable considering the computational efficiency of the 

algorithm. Variance reduction techniques can be classified in two main categories: the first branch 

tries to exploit tractable characteristic of the model to adjust the output; while the second one tries to 

curtail the volatility of the inputs. The most common ones, that are Control Variates method, 

Antithetic Variates method and Stratified Sampling method. 

 

2. Monte Carlo for swaption pricing 

In conclusion, Monte Carlo methods have an high level of flexibility, and their use in finance is 

necessary when considering more complex derivatives. Specifically, when considering fixed income 

derivatives the use of the simulation allows to describe the true dynamics of interest rates 

incorporating also the instantaneous correlation between the multiple rates that might be needed to 

price a more complex derivative. A correct calibration of the model in use will also give dynamics 

that are coherent with some observed market data. Monte Carlo standard error can be reduced with 

the application of variance reduction techniques.  

The next chapter will be fully dedicated to explain the implementation of the pricing algorithm for 

swaptions. Under the T-Forward-neutral measure I will generate m different realization of the k 

different Forward rates needed to compute each payoff of the option, that is the Swap expected future 

price. The following forward rates are simulated to obtain the value of the corresponding forward 

rates observed at the exercise date 𝑇𝑂, that is equal to the maturity of the forward rate chosen as 

numeraire 𝑇𝛼:  𝐹𝛼+1(𝑇𝛼), 𝐹𝛼+2(𝑇𝛼),… , 𝐹𝛽(𝑇𝛼). 

The Forward rates trajectories will follow the stochastic process implied by the LMM. Since the 

mentioned dynamics do not have a distribution that is known, it is necessary to discretize the process. 

The latter, with some algebraic manipulations, will yield an equation with deterministic diffusion 

coefficient for which Euler discretization scheme correspond to Milstein one. In this case The 

simulated forward rates will be used as input for the computation of the payoff. Each one of the m 
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simulation will lead to a different  future Swap value, and the average of their discounted prices will 

be the Monte Carlo estimate (Brigo & Mercurio, 2001b).  

 

Chapter 3: Swaption pricing 
 

1. European Swaptions and their use 
A swaption contract is a contract that gives its buyer the right to enter the underlying Swap with a 

given strike swap rate at the exercise date. The underlying contract can be a payer or a receiver Swap, 

that is a swap that pays or receive the fixed swap rate against a floating rate determined at the previous 

payment date depending on the reset frequency. The floating rate is determined in the contract and 

can be indexed to one of the most famous benchmark rates, such as LIBOR, EURIBOR and EONIA 

rates. Due to recent European regulation, a transition to new risk free indices is taking place. The new 

risk free benchmark to be used for the Eurozone is defined in Regulation (EU) 2016/1011 and it is 

called ESTER, European Short Term Rate. Therefore, the old rates are no more compliant with new 

regulations and all the entities exposed to those rate must transition to the new ones (Zaegel et al., 

2019).  Swaption contracts are useful instruments of insurance and hedging against any interest rates 

rise or fall (Akume et al., 2003). For instance, the issuer of a floating rate bond might want to be 

protected against a rise in interest rates in the future. She can buy a payer swaption with strike rate 

𝑟𝐾, that will be the swap rate to be payed if the option is exercised. If at the exercise date the interest 

rates are higher and, consequently, the swap strike rate is lower than the current swap rate implied by 

current market condition, then the option can be exercised. The gain will be equal  to the difference 

between the two swap rates: the strike and the current swap rate.  

In the same manner a swaption can be useful to an investor of a callable security. In fact, with this 

type of instrument in case of a fall in interest rates the issuer will be able to obtain funding at cheaper 

rates, and for this reason will call back the security. The investor would receive her capital earlier 

than maturity with the possibility to reinvest the capital at the current market conditions, namely 

lower rates. To hedge this risk the investor can buy a receiver swaption to exercise in case interest 

rates drop. Thus, the investor will receive the fixed strike rate and pay a floating rate, that can be 

offset by reinvesting the capital received at the floating rate.  

The option that will be priced in this analysis is a receiver swaption with floating rate equal to the 

LIBOR rate. The valuation date is the 1st of September 2020, the exercise date is in one year, the 

underlying Swap tenor, i.e. the length of the swap contract, is four years and the contract has a semi-

annual reset frequency. The analysis will be conducted on different parameters of the strike swap rate. 

For the sake of pricing the number of forward rates to simulate is eight. The next paragraph will 
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highlight the reason behind the choice of the model used to simulate and the difference between the 

use of different models. 

 

2. The choice of the model 
The LIBOR Market Model was introduced at the end of the first chapter, and it is built around the 

change in the probability measure. The use of the T-Forward rate as numeraire allows to characterize 

the process of forward LIBOR rates. The Swap Market Model instead uses a different numeraire, that 

is equal to the sum of multiple discount factors, so that it is possible to characterize the process of 

forward Swap rates (Veronesi, 2005a). Short Rates Models introduced in the first chapter describe 

the instantaneous interest rate through the definition of a diffusion process, the latter stochastic 

process explains the evolution of the yield curve and gives as outcome an analytical formula for 

forward LIBOR rates. The interest rates derivatives can be priced using these inputs and computing 

a risk neutral expectation, assuming a deterministic discount factor equal to de ZCB price. This last 

assumption generates inconsistencies in the pricing process. Those inconsistencies can be solved with 

the use of a different probability measure instead of the traditional risk neutral one.  

The main advantage of Market Models introduction is that, unlike Short Rate models, they are 

compatible with the widespread Black’s market formula. In fact, LMM can correctly price caps and 

SMM can correctly price swaptions consistently with the corresponding Black’s formulas. 

However, LMM is only compatible with a part of interest rates derivatives market, that includes caps, 

while SMM is compatible with the other part, that is made by swaptions. The incompatibility of the 

two models forces to choose one of the two for the entire market of interest rates derivatives, because 

a joint lognormal assumption would be inconsistent. Forward rates are considered to be  more 

explanatory about the yield curve, and taking into account the fact that the LIBOR Market model is 

easier to handle from an mathematical point of view it is more smooth to use the numeraire implied 

by the LMM also for swaption market instead of doing the opposite (A. Brace et al., 1998). The 

stochastic process derived for this implementation relies on a basic assumption regarding the structure 

of instantaneous correlations on which the model is calibrated, that allows to simplify the more 

generic process of the LIBOR Market Model.  

 

3. Model Calibration 
The specific discretized process that will be used to simulate the trajectories of the forward rates was 

explained in the first chapter of this summary and its derivation is explained in the full text of the 

thesis, while now I will focus solely on the steps needed to be able to simulate those trajectories. 

First and foremost, as clarified in the previous paragraph, the model matches the Black’s formula for 

caps, and the implied volatilities in the  market prices of those caps will be the input of the model. 
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Therefore, the calibration to  caps and floors volatility surface is straightforward. The quotes semi-

annual for at-the-money caps on LIBOR with six months to six years maturity were extracted from 

Thomson Reuters in terms of implied volatilities. To obtain the corresponding dollar price it was used 

as an input the quoted implied volatility in the Black’s closed formula for caps. Additionally, the 

latter formula requires LIBOR based discount factors to be implemented. 

Therefore, LIBOR rates corresponding to discrete points in time were retrieved from Bloomberg, and 

the transition to continuous time LIBOR based yield curve required a Cubic Spline Interpolation, that 

is one of the most widespread method. The result obtained is showed in the figure 2  of the full text. 

Once those input for the Black formula were defined, a function to extract dollar prices of at the 

money caps was constructed in Python and with the use of a stripping algorithm the forward volatility 

structure was extracted. The forward volatility structure can be used to compute the volatility structure 

that is the input of this model, that was explained at the end of chapter 1.  

In the full text is shown a graphical comparison between the three different volatility structure 

obtained, flat volatilities extracted from at-the-money caps, forward volatilities and volatilities of the 

forward rates. When the flat volatility is upward shaped the forward volatility curve lies above the 

former, and in the same way the semi-linear volatilities S will be above the forward volatility curve.  

 

4. Model implementation and results interpretation 
To implement the pricing algorithm I started with the LMM equation, deriving the discretized process 

to which the simulation should be applied. The key step of the algorithm is to simulate random shocks, 

𝜀𝑡~𝑁(0,1)  to be used in place of the Brownian increment of the stochastic process. The following 

scheme, derived with a logarithmic transformation, is the discretized implementation of equation 3.3. 

𝑓𝑛𝑚(𝑡 + 𝛿, 𝑇𝑖, 𝑇𝑖+1) = 𝑓𝑛𝑚(𝑡, 𝑇𝑖, 𝑇𝑖+1)𝑒𝜇𝑖+1
𝑚 (𝑡)𝛿+𝑆(𝑇𝑖−1−𝑡)√𝛿𝜀𝑡 

Where the drift 𝜇 is equal to: 

𝜇𝑖+1𝑚 (𝑡) =∑
∆𝑓𝑛𝑚(𝑡, 𝑇𝑗, 𝑇𝑗+1)𝑆(𝑇𝑖+1 − 𝑡)𝑆(𝑇𝑗+1 − 𝑡)

1 + ∆𝑓𝑛𝑚(𝑡, 𝑇𝑗, 𝑇𝑗+1)

𝑖

𝑗=𝑖̅

−
1
2
𝑆(𝑇𝑖+1 − 𝑡)2 

Where m indicates the specific simulation number of which the equations refer. I simulated ten 

thousand trajectories of the eight forward rates needed to price a swaption with exercise date the 1st 

of September 2021, which gives the right to enter in a receiver swap with 4 years tenor. The simulated 

forward rates will then be used to compute the corresponding discount factors with the following 

formula, where M is the maturity date of the underlying swap and 𝑂 = 𝑖 ̅is the exercise date. 

𝑍(𝑇𝑜,𝑇𝑀) =
1

1 + ∆𝑟𝑛(𝑇𝑖̅, 𝑇𝑖̅+1)
∙

1
1 + ∆𝑓𝑛(𝑇𝑖̅, 𝑇𝑖̅+1, 𝑇𝑖̅+2)

∙ …
1

1 + ∆𝑓𝑛(𝑇𝑖̅, 𝑇𝑖̅+𝑚−1, 𝑇𝑖̅𝑚)
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Each simulation was run through 252 steps, which is the notation for actual days in one year. The 

drift 𝜇 changes every step and for each one of the eight forward rates, retrieving a 252 rows and 8 

columns matrix of drifts per each of the ten thousand simulations. The following sample graph shows 

the 888-th simultaneous simulation of the forward rates.  

 
The assumption of perfect correlation can be easily spotted observing the movements of the 

trajectories of the forward rates.  

Once the forward rates trajectories are estimated, the future swap price can be computed. Afterwards, 

is the maximum between the price and zero is estimated computing ten thousand different payoff. 

The last step consists in computing Monte Carlo estimator by discounting and computing an average 

of all the different payoffs, as follows. 

𝑉̂𝑆𝑤𝑎𝑝𝑡𝑖𝑜𝑛 =
1

10000 ∑ 𝑍(0,1)𝑃𝑎𝑦𝑜𝑓𝑓1⁡𝑦𝑒𝑎𝑟𝑖
10000

𝑖=1

 

Where, 

𝑃𝑎𝑦𝑜𝑓𝑓1𝑦𝑒𝑎𝑟𝑖 = max(∑Δ𝑟𝐾𝑍(1,0.5(𝑗 + 1))
𝑚

𝑗=2

+ 𝑍(1,𝑚) − 1; 0) 

 

The prices of the European Swaptions with maturity 1 year were computed for different strike levels 

and different tenors, as it is illustrated below. 

 
To analyze in deep the obtained estimator I computed its variance, using the  sample variance formula. 

The result confirm that the variance of the estimator is significantly high, especially for high tenor 
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levels and high strike levels. In order to reduce the variance it is possible to  apply one of the variance 

reduction techniques mentioned in the previous chapter. Estimator variances had been plotted in a 3-

D graph (in the full text of this thesis) to show the relation with the parameters considered, which are 

tenor and strike. Last but not least, to validate the solution given by the model I compared the values 

of ATM swaptions quoted on the market with the corresponding swaptions priced by the implemented 

model. Since swaptions are quoted on the market through Black’s implied volatilities I extracted the 

dollar price by applying the Black formula (Monoyios & Hambly, 2017). The obtained results of the 

comparison are shown in Figure 10. The exercise date of the option is one year from the valuation 

date which is 1st of September 2020. It is possible to see that for higher tenors the distance between 

the values increases, which means that the precision of the model decreases. The root mean squared 

error of the model is equal to 77613.19€. It must be underlined that the model tends to underprice the 

derivative for every tenor, and this might be due to a lack of convergence between the LMM and the 

SMM, since the model implemented is calibrated on Cap volatilities. 

 

5. Modern pricing techniques in the global markets’ landscape 

Structured products started to be transacted in the UK in the early 90s, and at the time those banks 

who had the chance to develop the most sophisticated mathematical models for pricing and 

structuring those products were one step ahead in the industry (Walker & Keohane, 2020). 

Derivatives had been used for hedging and speculation purposes and since then this market grew 24% 

per year on average, reaching €457 trillion of notional outstanding in 2008 (Mai, 2008). The crash of 

2008 moved the markets in one negative direction, creating a feeling of distrust towards the 

derivatives and structured instruments markets. After the crisis, the spread and use of data science 

and machine learning techniques has given a significant turn to the reality of the financial markets, 

bringing the trading of these products towards increasingly sophisticated and automated processes 

(Dizard, 2019). In this context market models and the use of Monte Carlo simulation represented one 

of the most important steps given their ability to take into account current market variables such as 
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the term structure and the implied volatilities quoted on the market for some specific instruments. It 

is known that the slope of the volatility and term structures are together good indicators of 

macroeconomic conditions and compensation for volatilities at specific maturities. The 

implementation of the model was showed and its accuracy was demonstrated in the previous 

paragraph. With some extensions the results obtained from the model can be used in multiple ways. 

In fact, fixed income derivatives by definition are highly connected with interest rates and 

consequently strongly influenced by monetary policy. This characteristic makes them good 

candidates to be used to interpret market sentiment and expectations with respect to macroeconomic 

news and business cycles (Fang et al., 2007). Swaptions together with Caps are among the most liquid 

derivatives of this category, and they are available on a broad range of interest rates. Now there are 

new challenges for fixed income derivatives’ pricing models, which are related to recent market 

changes. The first will be the transition to new European risk free benchmarks (Jones & Stafford, 

2020). In fact, as new regulation is imposing new characteristics on these rates . Secondly, with the 

coronavirus outbreak many central banks implemented or started to consider a negative interest rates 

policy (Kochkodin, 2020). NIRP is known to be a good stimulus for the economy allowing for the 

propagation of monetary accommodation through the whole yield curve and avoiding  further 

downward pressure on the term premium (Schnabel, 2020). However, from the perspective of fixed 

income derivative prices negative interest rates policy means that Black formula, used to quote 

securities in term of implied volatility, is no longer applicable. 

 

Conclusions 
 
The objective of this research was to implement an algorithm to price European Swaption taking into 

account current values of volatility and term structures. Thanks to the change of the probability 

measure it was possible to overcome the problems related to the correlation between payoffs and the 

discount factors, and the inconsistent assumption of a deterministic discount factor under the 

traditional risk-neutral measure. The adoption of the T-forward measure opens a range of possibilities 

concerning the use of Market Models. The latter models, unlike Short Rate models, are compatible 

with the distribution implied by Black’s formula, and can therefore be calibrated both on the term 

structure and on caps and swaptions prices quoted on the market. LIBOR Market Model and Swap 

Market Model and the inconsistency of their simultaneous use forced us to choose one model for the 

whole interest rates derivatives market. The evidence extracted from previous studies showed the 

convenience in adopting the LIBOR Market Model because of its mathematical tractability and the 

intuition in using forward rates to explain the term structure. 
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Furthermore, thanks to the adoption of Monte Carlo methods, the true dynamics of interest rates can 

be simulated including an instantaneous correlation structure between the multiple rates, that is 

needed when pricing more complex derivatives like swaptions.  

After an appropriate calibration of the input parameters on the current market conditions of term and 

volatility structures, the implementation of the algorithm generated ten thousand trajectories per each 

simulation of the different forward rates, needed to price swaptions with different tenors. The 

swaption analyzed had a maturity of one year and the price was computed for different values of the 

tenor, with the need to generate up to 8 rates simultaneously.  

The swaption price estimator was computed for different strike rates and tenors, and the variance of 

the estimator was investigated, observing an increase for higher values of tenor and strike rate. 

To validate the model the obtained prices for at-the-money swaptions were compared with quoted 

prices of the corresponding swaptions. The validation showed the accuracy of the model and its 

implementation, and the Mean Squared Error was computed giving a satisfactory result that is 

illustrated. From the comparison of obtained and quoted prices, it can be observed that the model tend 

to slightly underprice the swaption for every tenor, and when the tenor increases the amount of the 

underpricing increases as well. This might be due to a lack of convergence between the LIBOR 

Market Model and the Swap Market Model, a matter of internal coherence which finds its roots in 

the calibration on caps’ volatilities. 

Moreover, the model presents some limitations related to the assumption of a perfect correlation 

between the different forward rates. In fact, each simulation was performed using the same random 

numbers in place of the Brownian increments, which implies a perfect correlation between the 

different rates, that are subject to the same random shocks. This simplification was fundamental to 

avoid the need to derive an instantaneous correlation structure on which the model should have been 

further calibrated. The complexity in defining such a structure represents one of the different 

directions in which the implementation can be extended. 

For further exploration of the topic, the analysis could be also carried out for a Bermudian or 

American swaption with the possibility of early exercise, using the Longstaff-Schwartz algorithm and 

Least Squares Monte Carlo method.  

The current landscape of global markets introduces new challenges for pricing algorithms concerning 

the input term structure, which is globally going towards strong reductions of interest rates, that are 

very close to zero or negative.  Furthermore, the transition to the new European risk-free benchmarks 

represents another challenge for interest-rate derivatives market. Given the strong connection, 

explained in the last chapter, between those instruments and interest rate risks, monetary policy, and 

business cycles, the centrality of modern pricing models that are able to adapt to rapid changes is 

undoubted. 
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