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1 Introduction 
 
The uncertainty of asset returns has for a long time captured the attention of investors and 
academic researchers. Estimation, modeling and forecasting of financial volatility are of 
crucial importance in many fields of finance; including asset pricing, risk management, 
hedging, portfolio management and asset allocation. However, the main issue is that 
volatility is not directly observable. Early research extracted volatility estimates from asset 
return data before specifying a parametric time-series model for volatility. For example, 
Officer (1973) used a rolling standard deviation to estimate volatility at each point in time 
while German and Klass (1980) and Parkinson (1980) made use of the difference between 
the high and low prices on a given day, implicitly assuming that volatility is constant over 
some interval of time. Nevertheless, it is inconsistent and statistically inefficient to use 
volatility measures based on the assumption of constant volatility. The solution to this 
problem is to use parametric models to estimates volatility from returns, such as 
Autoregressive Conditional Heteroskedasticity (ARCH) and Generalized Autoregressive 
Conditional Heteroskedasticity (GARCH) proposed respectively by Engle (1982) and 
Bollerslev (1986). However, returns distribution shows fat tails, tail crossover, scaling and 
multiscaling1 all features that the standard GARCH models and, more in general, short-
memory processes are not able to reproduce. Motivated by this, a growing interest in long-
memory processes has emerged. Long-memory volatility is usually obtained by employing 
fractional difference operators as in FIGARCH models of returns or ARFIMA models of 
realized volatility, nonetheless the fractional integration is a convenient mathematical trick 
without a clear economic interpretation. To overcome this, Corsi (2009) proposed the 
Heterogenous Autoregressive model of Realized Volatility (HAR-RV), a simple model able 
to reproduce the main empirical features observed in the data while remaining 
parsimonious and easy to estimate. The model is inspired by the Heterogenous Market 
Hypothesis presented by Muller et al. (1993) which recognizes the presence of different 
heterogeneity in behavior across traders. Each agent is responsible for a different type of 
volatility in the market, and that leads to the so-called volatility cascade.  
 
The main aim of the thesis is to model and forecast the realized variance of the S&P 500 
Index, iShares China Large-Cap ETF and Apple Inc on four different forecast horizons: one 
day, one week, two weeks and one month. Furthermore, to assess whether one (or more) of 
the models considered in the thesis manages to outperform the other, or if it is possible to 

 
1 Different scaling exponents for different powers 
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find a file rouge that connects the forecasting performance of the models for the three times 
series. The starting model which is none other than the basis of all the other models included 
in the thesis, is the HAR-RV proposed by Corsi (2009). The HAR-RV is estimated with the 
use of a linear regression, this allows a simple integration with new exogenous variables. 
The total number of models used is 13. The evaluation of the prediction is carried out by 
several comparison methodologies starting from the point forecast comparison, both from an 
individual and simultaneous point of view, and density forecast comparison represented by 
the Berkowitz (2001) test. Once we find the best forecasts, on the different time horizons, we 
use the one month-ahead prediction in order to compute the Variance Risk Premium which 
is the difference between option implied volatility and realized variance. Therefore, 
motivated by the work of Bollerslev, Tauchen and Zhou (2009), we use the VRP to predict 
the returns of the three financial instruments considered.  
 
From the results of the empirical Chapters, it is evident that utilizing more complex models, 
with respect to the parsimonious HAR-RV, leads to an increase in forecasting performance 
especially on longer time horizons. In particular, we will see that the decomposition of the 
realized variance into continuous and jumps components will be of fundamental 
importance, especially in one month-ahead forecast. For comparison purpose, all the results, 
both in-sample and out-of-sample, are compared to the commonly used random walk 
model. Here, we will see that the more complex model always outperforms the benchmark. 
The second finding in this thesis is relative to the returns prediction, deriving from the use 
of the Variance Risk Premium. We will see that the VRP which originated from the finest 
one month-ahead forecasting models will get a superior returns prediction respect to the 
one deriving from the random walk model. 
 
In particular, the second Chapter is dedicated to the theoretical background of realized 
variance with  significant focus on its decomposition in continuous and jumps component 
using the threshold bipower variation proposed by Corsi, Pirino and Renò (2010). The third 
Chapter, is focused on the theoretical analysis of the 13 forecasting models, starting from 
the basic HAR-RV to more complex models such as HAR-RV-LCJ, HAR-CJ and HAR-Q-F, 
while the last part of the Chapter is dedicated to the forecasting comparison. However, the 
most significant Chapters of the thesis are the fourth and fifth. In Chapter 4 we will see the 
empirical forecast of realized variance for the S&P 500 Index, iShares China Large-Cap ETF 
and Apple Inc stock. All data is downloaded from barchart.com and includes more than 
half a million observations. The fifth Chapter, is dedicated to the Variance Risk Premium 
analysis and to returns prediction. This last analysis is conducted both including and 
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excluding the recent economic and health pandemic crisis related to the spread of Covid-19 
at the end of February 2020. The last Chapter deals with the conclusions drawn from the 
empirical analysis.   
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2 Measuring Volatility 
 
Since the beginning of the 21st century, with the increasing availability of data and the 
recognition that higher frequency intraday data is much more informative compared to 
longer horizon, many authors contributed to the study of the so called quadratic variation 
and its estimator, the realized variance; notably Andersen, Bollerslev, Diebold and Labys 
(2001, 2003), Barndorff-Nielsen and Shephard (2001, 2002a, 2004) and Andersen, Bollerslev 
and X-Huang (2010). Using high frequency data is possible to embed more information than 
using the canonical open-to-close returns. Figure 1 depicted the intraday price movements 
of the S&P 500 Index2 on 08/04/2015 and 14/02/2020. For both days the open-to-close 
return was zero so that simply squaring the daily return cannot measure the volatility that 
occurred intraday. 
 

 
The Chapter is therefore dedicated to the theoretical and essential background of the non-
parametric measure of daily return variability called realized variance which is computed 
using high-frequency intraday data. After that we are going to break down the realized 
variance into continuous and jumps component through the method proposed by Corsi, 
Pirino and Renò (2010) This will be of fundamental importance in the empirical applications 

 
2 All data are downloaded from Barchart.com. For more information about S&P 500 Index see paragraph 4.1 
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in Chapter 4 and 5 where we will see that the models that use it will obtain significant 
forecast improvement. 
 
2.1 Logarithmic price process and quadratic variation 
 

Let us begin with an univariate logarithmic price process of an asset as 𝑝" (𝑝" = ln𝑃"	, where 

𝑃" denotes the price of process of an asset) on a probability space (Ω, ℱ, 𝑃) evolving over a 

continuous time interval [0, 𝑇] where 𝑇 denotes a positive integer. We further consider an 

information filtration denoted as 𝜎– 𝑓𝑖𝑒𝑙𝑑 (ℱ")"∈[9,:] 	⊆ 	ℱwhich satisfies the usual condition 

of 𝑃– completeness and right continuity. We also assume that the information set ℱ" 

contains the asset prices and relevant state variables through time 𝑡. 
 

Definition 2.1. The continuous compounded return over the time interval  [𝑡 − ℎ, 𝑡] where 

0 ≤ ℎ ≤ 𝑡 ≤ 𝑇 is the difference between the logarithmic price a time 𝑡 and the logarithmic 

price at time 𝑡 − ℎ: 
 

 𝑟",A = 𝑝" − 𝑝"BA (2.1) 
 

For the case of cumulative return up to time 𝑡, the return over the [0, 𝑡] time interval is: 
 

 𝑟" = 𝑟"," = 𝑝" − 𝑝9 (2.2) 
 
Using equation (1.1) and equation (1.2) it is possible to define the relationship between the 
period-by-period return and the cumulative returns: 
 

 𝑟",A = 𝑟" − 𝑟"BA (2.3) 
 

A maintained assumption is that the price process is strictly positive and finite so that 𝑝" 

and 𝑟" are well defined over [0, 𝑇]. It follows that the 𝑟" only has countable jump points over 

[0, 𝑇]  and the price and return processes are squared integrable. Let us define 𝑟"B =

logE→",EG" 𝑟"  and 𝑟"H = logE→",EI"H 𝑟" . In particular, 𝑟" = 𝑟"H determines the right-continuous 

left-limit (càdlàg) of the process, while 𝑟" = 𝑟"B	determines the left-continuous right-limit 

(càglàd) for all 𝑡 in [0, 𝑇]. In the following, we assume to work with a càdlàg version of the 

return process. We set the jumps in the return process as: ∆KL= 𝑟" − 𝑟"B , 0 ≤ 𝑡 ≤ 𝑇. We have 

at continuity points ∆KL= 0 and  𝑃M∆KL≠ 0O = 0 with 𝑡 ∈ [0, 𝑇]. This means that there is a 



 6 

countable number of jumps in the price process without a set frequency. Jump processes 
that do not explode are called regular. Following Back (1991) and applying the standard 
assumption of no arbitrage and finite-expected return we have that the log-price process 
must constitute a semimartingale, a process that is composed by a local martingale and a 
càdlàg adapted locally bounded process. This affords the following unique canonical return 
decomposition (Protter, 1992). 
 
Proposition 2.1. Any arbitrage-free logarithmic price process subject to the regularity conditions 
outlined above may be uniquely represented as: 
 

 𝑟" ≡ 𝑝" − 𝑝9 = 𝜇" + 𝑀" = 𝜇" + 𝑀"
T + 𝑀"

U (2.4) 
 

Where 𝜇"  is a predictable and finite-variation process, 𝑀"  is a local martingale that is further 

decomposed into a continuous sample path 𝑀"
T and a compensated jump martingale 𝑀"

U. We may 

normalized the initial conditions such that 𝜇9 ≡ 𝑀9 ≡ 𝑀9
T ≡ 𝑀9

U ≡ 0 

It is convenient to decompose the expected return process, 𝜇" , into a purely continuous 

predictable finite-variation part, 𝜇"T, and a purely predictable jump part, 𝜇"
U. There can not 

be a perfectly anticipated jump in terms of time and size in the mean unless it is 

accompanied by large jump innovation risk as well, so that 𝑃[∆𝑀" ≠ 0] > 0 in order to 
overturn the possible gain form the predictable jump. According to Andersen et al. (2010) 
most of the continuous-time asset pricing literature ignores predictable jumps, rather than 
modifying the standard setup to allow for the presence of predictable (but empirically 
negligible) jumps, we assume away such jumps. 
 
We also express the price changes and associated return in proposition 2.1 over a discrete 
time interval and not in continuous-time integral representation. This is due to the fact that 
the real-time price data are not available at every instant and to the presence of market 
microstructures noise3. Consequently we focus on measures that represent the (average) 
volatility over a discrete time interval. This suggests the natural and general notion of 
volatility based on the quadratic variation process for the local martingale component in the 
unique semi-martingale return decomposition.  
 

 
3 For more details on the market microstructure noise and the approach used in the thesis see paragraph 2.2.1 
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Definition 2.2. Let 𝑟" be a semi-martingale process. The unique quadratic variation process, 

[𝑟, 𝑟]", 𝑡 ∈ [0, 𝑇], associated with 𝑟" is formally defined as: 
 

 [𝑟, 𝑟]" = 𝑟"X − 2Z 𝑟[B𝑑𝑠
"

9
 (2.5) 

 

where the stochastic integral of the adapted càglàd process, 𝑟[B, with respect to the càdlàg 

semi-martingale, 𝑟[, is well defined.  
 
Following Andersen et al. (2003), in the theory of quadratic variation we can identify two 
key points: 
 

i. Proposition 2.2. For an increasing sequence of random partitions of [0, 𝑇], 0 = 𝜏^,9 ≤ 𝜏^,_ ≤

𝜏^,X ≤ ⋯ ≤ 𝜏^,^ = 𝑇 such that 𝑠𝑢𝑝bc_(𝜏^,bH_ − 𝜏^,b) → 0 and 𝑠𝑢𝑝bc_𝜏^,b → 𝑇 for 𝑚 → ∞ 

with probability one, we have that 
 

 lim
^→h

iΣbc_ k𝑟l𝑡 ∧ 𝜏^,bn − 𝑟l𝑡 ∧ 𝜏^,bB_no
X
p → [𝑟, 𝑟]" (2.6) 

 

where 𝑡 ∧ 𝜏 ≡ 𝑚𝑖𝑛(𝑡, 𝜏) , 𝑡 ∈ [0, 𝑇], and the convergence is uniform on [0, 𝑇] in probability. 
 
Intuitively, the proposition 2.2 state that the quadratic variation process represents the 

(cumulative) realized sample-path variability of 𝑟" over the time interval [0, 𝑇].   
 
ii. Under the maintained assumption of no predictable jumps in the returns process we 

also have 
 

 [𝑟, 𝑟]" − [𝑟, 𝑟]"BA = [𝑀T,𝑀T]" − [𝑀T,𝑀T]"BA + r ∆𝑟X(𝑠)
"BAG[s"

 (2.7) 

 
The first property suggests that we may approximate the quadratic variation by cumulating 
high frequency return. The measures computed in this way are generally known as realized 
variance. While the second property reflects the fact that the quadratic variation of 

continuous finite-variation process, 𝜇"T, is zero, the mean component becomes irrelevant.   
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In theoretical asset and derivatives pricing literature it is frequently assumed that the 
sample paths are continuous with the corresponding diffusion process given in the form of 
stochastic differential equations rather than through (abstract) integral representations for 
continuous sample path semi-martingale. However, the previous assumption can be made 
using the martingale Representation Theorem (Protter (1992)) without loss of generality. 
 
Proposition 2.3. For any univariate, square-integrable, continuous sample path, logarithmic price 

process, which is not locally riskless, there exists a representation such that for all 0 ≤ 𝑡 ≤ 𝑇: 
 

 𝑟",A = 𝜇",A + 𝑀",A = Z 𝜇[𝑑𝑠 + Z 𝜎[𝑑𝑊[
"

"BA

"

"BA
 (2.8) 

 

where 𝜇[ is an integrable, predictable, and finite-variation stochastic process, 𝜎[ is a strictly positive 
càdlàg stochastic process satisfying 
 

 𝑃 uZ 𝜎[X𝑑𝑠 < ∞
"

"BA
w = 1 (2.9) 

 

and 𝑊[ is a standard Brownian motion.  
 
Let’s now introduce a standard continuous time process which defines a very general class 
of stochastic volatility model. The model has the following form: 
 

 𝑑𝑝" = 𝜇"𝑑𝑡 +	𝜎"𝑑𝑊" (2.10) 
 

where 𝑝" is the logarithm of instantaneous price, 𝜇" is a càdlàg finite variation process, 𝑊" 

is a standard Brownian motion and 𝜎" is a stochastic process independent of 𝑊". For this 

process the quadratic variation over [𝑡 − ℎ, ℎ] is 
 

 𝑄𝑉",A = Z 𝜎[X𝑑𝑠
"

"BA
 (2.11) 

 
 
In this setting the quadratic variation and the integrated variance coincide. This is no longer 
true for more general return processes such as stochastic volatility jump-diffusion model 
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where the quadratic variation is the sum of the integrated variance and a jump component, 
we come back later to this model. For the time being we consider: 
 

 𝐼𝑉",A = 𝑄𝑉",A = Z 𝜎[X𝑑𝑠
"

"BA
 (2.12) 

 
2.2 Realized Variance 
 
With the disposal of high frequency data it is possible to estimate quadratic variation using 
the realized variance. The idea of using return realizations for the measurement of return 
variation comes from not so recent times. (Summers (1986), French et al (1987) etc.). 
Following the work of Andersen et al. (2003) is possible to define the realized volatility. 
 

Definition 2.3. The realized volatility over [𝑡 − ℎ, 𝑡], for 0 < ℎ ≤ 𝑡 ≤ 𝑇, is defined by 
 

 𝑅𝑉",A = r𝑟
"BAHk}~oA,

A
~

X
~

}�_

 (2.13) 

 
The realized volatility is simply the second (uncentered) sample moment of the return 

process over a fixed interval of length ℎ , scaled by the number of observations 𝑛 

(corresponding to the sampling frequency 1/	𝑛) provides a volatility measure calibrated to 

the ℎ– period  measurement interval. If there are no jumps in prices and no market 
microstructure noise4, the realized variance provides a consistent nonparametric measure 
of the variance of the return process. The theoretical property of realized volatility has been 
discussed in a number of studies including Andersen and Bollerslev (1998a), Andersen et al. 
(2001b, 2003a), and Barndorff-Nielsen and Shephard (2001, 2002a,b).  
 

Proposition 2.4. If the return process is square-integrable and 𝜇" ≡ 0, then for any value of 𝑛 ≥ 1 

and ℎ > 0, 
 

 𝐸M𝑅𝑉����",A�ℱ"BAO = 𝐸M𝑀",A
X �ℱ"BAO = 𝐸M𝑅𝑉",A�ℱ"BAO (2.14) 

 

where ex-post realized volatility, 𝑅𝑉",A, is an unbiased estimator for the ex-ante expected volatility, 

𝑅𝑉����",A. 

 
4 For more details on the market microstructure noise and the approach used in the thesis see paragraph 2.2.1 
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Proposition 2.5. The realized variance converge uniformly in probability to the variance of the 
returns process  
 

 𝑝𝑙𝑖𝑚~→h𝑅𝑉",A	= 𝑅𝑉����",A (2.15) 
 
 
Intuitively, the last proposition implied that the realized variance is a consistent 

(nonparametric) estimator of variance over any time interval [𝑡 − ℎ, 𝑡] , ℎ > 0 . Figure 2 
shows the realized variance for S&P 500 Index computed using 78, 5-minutes returns 
interval, taking into account the trading hour from 9:00:00 to 16:30:00, from 24/04/2009 to 
30/10/2020. 
 

 
                      Figure 2: S&P 500 – Realized variance 

 
With no market microstructure noise the asymptotic distribution of realized variance is 
derived by Barndorff-Nielsen et. al. (2002) as: 
 

 √𝑁
1

�2𝐼𝑄"
(𝑅𝑉����",A − 𝑅𝑉",A) → 𝑁(0,1) (2.16) 

It implies that: 
 

 √𝑁(𝑅𝑉����",A − 𝑅𝑉",A) → 𝑁(0,2𝐼𝑄") (2.17) 
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where 𝐼𝑄" is the integrated quarticity, defined as: 
 

 𝐼𝑄" = Z 𝜎[�𝑑𝑠
"

"B_

 (2.18) 

 

The authors further showed that the integrated quarticity (𝐼𝑄") is consistently estimated by 

the realized quarticity (𝑅𝑄"), defined as 
 

 𝑅𝑄" =
𝑛
3r𝑟",b�

~

b�_

 (2.19) 

 
 
2.2.1 Microstructure Noise  
 
As we have seen in the first lines of the Chapter, the use of high frequency data allows us to 
embed more information in the computation of the realized variance. In addition, if the data 
is not affected by market microstructure noise, the average sum of squares of log returns 
sampled at high frequency would estimate the returns variance. In practice, however, the 
microstructure noise present in high frequency data leads to non-robust realized variance 
estimates (Andersen et al.2000). As a result of the presence of noise, realized variance of log-
price data has been shown to explode as the sampling interval approaches zero (Zhang et 
al. 2005). Noise is attributed to market imperfections and includes price discretization, bid 
ask bounce effects, as well as high frequency quoting. A common solution to deal with the 
bias arising from the market microstructure noise is the choice of an interval between 5 and 
30 minutes (e.g., Andersen et al. (2001), Barndorff-Nielsen et al. (2002), Andersen et al. (2003), 
Bollerslev et al. (2015)). This thesis utilizes  interval of 5 minutes.  
 
 
2.3 Jumps 
 
One interesting implementation concerns the addition of jumps component in the quadratic 
variation. Let’s introduce the jump-diffusion model which defines a very general class of 
stochastic volatility model. The model has the following form: 
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 𝑑𝑝" = 𝜇"𝑑𝑡 +	𝜎"𝑑𝑊" + 𝜉"𝑑𝑞" (2.20) 
 

where 𝑞" denotes a Poisson process, uncorrelated with the Brownian motion 𝑊", governed 

by 𝜆–constant jump intensity. 𝜉"  is responsible for the magnitude of the jumps, and is 

normally distributed, 𝜉" ~𝑁(𝜉,̅ 𝜎�X). We characterized (2.20) as a Brownian semimartingale 

process with finite jump. The quadratic variation over [𝑡 − ℎ, 𝑡] is: 
 

 𝑄𝑉",A = Z 𝜎[X𝑑𝑠 + r 𝐽[X
"BAG[s"

"

"BA
 (2.21) 

 
where the first component on the right is the integrated variance and the second component 
is the jump variations. In this section, our goal, is to separate the realized variance into 

continuous and jumps components (for simplicity 𝑅𝑉",A = 𝑅𝑉") 
 

 𝑅𝑉" = 𝐶" + 𝐽" (2.22) 
 
A solution was proposed by Barndorff-Nielsen et al. (2004a; 2006). They used a special case 
of multipower variation, called bipower variation, constructed from the summation of 
appropriately scaled cross-products of adjected high-frequency absolute return in order to 
measure the Integrated Variation. 
 

Definition 2.4. The multipower (𝑀𝑃𝑉") is 
 

 𝑀𝑃𝑉"
[�_,…,��] = 𝛿_B

_
X(�_,…,��)r�|𝑟",bB�H_|

�

��_

~

b��

 (2.23) 

 

Where 𝛿 is the subinterval length on which the M intraday returns 𝑟",b are calculated. As 

𝛿 → 0, 𝑀𝑉𝑃" converges to ∫ 𝜎_B
�
�(�_,…,��)(𝑠)𝑑𝑠"

9 . We can define a special case of multipower 

variation according to the choices of the vector 𝛾1,… , 𝛾𝐿 . An example is the bipower 
variation: 
 

 𝐵𝑃𝑉" = 𝜇_BX𝑀𝑉𝑃"
[_,_] = 𝜇_BXr�𝑟",b��𝑟",bB_�

~

b�X

 

 
(2.24) 
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where 𝜇_ = �2/𝜋 ≈ 0,7979. The 𝐵𝑃𝑉" is a consistent estimator for the continuous integrate 
volatility: 
 

 𝐵𝑃𝑉" → ∫ 𝜎[X𝑑𝑠
"
"B_   as  𝑀 → ∞ (2.25) 

 
Following Barndorff-Nielsen et. al. (2004a) and combining the equation (2.24) with the 
estimator of quadratic variation from the previous section we can detect the contribution of 
the jump variation: 
 

 plim~→hl𝑅𝑉", − 𝐵𝑃𝑉",n =r𝐽[X =
§L

¨�_

𝐽" (2.26) 

 

where 𝐽"denotes the number of non-zero jumps over [𝑡 − ℎ, 𝑡], 
 

 𝐽" = max	[𝑅𝑉", − 𝐵𝑃𝑉",, 0] (2.27) 
 
In empirical applications the result of the previous equation exhibits an unreasonably large 
number of non-zero small positive values. Therefore we need to distinguish between 
significant jumps and those that are of no importance. To detect jumps, Huang and Tauchen 
(2005) apply the following test statistic in which a large positive value implies that a jump 
occurred: 
 
 

𝑍", = √𝑛
(𝑅𝑉" − 𝐵𝑃𝑉")𝑅𝑉"B_

�(𝜇_B� + 2𝜇_X − 5)max{1, 𝑇𝑄"/𝐵𝑃𝑉"X}	
 (2.28) 

 

𝑍" is standard normally distributed under the null hypothesis of no within-day jumps. The 

realized tripower quarticity, 𝑇𝑄",A, is defined by: 
 
 

𝑇𝑄",A = 𝑛𝜇�/¯B¯ k
𝑛

𝑛 − 4or|𝑟
"BAHk}B�~ oA

|�/¯
~

}�±

|𝑟
"BAHk}BX~ oA

|�/¯|𝑟
"BAHk }~oA

|�/¯ (2.29) 

 

where 𝜇�/¯ = 2X/¯ ²(³/´)
²(_/X)

 and Γ(∙) denotes the Gamma function. 
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Is now natural to identify the significant jumps by the realization of 𝑍" in excess of some 

critical value, Φ¸,	 that represents the 𝛼– quantile  of the standard normal distribution 
function. It follows that: 
 

 𝐽" = 𝐼(𝑍" > Φ¸)(𝑅𝑉" − 𝐵𝑃𝑉") (2.30) 
  

where 𝐼(∙) is the indicator function. 
 

However, 𝐵𝑃𝑉", has large finite sample bias in presence of jumps. The intuition, according 

to Corsi et. al. (2010) is the following one. We assume that a generic return interval |𝑟",A| 

contains a jump. In regards to bipower variation, it multiplies �𝑟",AB_�  and |𝑟",AH_| . 
Asymptotically the result will vanish and bipower variation will converge into integrated 
volatility. However for finite samples these returns will not vanish, causing a positive bias 

which will be larger as |𝑟",A| increases. The consequence is that the bipower variation will be 
upward bias, especially in the case of consecutive jumps. This leads to an underestimation 
of the number of jumps detected. A solution could be to use small intraday returns intervals. 
Nevertheless, this leads to contamination of market microstructure noise. Following the 
work of Corsi et a.l. (2010) it is possible to introduce a measure that is nearly unbiased for 
small samples in the presence of jumps, unlike the previous method. 
 
Mancini (2009) provides alternative estimators of squared and fourth power integrated 
volatility. Threshold realized volatility is defined as follows: 
 

 𝑇𝑅𝑉½ = 	r𝑟",bX 𝐼¾KL,¿� sÀ(½)Á

Â

b�_

 (2.30) 

 

where Θ(𝛿) is the threshold function. In applications, the common practice is to scale the 
threshold function with respect to the local spot variance: 
 

 𝜗" = 𝑐ÆX𝑉Ç" (2.31) 
 
Using the threshold function with the multipower variation we obtain the threshold 
multipower variation: 
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 𝑇𝑀𝑃𝑉"
[�_,…,�È] = 𝛿_B

_
X(�_,…,�È) r�|𝑟",bB�H_|��𝐼É|KL,¿ÊËÌ�|�sÆLÊËÌ�Í

È

��_

Â

b�È

 (2.32) 

 

Recall that the 𝐵𝑃𝑉"	is upper biased in case of large jumps in |𝑟",A|. Now, if there is a jump 

bigger than 𝜗", it vanishes. The problem is related to the contamination of small jumps that 
fall outside the exclusion range. To prevent this, Corsi et al (2010) proposed a corrected 
method, called the corrected realized threshold multipower estimator, which includes both 

measures, 𝐵𝑃𝑉" and 𝑇𝐵𝑃𝑉": 
 

 𝐶–𝑇𝑀𝑃𝑉"
[�_,…,�È] = 𝛿_B

_
X(�_,…,�È) r�𝑍��l𝑟",bB�H_, 𝜗bB�H_n

È

��_

Â

b�È

 (2.33) 

 
where: 
 

 𝑍�(𝑥, 𝑦)=Ð
|𝑥|�

_
X§(BTÑ)√Ò

Ó X
TÑ
� 𝑦Ô

Õ
�
Γ k�H_

X
, TÑ

�

X
o
		𝑖𝑓	𝑥X ≥ 𝑦
		𝑖𝑓	𝑥X < 𝑦

 

 

(2.34) 

 
The corrected threshold bipower variation of (2.24) is defined as: 
 

 𝐶–𝑇𝐵𝑃𝑉" = 𝜇_BX𝐶– 𝑇𝑀𝑃𝑉"
[_,_]=𝜇_BX𝑍_l𝑟",bB�H_, 𝜗bB�H_n 
 

(2.35) 

 
The test statistic is defined by Corsi et al. (2010) as: 
 

 
𝐶–𝑇𝑧 = 	𝛿B

_
X

(𝑅𝑉" − 𝐶–𝑇𝑀𝑃𝑉")𝑅𝑉"B_

×Ó𝜋
X

4 + 𝜋 − 5Ômax Ø1, 𝐶– 𝑇𝑇𝑟𝑖𝑃𝑉"(𝐶– 𝑇𝐵𝑃𝑉")X
Ù

 
(2.36) 

 

where 𝐶–𝑇𝑧 → 𝑁(0,1) as 𝛿 → 0. 
 

The estimator 𝑇𝐵𝑃𝑉" has better finite sample properties than standard bipower variation 
and provides a more accurate jumps test. This allows for a corrected separation of 
continuous and jump components. The authors found that a test based on threshold 
multipower variation yields a significant advantage with respect to those based on 
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multipower variation. Setting a confidence level 𝛼, and using 𝐶–𝑇𝑧 as jump detectors it is 
possible to estimate the jump component as: 
 

 𝐽" = 𝐼{Ú–:ÛIÜÝ}max[𝑅𝑉" − 𝑇𝐵𝑃𝑉"] (2.37) 
 

where Φ¸ is the value of the standard Normal distribution corresponding to the confidence 

level 𝛼 (we set 𝛼 = 0.99). We can now define the continuous component as: 
 

 𝐶" = 𝑅𝑉" − 𝐽" (2.38) 
 
In the empirical applications of Chapter 4 and 5 we used the local spot variance as adopted 

by Corsi et al. (2010). 𝑉Ç  is estimated with a non-parametric filter of length 2𝐿 + 1 adapted 

for the presence of jumps by iterating in 𝑍 , while 𝑐ÆX is a scale-free constant. More in detail: 
 

 𝑉Ç"Þ =
∑ 𝐾�
}�B�,			}áB_,9,_ k𝑖𝐿o 𝑟",}

X 𝐼¾lKL,ân�sTã�∙äåLÌ�æÊ�Á

∑ 𝐾�
}�B�,			}áB_,9,_ k𝑖𝐿o 𝐼¾lKL,ân�sTã�∙äåLÌ�æÊ�Á

, 𝑍 = 1,2, … (2.39) 

 

With 𝑐ç = 3 and starting value 𝑉Ç"9 = +∞, it is implied that all observations are used in the 

first step. At each iteration, large returns are eliminated by the condition l𝑟",}n
X > 𝑐äX ∙ 𝑉è"H_

ÞB_; 

each estimate of the variance is multiplied by 𝑐çX to get the threshold for the following step. 

We follow the original setting of Corsi et. al. (2010) setting 𝐿 = 25 and use a Gaussian kernel. 
Figure 3 shows respectively the continuous and the jumps component both computed using 
the method proposed by Corsi et. al. (2010). It is evident that the most important driver of 
realized volatility is the continuous part. 
 

For reasons of clarity and to avoid confusion in the notation: 𝑅𝑉" is the realized variance, 

�𝑅𝑉"	is the realized volatility, 𝐶" is the continuous part and 𝐽" is jump process of the 
quadratic variation. The next Chapter is dedicated to the models that will be used for 
modeling and forecasting realized variance. 
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Figure 3 S&P 500 Index - Continuous and Jumps component 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4 Percentage contribution of daily jump estimated by (2.37) to total quadratic variation measured 
over a moving window of 3-month and 1-year 
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3. Models and forecast evaluation 
 
One of the most important reasons to study volatility is for the purpose of prediction. The 
first part of this Chapter is dedicated to the study of the models used to forecast the realized 
variance in the empirical application of the next Chapter. The model that is the basis of all 
other models is the Heterogenous Autoregressive model of Realized Volatility (HAR-RV) 
proposed by Corsi (2009). The HAR-RV model is based on the Heterogenous Market 
Hypothesis presented by Muller et al. (1993), which recognizes the presence of different 
heterogeneity in behavior across traders. The heterogeneity may arise from several factors 
such as geographical locations, risk profiles dissimilarity, institutional constraints etc. In this 
context we focus on the heterogeneity originates from the difference in the time horizons. 
Corsi (2009) distinguishes three main types of agents: (i) High intraday frequency trading-
market makers, speculators, dealers; (ii) Medium-term investors who typically rebalance 
their positions weekly; (iii) Long term investors such as insurance companies, pension funds 
etc. which typically trade less frequently. Each agent is responsible for a different type of 
volatility in the market. Another important consideration is that volatility over longer time 
intervals has a stronger influence on volatility over shorter time intervals, and not vice versa. 
This generates a “volatility cascade” from low frequencies to high frequencies. The 
economic intuition behind the volatility cascade is that short term traders take into account 
the level of long-term volatility because it determines the expected future size of trend and 
risk. On the other side, the long-term traders are not influenced by short term volatility. The 
last part of the Chapter is dedicated to the methods used to evaluate the forecast, covering 
both the point and density forecast evaluation. 
 
3.1 Forecasting models 
 
3.1.1 HAR-RV 
The parsimonious HAR-RV model proposed by Corsi (2009) assumes that the price process 
follows the stochastic volatility process, already mentioned above: 
 
 𝑑𝑝" = 𝜇"𝑑𝑡 + 𝜎"𝑑𝑊"  

 

where 𝑝" denotes the logarithmic price process, 𝜇" is a continuous finite variation process, 

𝜎" is a stochastic process and  𝑊" is a standard Brownian Motion. Following the approach 

of Corsi (2009) is possible to define the latent partial volatility 𝜎é"
(∙)  which represents the 
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volatility generated by a certain market component. We consider three volatility 

components corresponding to time horizons of one day (1𝑑), one week (1𝑤) and one month 

(1𝑚) respectively with the following notation: 𝜎é"
(ë),	𝜎é"

(ì),	𝜎í"
(^). Is also possible to add or 

consider different time horizons, as shown by Audrino, Huang and Okhrin (2016), however 
we are going to consider the standard daily, weekly and monthly frequencies. It is now 
possible to define the previous mentioned volatility cascade from a mathematical point of 
view: 
 

 

𝜎î"H_^
(^) = 𝑐(^) + 𝜙(^)√𝑅𝑉"

(^)
+ 𝜖"̃H_^

(^)  

𝜎î"H_ì
(ì) = 𝑐(ì) + 𝜙(ì)√𝑅𝑉"

(ì)
+ 𝛾(ì)Ε"ó𝜎î"H_^

(^) ô + 𝜖"̃H_ì
(^)  

𝜎î"H_ë
(ë) = 𝑐(ë) + 𝜙(ë)√𝑅𝑉"

(ë)
+ 𝛾(ë)Ε"ó𝜎î"H_ì

(ì) ô + 𝜖"̃H_ë
(ë)  

 

 

where √𝑅𝑉"
(ë)
, √𝑅𝑉"

(ì)
and, √𝑅𝑉"

(^)
	represent respectively the daily, weekly and monthly (ex 

post) observed realized volatilities. The volatility innovations 𝜖"̃H_^
(^) , 𝜖"̃H_ì

(^)  and 𝜖"̃H_ë
(ë)  are 

independent serially uncorrelated with zero mean and truncated left tail in order to ensure 
only positive values of partial volatility. By a recursive substitutions of the upper partial 
volatility, with the assumption that the daily integrated volatility is determinate by the 

highest frequency partial volatility, 𝜎"
(ë) = 𝜎é"

(ë), we get the following model: 
 

 𝜎"H_
(ë) = 𝑐 + 𝛽(ë)√𝑅𝑉"

(ë)
+ 𝛽(ì)√𝑅𝑉"

(ì)
+ 𝛽(^)√𝑅𝑉"

(^)
+ 𝜖"̃H_ë

(ë)  (3.1) 
 
Knowing that the realized volatility is an estimator of the latent volatility, we have 
 

 𝜎"H_
(ë) = √𝑅𝑉"H_ë

(ë)
+ 	𝜖í"H_ë

(ë)  (3.2) 
 

From equation (3.2) we can link the ex post volatility estimate √𝑅𝑉"H_
(ë)

 to the 

contemporaneous measure of daily latent volatility 𝜎"H_
(ë) . Substituting equation (3.2) in 

equation (3.1) (for simplicity √𝑅𝑉"H_
(ë)

= √𝑅𝑉"H_ë
(ë)

 ) we obtain a very simple time series 
representation of the cascade model, 
 

 √𝑅𝑉"H_
(ë)

= 𝑐 + 𝛽(ë)√𝑅𝑉"
(ë)

+ 𝛽(ì)√𝑅𝑉"
(ì)

+ 𝛽(^)√𝑅𝑉"
(^)

+ 𝜖"̃H_ë
(ë)  (3.3) 
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where the weekly and monthly realized volatility are computed respectively as the average 
of the last 5 and 22 daily volatilities, 
 

 
√𝑅𝑉"

(ì)
=
1
5 k√𝑅𝑉"

(ë)
+ √𝑅𝑉"B_

(ë)
+ ⋯+ √𝑅𝑉"B�

(ë)
o 

√𝑅𝑉"
(^)

=
1
22 k√𝑅𝑉"

(ë)
+ √𝑅𝑉"B_

(ë)
+ ⋯+ √𝑅𝑉"BX_

(ë)
o 

(3.4) 
 

(3.5) 

 
The model is presented taking into account the realized volatility (the square root of the 
realized variance), similarly it could be written using the realized variance or the 
logarithmic transformation, respectively: 
 

 𝑅𝑉"H_
(ë) = 𝑐 + 𝛽(ë)𝑅𝑉"

(ë) + 𝛽(ì)𝑅𝑉"
(ì) + 𝛽(^)𝑅𝑉"

(^) + 𝜖"̃H_ë
(ë)  (3.6) 

 

 𝑙𝑛k𝑅𝑉"H_
(ë)o = 𝑐 + 𝛽(ë)𝑙𝑛k𝑅𝑉"

(ë)o + 𝛽(ì)𝑙𝑛k𝑅𝑉"
(ì)o + 𝛽(^)𝑙𝑛k𝑅𝑉"

(^)o + 𝜖"̃H_ë
(ë)  (3.7) 

 
Since the purpose of this thesis is the forecast of realized variance, we will focus directly on 

𝑅𝑉". One of the peculiarities of the HAR-RV model is its OLS nature, it is therefore easy to 
add in additional regressors to judge their explanatory power. In the following paragraphs 
we are going to extend the classic model in equation (3.6) with some exogenous variables.  
 
3.1.2 HAR-RV-J-D and HAR-RV-J-F 
 
To study the HAR-RV-J-D and HAR-RV-F models we need to consider the following jump 
diffusion model as seen in the theoretical Chapter 2, 
 
 𝑑𝑝" = 𝜇"𝑑𝑡 +	𝜎"𝑑𝑊" + 𝜉"𝑑𝑞"  

 
where the last term is responsible for the jumps. The idea to include jumps in a HAR-RV 
model was initially proposed by Andersen et al. (2007). In particular they proposed to model  
the jumps and the continuous part separately in order to consider the different dynamics of 

the components of 𝑅𝑉". Corsi et al. (2010) extended the HAR-RV with the use of C-Tz (2.36) 
to detect the occurrence of the jumps in a single day, with the use of threshold bipower 
variation to measure the continuous part of integrated volatility. The weekly and monthly 
components are computed analogically to the weekly and monthly aggregate realized 
variance as seen before in (3.4) and (3.5), 
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 𝐽"
(ì) =

1
5 k𝐽"

(ë) + 𝐽"B_
(ë) + ⋯+ 𝐽"B�

(ë) o 
 
 

 				𝐽"
(^) =

1
22 k𝐽"

(ë) + 𝐽"B_
(ë) + ⋯+ 𝐽"BX_

(ë) o  

 		𝐶"
(ì) =

1
5 k𝐶"

(ë) + 𝐶"B_
(ë) + ⋯+ 𝐶"B�

(ë)o  

 				𝐶"
(ì) =

1
22 k𝐶"

(ë) + 𝐶"B_
(ë) + ⋯+ 𝐶"BX_

(ë) o  

 
In the empirical application, we consider the following two extensions to the standard HAR-
RV. The first new model, the HAR-RV-J-D, considers only the daily jumps while the second 
model, the HAR-RV-J-F considers not only the daily, but also the weekly and monthly 
jumps. Respectively the two models are defined by  
 

 𝑅𝑉"H_
(ë) = 𝑐 + 𝛽öä

(ë)𝑅𝑉"
(ë) + 𝛽öä

(ì)𝑅𝑉"
(ì) + 𝛽öä

(^)𝑅𝑉"
(^) + 𝛽U

(ë)𝐽"
(ë) + 𝜖"H_ (3.8) 

 

 
𝑅𝑉"H_

(ë) = 𝑐 + 𝛽öä
(ë)𝑅𝑉"

(ë) + 𝛽öä
(ì)𝑅𝑉"

(ì) + 𝛽öä
(^)𝑅𝑉"

(^) + 𝛽U
(ë)𝐽"

(ë)

+ 𝛽U
(ì)𝐽"

(ì) + 𝛽U
(^)𝐽"

(^) + 𝜖"H_ 
(3.9) 

 
HAR-RV-J-D and HAR-RV-J-F are based on the realized variance, however, it is possible to 
construct the models on realized volatility and log transformation. For this last measure we 
have to consider a correction due to days without jumps where the jumps components are 

equal to zero. The correction is simply done by the sum of 1 to 𝐽"
(ë), 𝐽"

(ì)	and	𝐽"
(^) 

 

 
lnk𝑅𝑉"H_

(ë)o = 𝑐 + 𝛽öä
(ë)lnk𝑅𝑉"

(ë)o + 𝛽öä
(ì)lnk𝑅𝑉"

(ì)o + 𝛽öä
(^)lnk𝑅𝑉"

(^)o

+ 𝛽U
(ë) lnk1 + 𝐽"

(ë)o + 𝜖"H_ 
(3.10) 

 

 
lnk𝑅𝑉"H_

(ë)o = 𝑐 + 𝛽öä
(ë)lnk𝑅𝑉"

(ë)o + 𝛽öä
(ì)lnk𝑅𝑉"

(ì)o + 𝛽öä
(^)lnk𝑅𝑉"

(^)o

+ 𝛽U
(ë)ln	k1 + 𝐽"

(ë)o + 𝛽U
(ì)ln	k1 + 𝐽"

(ì)o + 𝛽U
(^)ln	k1 + 𝐽"

(^)o+𝜖"H_ 
(3.11) 
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3.1.3 HAR-RV-CJ and HAR-RV-LCJ 
 
Andersen et al. (2007) suggested another extension to the basic model (3.4).They proposed 
the HAR-RV-CJ model based on the explicit decomposition of the realized variance into the 
continuous part and jumps component. The HAR-RV-CJ model is simply defined as 
 

 
𝑅𝑉"H_

(ë) = 𝑐 + 𝛽Ú
(ë)𝐶"

(ë) + 𝛽Ú
(ì)𝐶"

(ì) + 𝛽Ú
(^)𝐶"

(^) + 𝛽U
(ë)𝐽"

(ë)

+ 𝛽U
(ì)𝐽"

(ì) + 𝛽U
(^)𝐽"

(^) + 𝜖"H_ 
(3.12) 

 
This decomposition allows us to understand the specific contribution of the continuous and 
jumps component that composed the daily realized variance.  
 
It is natural to extend the HAR-RV-CJ model with the leverage effect to obtain the HAR-
RV-LCJ model. Many studies show the relation between negative returns and volatility. For 
this reason it is straightforward to extend the volatility model with the leverage component. 
Figure 5 shows the relation between negative returns and realized variance where it is 
evident that periods with strong negative returns fall back into greater volatility. 

Figure 5: S&P 500 Index - Negative returns and Realized Variance 

 
We model the heterogenous leverage effects by introducing asymmetric return-volatility, 
which is dependent on each level of the volatility cascade. By defining daily returns as      
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𝑟" = 𝑝" − 𝑝"B_ , where 𝑝"  is the logarithmic closing price at time 𝑡 , we can separate the 
aggregate positive and negative returns as 
 

 𝑟"H
(~) =

1
𝑛
(𝑟" + ⋯+ 𝑟"B~H_)𝐼{(KLH⋯HKLÊ÷Ì�)I9} (3.13) 

 𝑟"B
(~) =

1
𝑛
(𝑟" + ⋯+ 𝑟"B~H_)𝐼{(KLH⋯HKLÊ÷Ì�)G9} (3.14) 

 

where 𝐼{∙} denotes the indicator function and 𝑛 = 1, 5, 22. Following Corsi et al. (2012) it is 

possible to add the aggregate negative return for the three horizons in the HAR-RV-CJ 
model obtaining the HAR-RV-LCJ model: 
 
 𝑅𝑉"H_

(ë) = 𝑐 + 𝛽Ú
(ë)𝐶"

(ë) + 𝛽Ú
(ì)𝐶"

(ì) + 𝛽Ú
(^)𝐶"

(^) + 𝛽U
(ë)𝐽"

(ë) + 𝛽U
(ì)𝐽"

(ì)

+ 𝛽U
(^)𝐽"

(^) + 𝛾(ë)𝑟"B
(ë) + 𝛾(ì)𝑟"B

(ì) + 𝛾(^)𝑟"B
(^) + 𝜖"H_ 

(3.15) 

 
3.1.4 C-HAR 
 
Another simple derivation from the HAR-RV is the C-HAR model. In the theoretical 
Chapter we saw that the main contribution to realized variance is from continuous part. 
Motivated by this, the C-HAR model is composed only by the daily, weekly and monthly 
continuous components 
 

 𝑅𝑉"H_
(ë) = 𝑐 + 𝛽Ú

(ë)𝐶"
(ë) + 𝛽Ú

(ì)𝐶"
(ì) + 𝛽Ú

(^)𝐶"
(^)+𝜖"H_ (3.16) 

 
3.1.5 Q-Family 
 
The next three models proposed have been developed by Bollerslev, Patton and Quaedvlieg 
(2015). The models directly exploit the asymptotic theory for high-frequency realized 
volatility estimation by allowing the dynamic parameters of the models to vary with the 
degree of estimation error in the realized volatility measure. At the end of the first Chapter 
we saw the distribution of realized variance proposed by Barndorff-Nielsen and Shephard 
(2002) and the consistent estimator of the realized quarticity as 
 
 

𝑅𝑄" =
𝑛
3r𝑟",b�

~

b�_
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Using 𝑅𝑄" is possible to define the AR-Q model as  
 

 𝑅𝑉"H_
(ë) = 𝑐 + (𝛽öä

(ë)+𝛽ø
(ë)𝑅𝑄"

_/X(ë))𝑅𝑉"
(ë) + 𝜖"H_ (3.17) 

  

where 𝑅𝑄"
_/X is the square root of the realized quarticity. The intuition is that when 𝛽ø

(ë) < 0 

it follows that uninformative days with large measurement errors, will have smaller impact 

in the forecast than days where the realize variance is estimated only by 𝛽öä
(ë). The next 

natural step would be to apply the AR-Q intuition to the standard HAR-RV obtaining the 
HAR-Q-F model: 
 

 
𝑅𝑉"H_

(ë) = 𝑐 + (𝛽öä
(ë)+𝛽ø

(ë)𝑅𝑄"
_/X(ë))𝑅𝑉"

(ë) + (𝛽öä
(ì)+𝛽ø

(ì)𝑅𝑄"
_/X(ì))𝑅𝑉"

(ì)

+ (𝛽öä
(^)+𝛽ø

(^)𝑅𝑄"
_/X(^))𝑅𝑉"

(^) + 𝜖"H_ 
(3.18) 

 

where 𝑅𝑄"
_/X(ë), 𝑅𝑄"

_/X(ì)	and	𝑅𝑄"
_/X(^) are the daily, weekly and monthly aggregation of the 

square root of realized quarticity 
 
 

𝑅𝑄"
_/X(~) =

1
𝑛 k𝑅𝑄"

_/X(ë) + ⋯+ 𝑅𝑄"B~H_
_/X(ë)o 

 

 

where 𝑛 = 1, 5, 22.  
 
However, the magnitude of the measurement errors in realized variance will generally 
decrease with the time horizon as the errors are averaged out. The consequence is that the 
adjustment for the measurement in daily error is likely to be more important than the 
weekly and monthly adjustment. Hence, we also consider the HAR-Q-D, where we only 
allow the coefficient of the lagged daily realized variance to vary in function of the square 
root of realized quarticity 
 

 𝑅𝑉"H_
(ë) = 𝑐 + (𝛽öä

(ë)+𝛽ø
(ë)𝑅𝑄"

_/X(ë))𝑅𝑉"
(ë) + 𝛽öä

(ì)+𝑅𝑉"
(ì) + 𝛽öä

(^)𝑅𝑉"
(^) + 𝜖"H_ (3.19) 
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3.1.6 S-HAR 
 
The S-HAR model, proposed by Patton and Sheppard (2011), decomposes the realized 
variance into positive and negative semivariance which is derived respectively from 
positive and negative returns  
 

 
 

𝑅𝑉"B =r𝑟}X𝐼{KâG9}
Â

"�_

 (3.20) 
 

 
𝑅𝑉"H =r𝑟}X𝐼{KâI9}

Â

"�_

 
(3.21) 

 

where 𝑅𝑉" = 𝑅𝑉"H + 𝑅𝑉"B . With this decomposition we can extend the simple HAR-RV 
model to obtain the S-HAR model 
 

 𝑅𝑉"H_
(ë) = 𝑐 + 𝛽öäÌ

(ë) 𝑅𝑉"H
(ë) + 𝛽öäÊ

(ë) 𝑅𝑉"B
(ë) + 𝛽öä

(ì)𝑅𝑉"
(ì) + 𝛽öä

(^)𝑅𝑉"
(^) + 𝜖"H_ (3.22) 

 
The expectation is that the coefficient of negative semivariance will be more significant and 
larger than that of positive semivariance. 
 
3.1.7 HAR-X 
 
As we have seen in the previous model, is it possible to add exogenous variables to the 
simple HAR-RV model of Corsi. The next model, besides considering the lagged daily, 

weekly and monthly value of  𝑅𝑉", adds implied volatility as an explanatory variable. We 
can define the HAR-X as 
 

 𝑅𝑉"H_
(ë) = 𝑐 + 𝛽öä

(ë)𝑅𝑉"
(ë) + 𝛽öä

(ì)𝑅𝑉"
(ì) + 𝛽öä

(^)𝑅𝑉"
(^) + 𝛽ù

(ë)𝑋"
(ë) + 𝜖"H_ (3.22) 

 

where 𝑋"
(ë) is the daily implied volatility.  

 
The most famous implied volatility index is the VIX, computed by CBOE5, also known as 
the fear index. VIX is a financial benchmark designed to be a market estimate of expected 
volatility of the S&P 500 Index, and is calculated by using the midpoint of real-time S&P 

 
5 https://www.cboe.com/tradable_products/vix/ 
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Index (SPX) option bid/ask quotes. The VIX index is intended to provide an instantaneous 
measure of how much the market thinks the S&P 500 Index will fluctuate in the 30 days 
ahead. The model-free estimator of the implied volatility that CBOE employs to calculate 
the VIX Index is 
 

𝜎X =
2
𝑇r

Δ𝐾}
𝐾}X

𝑒K:𝑄(𝐾}) −
1
𝑇 Ó

𝐹
𝐾9
− 1Ô

X

}
 

 

 

where 𝑇 is time to expiration, 𝐹 is the forward index level derived from the index options 

prices, 𝐾} is the strike price of the ith out-of -the-money option (either a call, if 𝐾} > 𝐹, or a 

put, if 𝐾} < 𝐹), ∆𝐾} = (𝐾}H_ − 𝐾}B_)/2 is the interval between strike prices minus half the 

difference between the strike on either side of 𝐾}, 𝐾9 is the first strike below the forward 

index level, 𝑟 is the risk-free interest rate to expiration, and 𝑄(𝐾}) is the mid-quote for the 

option with strike of 𝐾} . The VIX index is computed as VIX = 100 ∗ 𝜎 . In the empirical 
application we use the implied volatility index linked to each of the financial instruments 
considered, as shown in Table 1 
 
 
 
 

 
 

 
3.1.8 Forecast Combinations 
 
Based on the work of Bates and Granger (1969), forecast combinations have come to be 
viewed as a simple and effective way to improve the forecasting performance over that 
offered by individuals’ models. The most significant challenge when using this approach, is 
the choice of weights that must be applied to the single models that will make up the forecast 
combination. According to Hendry and Clements (2001) a simple weighted average 
guarantees an “insurance”. If two forecasts were differentially biased (one upward, one 
downward) combining them could result in an improvement. The HAR-Combo model will 
be the average of the expected realized variance computed by the other models 
 

 𝑅𝑉"H_
(Ú"^#") = r𝐸

$

}�_

M𝑅𝑉},"H_O (3.23) 

Financial Instrument Implied volatility index 
S&P 500 Index CBOE Volatility Index (VIX) 
iShares China Large-Cap ETF China ETF VIX (VFXI) 
Apple Inc Apple VIX (VXAP) 

Table 1: Implied volatility indices 
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where 𝑈 corresponds to the total number of the models considered6  
 
3.1.9 Benchmark 
 
One of the simplest and commonly used models in time series forecasting is the random 
walk (RW) model. The main intuition of the model is that at time t, the h step-ahead forecast 
is equal to the last observed value, 
 

 𝐸[𝑅𝑉"HA
(ö&)] = 𝑅𝑉" (3.24) 

 
In the empirical application of Chapter 4 and 5, the random walk model, is used as a 
benchmark against which to compare the more sophisticated models presented above.  
 
3.2 Forecast evaluation 
 
3.2.1 Point forecast 
 
Once we have a forecast the following natural step is the evaluation of the prediction. In 
many forecasting problems a recurrent dilemma is that the variable that we are trying to 
forecast is unobservable, even ex-post; volatility forecast is one such case. A common 
solution to this problem is to use a conditionally unbiased proxy as the realized variance 
estimator seen in the previous Chapter. However, according to Andersen et al. (1998) and 
Hansen and Lunde (2006) it is not always true that using a conditionally unbiased proxy 
leads to the same outcome as if the true, but latent, variable was used. Motivated by this, a 
solution proposed by Patton (2008) was to employ forecast loss functions less sensitive to 
large observations than the usual squared forecast error loss function (such as absolute error 
or proportional error loss function). The use of the aforementioned measures could lead to 
incorrect inferences and rankings of volatility forecasts.  
 
 
The two forecast loss functions proposed by Patton (2008) are the Mean Square Error (MSE) 
and Quasi-Likelihood (QLike) loss functions, respectively 
 

 
6 in the computation of the HAR-Combo model we do not include the benchmark 
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 𝑀𝑆𝐸l𝑅𝑉"HA, 𝑅𝑉è"HAn = l𝑅𝑉"HA − 𝑅𝑉è"HAn
X (3.25) 

 𝑄𝐿𝑖𝑘𝑒l𝑅𝑉"HA, 𝑅𝑉è"HAn = 𝑙𝑜𝑔l𝑅𝑉è"HAn +
𝑅𝑉"
𝑅𝑉è"HA

 (3.26) 

 

where	𝑅𝑉"HA  is the observed realization at time h and 𝑅𝑉"HA+  is the forecast of one of the 

treated models. Another measure commonly used in literature is 𝑅X , of the Mincer-
Zarnowitz regression 
 

 	𝑅𝑉"HA = 𝛼 + 𝛽𝑅𝑉è"HA + 𝜖"HA (3.27) 
 
In this case, as opposed to (3.25) and (3.26) where low relative values indicate better models, 
high values are preferred. 
 
3.2.1.1   Diebold Mariano test & Model Confidence Set 
 
When we want to make a comparison between two forecasts originated from two different 
models, a common approach is to use the Diebold-Mariano (DM) test (1995). This test is 
intended for comparing predictive accuracy of two different forecasts. Precisely, to 
determine whether the difference in accuracy is statistically significant. The authors 
proposed a widely applicable test of the null hypothesis of no difference in accuracy 
between two forecasts. Mathematically, we can indicate the observed values as 

{𝑦"; 𝑡 = 1,… , 𝑇} and the two forecasts as  {𝑦î_"; 𝑡 = 1,… , 𝑇} and {𝑦îX"; 𝑡 = 1,… , 𝑇}. The forecast 

errors are defined as 𝑒}" = 𝑦" − 𝑦î_"	, 𝑖 = 1,2. Is also assumed that the loss associated to the 

forecast 𝑖 is a function of the forecast error, 𝑒}", denoted as 𝑔(𝑒}"). We can now define the 

loss differential between the two forecasts by 𝑑" = 𝑔(𝑒_") − 𝑔(𝑒X"). The hypothesis of the 
test are 

 𝐻9:𝐸(𝑑") = 0,∀𝑡 (3.28) 

 𝐻_:𝐸(𝑑") ≠ 0 (3.29) 
 
To test this null hypothesis it is possible to use a simple asymptotic z-test. The DM test 
statistic can be obtained through 
 

 𝐷𝑀 =
𝑑̅"

1𝑉𝑎𝑟(𝑑+ ")/𝑇
 (3.30) 
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Where 𝑑̅"  is the sample average of the loss differential series and 𝑉𝑎𝑟(𝑑+ ") is a consistent 

estimator of asymptotic variance of 𝑑̅"  obtained with a weighted sum of the available 

sample autocovariances. Under the null hypothesis the test statistic is asymptotically 𝑁(0,1) 
distributed.  
 
Contrary to the widely used Diebold-Mariano test, that is used to compare only a pair of 
models, the Model Confidence Set (MCS) proposed by Hansen, Lunde and Nason (2011) 
allows for comparison of multiple forecast models simultaneously. With MCS it is possible 
to reduce the set of models to a smaller set known as the model confidence set which contains 
the best model with a given level of confidence. As defined by Hansen et al. (2011) the 

objective of MCS procedure is to determine the set of models, ℳ∗, that consists of the best 

models (or model) from a collection of models, ℳ9, where best is defined in terms of loss 

function defined by the user. The procedure is based on an equivalence test, 𝛿ℳ , and an 

elimination rule, 𝑒ℳ . When 𝛿ℳ  is rejected there is evidence that the objects in ℳ are not 

equally “good” and 𝑒ℳ  is used to eliminate an object with poor performance. This 

procedure is repeated until 𝛿ℳ  is not rejected and the MCS is now defined by the surviving 

objects. Following Hansen et al. (2011) we consider a set, ℳ9, composed by a finite number 

of objects, 𝑖 = 1,… ,𝑚9. The objects are evaluated according to a loss function 𝐿}," where 𝑡 is 

the period. The relative performance variables are defined as 𝑑}b," ≡ 𝐿}," − 𝐿b,", for all 𝑖, 𝑗 ∈

ℳ9. The set of superior objects is defined by 
 

 ℳ∗ = É𝑖 ∈ℳ9: 𝜇},b ≤ 0	for	all	𝑗 ∈ℳ9Í (3.31) 

 

where 𝜇},b = 𝐸(𝑑}b,") is finite and does not depend on time for all 𝑖, 𝑗 ∈ℳ9. The aim of the 

method is to determine the set of superior models, ℳ∗, which can be done via a sequence 
of significance test where the models that are found to be significantly inferior to the other 

are eliminated. The null hypothesis is 𝐻9,ℳ: 𝜇},b = 0,∀𝑖, 𝑗 ∈ℳ  with ℳ ⊆ℳ9 . The 

equivalence test, 𝛿ℳ , is used to test the hypothesis 𝐻9,ℳ  for any ℳ ⊂ℳ9 , and the 

elimination rule, 𝑒ℳ , identifies inferior model from ℳ  and remove it when the null 

hypothesis is rejected. The surviving models end up in ℳå_B¸∗ . The MCS algorithm is 
composed by the following steps: 
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 Step 0. Initially set ℳ =ℳ9. 

 Step 1. Test 𝐻9,ℳ  using 𝛿ℳ  at level 𝛼. 

Step 2. If 𝐻9,ℳ  is accepted, define ℳå_B¸∗ = 	ℳ ; otherwise, use 𝑒ℳ  to eliminate an                                            

object from ℳ and repeat the procedure from Step 1. 
 
In order to test the hypothesis, the two following statistics are constructed 

 

 

𝑡},b =
𝑑̅},b

1𝑉𝑎𝑟(+ 𝑑̅},b)
						and				𝑡},b =

𝑑̅}

1𝑉𝑎𝑟(+ 𝑑̅})
			for			𝑖, 𝑗 ∈ℳ	

 

  (3.31) 

Where 𝑑̅},b measure the relative sample loss between the ith and jth models, 𝑑̅} is the sample 

loss of the ith model relative to the average across models in ℳ, while 𝑉𝑎𝑟(+ 𝑑̅},b) and 𝑉𝑎𝑟(+ 𝑑̅}) 

are bootstrapped estimates of 𝑉𝑎𝑟(𝑑̅},b) and 𝑉𝑎𝑟(𝑑̅}). The first statistic is the well-known 

Diebold and Mariano test (1995) seen above. The MCS procedure consists of a sequential 
testing procedure, which eliminates the worst model at each step, until the hypothesis is 
accepted for all the models. To eliminate the worst model, we can use an elimination rule 
coherent with the test statistic  
 

 𝑒^78,ℳ = argmax
}∈ℳ

𝑑̅"

1𝑉𝑎𝑟(𝑑+ ")
, 𝑒^78,ℳ = argmax

}∈ℳ

⎩
⎨

⎧
sup
b∈ℳ

𝑑̅"

1𝑉𝑎𝑟(𝑑+ ")⎭
⎬

⎫
 (3.32) 

 

This procedure yields 𝑝-values for all forecast models considered. The MCS 𝑝-values are 

useful to determine which forecast models are included in ℳå_B¸∗  at any significance level. 
 
3.2.2 Density forecast 
 
The previous forecast evaluation methodologies were based on the comparison between the 
prevision and the actual realization. The next step is to study the uncertainty around point 
forecasts using the so called density forecasts comparison. The advantage of this last 
approach is that it provides a complete description of the uncertainty around the predicted 
value. Diebold, Gunther and Tay (1998) evaluate density forecasts with the use of 
probability integral transform (PIT). Following Rossi (2014) a PIT is the cumulative 
probability evaluated at the actual realized value of the target variable. According to 
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Diebold et al. (1998) the PIT is uniform, independent and identically distributed if the 
density forecast is correctly specified. Justified by the difficulty to test for uniformity, 
especially in small data samples and deriving parametric tests, Berkowitz (2001) proposed 
a simple transformation to normality. Under the normality it is straightforward to calculate 
the Gaussian likelihood and construct tests around it. 
 
3.2.2.1   Berkowitz test 
 

Let 𝑦" be a stochastic process that is forecasted at time 𝑡 − 1. Let the probability density of 

𝑦" be 𝑓(𝑦") and the distribution function be 𝐹(𝑦") = ∫ 𝑓(𝑢)𝑑𝑢@L
Bh . It is possible to transform 

all the realizations into a series of independent and identically distributed random variables 
using the Rosenblatt (1952) transformation: 
 

 𝑥" = Z 𝑓A(𝑢)𝑑𝑢 = 𝐹Ç(𝑦")
@L

Bh
 (3.33) 

 

Where 𝑦" is the true realization and 𝑓A(∙) is the ex-ante forecasted loss density. Under correct 

model specification 𝑥" should be distributed according to the standard uniform distribution, 

i.e. 𝑥"~𝑈(0,1). A variety of tests would then be available both for independence and for 
uniformity, for example, the Kolmogorov-Smirnoff (KS) test. However, Berkowitz (2001) 
proposed a simple transformation to normality.  
 

Let ΦB_(∙)  be the inverse of the standard normal distribution function, then the 
transformation is defined as 
  

 𝑧" = ΦB_M𝐹Ç(𝑦")O, (3.34) 

 

Where 𝑧" should be standard normal (i.e. 𝑁(0,1)) .Using a simple LR test it is possible to 
assess the correct coverage of the full distribution where the null hypothesis is  
 

 𝐻9:	𝑧"~𝑁(0,1) (3.35) 
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The test statistic is 
 

 𝐿𝑅BC¨¨ = −2(ℓ(0,1) − ℓ(𝜇̂, 𝜎îX)) (3.36) 

 

which under the null is distributed as a 𝜒X(2)	(the hats denote estimated values).  
Moreover, Berkowitz (2001), proposed a test to assess the right coverage of one tail and not 
the entire distribution, using a censored likelihood. For example, let the desired cutoff point 
be 2.32, the 99% quantile for the standard Gaussian distribution, then the new variable of 
interest is 
 

𝑧"∗ = i2.32𝑧"
	
				if	𝑧" ≤ 2.32
				if	𝑧" > 2.32 

 

 
As before, is possible to evaluate the correct fit using the LR test, where the null hypothesis 

again requires that 𝜇 = 0, 𝜎X = 1. 
 
However, in the density forecast comparison in the empirical applications we are going to 
assess the normality assumption on the entire Gaussian distribution without focusing on a 
specific quantile. 
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4 In-sample and Out-of-sample analysis 
 
This Chapter is dedicated to the empirical estimation and forecasting of realized variance of 
three different time series: S&P500 Index, iShares China Large-Cap ETF and Apple Inc. All 
the data was downloaded from the data provider barchart.com. For each financial 
instrument we compute the realized variance, the continuous and the jump component 
using the method proposed by Corsi et al. (2012). After that, we use the twelve models seen 
in Chapter 3 to carry out a full in-sample analysis in order to assess whether a model can be 
considered superior in fitting the data. However, the main point of interest is the forecast 
analysis in order to determine the out-of-sample prediction of each models. The direct 
forecasts are performed on h=1, 5, 10, and 22 days-ahead corresponding to one day, one 
week, two weeks and one month utilizing a 1000 day rolling window. As suggested by 
Swanson and White (1995, 1997), “ignorance” is better than “insanity”, for this reason each 
forecast is filtered by an “insanity filter” in order to avoid crazy forecasts. The evaluation of 
the forecasts is made considering both the point and density forecast comparison. The point 

forecast analysis is computed individually on the basis of 𝑅X from the Mincer-Zarnowitz 
regressions, MSE and QLike. To make it easier to read the results, the outcome of the two 
loss functions are standardized by the loss of the RW model. These results are accompanied 
by an average score (from 1, best, to 13 worst). The simultaneous comparison is carried out 
by the Model Confident Set both using the MSE and QLike. The density forecast 
comparisons are based on the Berkowitz test as seen at the end of Chapter 3.   
 
4.1 S&P 500 Index 
 
The Standard & Poor’s 500 Index, commonly known as S&P 500 Index, is a market-
capitalization-weighted index of the 505 largest publicly traded companies in the U.S.. The 
index accounts for 80% of the market value of the U.S.’s equity and it is also considered to 
be the best representative of the U.S economy. The dataset consists of five-minute 
observation, considering the canonical trading hours 09:30:00 – 16:00:00, from April 24, 2009 
to October 30, 2020 for a total of 2870 days and 226730 observations. The five-minutes log-

returns, that are the basis to get the realized variance, were calculated as 𝑟",A = lnl𝑃" 𝑃",A⁄ n, 

where 𝑃" is the price of the index at time 𝑡 and ℎ is the five-minute interval.  
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Through equation (2.13) is possible to compute the realized variance, while to calculate the 
continuous and jumps component we use the method proposed by Corsi et al. (2012). From 
Figure 7 is immediately possible to see the dynamics of the three previously mentioned 
measures during the full period. The realized variance is characterized by four peaks in 
volatility. The first three are a direct consequence of the Greek crisis (May 2010), sovereign 
debt crisis (August, 2011) and the so-called China Black Monday (August 2015). The last, 
but the highest peak in realized variance, was recorded in at the end of February 2020 due 
to the spread of a new coronavirus called Covid-19. In just 23 days the S&P 500 Index has 
experienced the greatest market corrections in its history, -33.9%. However this was 
followed by an impressive rebound from April through August, bringing markets back to 
their highest recorded level. Nonetheless, the fear of a new wave of infections and new 
possible lockdown restrictions is reflected in the high levels of volatility in the last part of 
the dataset. For a better understanding of the data, Table 2 shows the descripted statistics 

of 𝑅𝑉", 	𝐶"	and	𝐽"  based both on the entire time horizon considered and on the Covid-19 
pandemic crisis period. The days with jumps are 1518, which makes up approximately 53% 
of the entire dataset. 
 
 
 

Figure 6: S&P 500 Index - Daily price level and daily returns 



 35 

 

 
 
 

Full period: 24/04/2009 – 30/10/2020 
 𝑟" 𝑅𝑉" 𝐶" 𝐽" 
Mean 1.4255x10-4 0.016 0.014 0.001 
Std. dev. 0.0077 0.044 0.040 0.008 
Skewness -0.466 12.617 11.464 28.108 
Kurtosis 8.110 214.600 172.002 961.144 
Min -0.054 4.4220x10-4 4.4220x10-4 0 
Max 0.044 1.059 0.837 0.319 
     

Covid-19 period: 24/02/2020 – 30/10/2020 
 𝑟" 𝑅𝑉" 𝐶" 𝐽" 
Mean -1.2484X10-4 0.075 0.068 0.006 
Std. dev. 0.014 0.150 0.133 0.031 
Skewness -0.218 3.890 3.542 8.106 
Kurtosis 4.860 19.784 16.136 73.597 
Min -0.054 0.002 0.002 0 
Max 0.044 1.059 0.837 0.319 
     
     

          Table 2: S&P 500 Index - Descriptive statistics of 𝑟", 𝑅𝑉", 𝐶"	𝑎𝑛𝑑	𝐽".	
 

 
 
 

Figure 7: S&P 500 Index - Realized Variance, Continuous component and Jumps process 
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4.1.1 In-sample  
 
Tables 3.a and 3.b contain the results of the estimation performed on the S&P 500 Index over 
the full sample. A very first comment concerns the coefficients of the HAR-RV model. We 
can see that the daily and weekly realized variance component have the greatest impact on 
daily realized variance while the impact of the monthly component is negative and less 
impactful. As shown in Figure 8, the dynamics of the parameters over time are computed 
with a rolling window of 1000 observations.  
 

 
We can see that after the Chinese Black Monday, the daily parameter has lost about half of 
its magnitude while the weekly increased from nearly 0 to 0.3. Noteworthy, the weekly 
parameter increases importance in the period of high volatility after the Covid-19 crisis. The 
comparison between the HAR-RV and C-HAR models is quite interesting. The results show 
that the model which considers only the continuous component achieves slightly better in-
sample results. Continuing the analysis to other models it is possible to see that the results 
of the Q-models (AR-Q, HAR-Q-D and HAR-Q-F) are consistent with Bollerslev, Patton and 

Quaedvlieg (2015). The 𝛽ø
(ë) coefficients are negative and strongly statistically significant. 

This is in line with the intuition that when the measurement error and the value of 𝑅𝑄 

increases, the informativeness of the current 𝑅𝑉 for the future 𝑅𝑉 decreases. Considering 
the time-varying nature of the measurement error for all the frequencies in the HAR-Q-F 

model we get a slightly better result in 𝑅X and MSE but worse regarding QLike loss function. 

Figure 8: S&P 500 Index – HAR-RV coefficients based on a rolling window of 1000 days. 
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Among the Q-family models, the one with the best in-sample fit is the HAR-Q-D. Taking 
into account the models that include jumps (HAR-RV-J-D, HAR-RV-J-F, HAR-RV-CJ and 
HAR-RV-LCJ) we can immediately notice how the three jump coefficients are significant for 

all the models. Importantly, the estimates of the jumps components 𝛽U
(ë)  and 𝛽U

(^)  are 

negative while the weekly coefficient, 𝛽U
(ì), is positive and more significant than the other 

two. The fact that the realized variance decreases after a jump is in contrast with the results 
of Corsi et al. (2012) who have found a positive contribution by the daily, weekly and 
monthly jumps. A simple explanation for this is that a jump usually implies a one-off spike 
upward in realized variance that does not persist on that volatility level. However, a 
negative coefficient for the daily jumps is consistent with the work of Andersen et al. (2007). 
Comparing HAR-RV-J-D and HAR-RV-J-F we can see that the inclusion of the weekly and 
monthly jumps component helps to achieve better fitting results. The leverage effect is 
confirmed by the in-sample results where daily negative returns affect next day volatility. 
The HAR-Combo is the model with the best in-sample fit. 
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 HAR-RV AR-Q HAR-Q-D HAR-Q-F HAR-RV-
J-D 

HAR-RV-
J-F 

𝑐 9.291-2 

(4.208) 
4.69X10-6 
(2.080) 

4.69X10-6 
(2.077) 

-2.69X10-6 
(-0.960) 

9.41X10-6 
(3.975) 

8.59X10-6 
(3.975) 

𝛽öä
(ë) 0.464 

(20.959) 
0.962 

(50.280) 
0.646 

(20.523) 
0.641 

(19.145) 
0.563 

(20.135) 
0.546 

(19.795) 
𝛽öä
(ì) 0.433 

(0.433)  0.379 
(12.41) 

0.263 
(5.231) 

0.368 
(11.502) 

0.198 
(5.516) 

𝛽öä
(^) -0.046 

(-1.978)  -0.072 
(-3.064) 

0.198 
(3.766) 

-0.039 
(-1.694) 

0.157 
(2.819) 

𝛽Ú
(ë)       

𝛽Ú
(ì)       

𝛽Ú
(^)       

𝛽U
(ë)     -0.479 

(-5.7443) 
-0.736 

(-8.436) 
𝛽U
(ì)      2.197 

(10.004) 
𝛽U
(^)      -1.91 

(-3.048) 
𝛾(ë)       
𝛾(ì)       
𝛾(^)       
𝛽öäÌ
(ë)        

𝛽öäÊ
(ë)        

𝛽ø
(ë)  -0.611 

(-12.432) 
-0.412 

(-8.033) 
-0.429 

(-7.569)   

𝛽ø
(ì)    0.379 

(3.30)   

𝛽ø
(^)    -1.262 

(-5.604)   

𝛽ù
(ë)       
𝑅X 0.631 0.618 0.639 0.643 0.6358 0.6483 
MSE 0.811 0.841 0.793 0.784 0.8021 0.7745 
QLike 0.947 0.947 0.936 0.959 0.9439 0.9511 
Avg. Score 9 10 5.33 7.33 6.67 5 

 

Table 3.a: S&P 500 Index - In-sample analysis. The table shows the OLS estimation of parameters reported 
with t-statistics in brackets, 𝑅X, MSE, and QLike losses standardized by the loss of the random walk model. 
In bold the models with the best result.	
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 C-HAR S-HAR HAR-RV-
CJ 

HAR-RV-
LCJ 

HAR-X HAR-
Combo 

RW 

𝑐 9.66x10-6 

(4.373) 
9.26x10-6 

(4.188) 
8.59x10-6 

(3.975) 
-9.60x10-6 

(4.188) 
-1.70x10-5 

(4.188) 
  

𝛽öä
(ë)     

 
0.346 

(14.705) 
  

𝛽öä
(ì)  0.433 

(14.347) 
  0.343 

(11.324) 
  

𝛽öä
(^)  -0.046 

(-1.973) 
  -0.2395 

(-8.638) 
  

𝛽Ú
(ë) 0.625 

(24.478) 
 0.546 

(19.795) 
0.461 

(16.618) 
   

𝛽Ú
(ì) 0.328 

(9.604) 
 0.198 

(5.516) 
0.211 

(5.837) 
   

𝛽Ú
(^) -0.025 

(-0.978) 
 

 0.157 
(2.819) 

0.141 
(2.229) 

   

𝛽U
(ë)   -0.189 

(-2.527) 
-0.281 

(-3.847) 
 
 

  

𝛽U
(ì)   2.396 

(11.642) 
2.579 

(12.76) 
   

𝛽U
(^)   -1.752 

(-3.040) 
-1.393 

(-2.398) 
   

𝛾(ë)    -0.0048 
(-10.78) 

   

𝛾(ì)    -0.0021 
(-1.836) 

   

𝛾(^)    0.00022 
(1.252) 

   

𝛽öäÌ
(ë)   0.442 

(7.459) 
     

𝛽öäÊ
(ë)   0.484 

(8.438) 
     

𝛽ø
(ë)        

𝛽ø
(ì)        

𝛽ø
(^)        

𝛽ù
(ë)     0.341 

(12.470) 
  

𝑅X 0.630 0.6316 0.648 0.666 0.646 0.6526 0.574 
MSE 0.813 0.8113 0.774 0.733 0.780 0.7655 1 
QLike 0.943 0.9467 0.951 1.1043 1.1179 0.9269 1 
Avg. Score 8.33 7.67 5.33 4.67 7.67 1.67 12.33 

 
Table 3.b: S&P 500 Index - In-sample analysis. The table shows the OLS estimation of parameters reported 
with t-statistics in brackets, 𝑅X, MSE, and QLike losses standardized by the loss of the random walk model. 
In bold the models with the best result. 
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4.1.2 Out-of-sample 

In this section we evaluate the forecasting performance of the 13 models on the basis of an 
out-of-sample analysis. The forecasts are based on re-estimating the parameters of the 
different models, each day with a fixed length rolling windows of 1000 days. The forecast 
adopted in this thesis is a direct forecast, this way is possible to avoid the forecast of 
exogenous variables. The forecasts are performed on h=1, 5, 10 and 22 days-ahead 
corresponding to one day, one week, two weeks and one month. In Table 6 we can see the 

results of the individual forecast analysis based on 𝑅X, MSE and QLike. An average result 
of the model based on the three previously motioned measures is also reported. The results 
obtained from a simultaneous comparison of all the models conducted by the Model 
Confidence Set, are shown in Table 4. Starting from  h=1, the more sophisticated models, 
such as those that include the jumps components, the Q -family (excluding the simplest AR-
Q model), and the HAR-X, are the worst. Indeed the benchmark model achieved better 
results compared to these models.  

Table 4: S&P 500 Index – Model Confidence Set based on MSE and Q-Like loss function computed with 999 
bootstrap replications, average block length of 5 and 𝛼 = 0.05. The included models are all of these with p-
value>	𝛼 
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We can affirm that for h=1 “simple is better”, in fact, the models that have obtained better 
results are the simple HAR-RV, C-HAR and AR-Q models. However, the preferred model 
for one day ahead forecast is the HAR-Combo. These results are also confirmed by the MCS. 
For one and two weeks-ahead forecast (h=5, 10) the results are quite similar. Models that 
include jumps and VIX get better forecasting performance as forecast time gets longer. The 
random walk model gets the worst results on both time horizons; results which are also 
shown by the simultaneous analysis. Also in these two cases the best model is the one that 
encloses them together, the HAR-Combo. Moving to the last forecast horizon considered, it 
is possible to deduce that jumps matter. Models that include the jumps component achieved 
a considerable improvement over shorter forecasting horizons. This conclusion is also 
confirmed by the results of MCS both using MSE and QLike loss function.  

 

 

Summarizing the above results we can say that with the increasing of forecast horizons the 
jumps allow us to obtain better predictions, especially when we consider the daily, weekly 
and monthly frequency. In a comparison vis-à-vis between the HAR-RV and C-HAR, the 
model that considers only the continuous components beats the classic one. Moving to the 
Q-family models, taking into account the time-varying nature of the measurement error 
does not help to get brilliant forecasts compared with other models especially in the one 

Figure 9: S&P 500 Index: HAR-Combo out-of-sample forecasts 
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month ahead-forecast. The model that gets the finest overall performance is the HAR-
Combo. Figure 9 shows the out-of-sample forecast of the HAR-Combo for all the forecasting 
horizons considered. Table 5 reports the p-values of the Berkowitz test relative to the out-
of-sample forecast of different models. It is possible to see that the null hypothesis is not 
rejected, at 5% significance level, for the HAR-RV, HAR-X, HAR-RV-LCJ, S-HAR, C-HAR 
and HAR-Q-D when h=10. 

 

 

 

 

 

 h=1 h=5 h=10 h=22 
HAR-RV 0.0000 0.0000 0.0819 0.0000 
AR-Q 0.0000 0.0000 0.0000 0.0000 
HAR-Q-D 0.0000 0.0000 0.3151 0.0000 
HAR-Q-F 0.0000 0.0000 0.0000 0.0000 
HAR-RV-J-D 0.0000 0.0068 0.0000 0.0000 
HAR-RV-J-F 0.0000 0.0000 0.0000 0.0000 
C-HAR 0.0000 0.0000 0.3830 0.0000 
S-HAR 0.0000 0.0000 0.6062 0.0000 
HAR-RV-CJ 0.0000 0.0000 0.0120 0.0000 
HAR-RV-LCJ 0.0000 0.0000 0.5424 0.0000 
HAR-X 0.0000 0.0000 0.3636 0.0000 
RW 0.0000 0.0387 0.0000 0.0000 

Table 5: S&P 500 Index – P-value of the Berkowitz test on the entire standard Gaussian distribution,  
relative to the out-of-sample analysis. 
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4.2 iShares China Large-Cap ETF (FXI) 

 
The iShares China Large-Cap ETF, also known as FXI, seeks to track the investment results 
of an index composed of large-capitalization Chinese equities that trade on the Hong Kong 
Stock Exchange. FXI is characterized by an exposure to 50 of the largest companies in China. 
The dataset contains five-minute observation, considering the trading hours 09:30:00 – 
15:55:00, from March 11, 2011 to October 30, 2020 for a total of 2400 days and 187200 
observations. The five-minutes log-returns, that are the basis to get the realized variance, 

were calculated as 𝑟",A = lnl𝑃" 𝑃",A⁄ n, where 𝑃" is the price of the index at time 𝑡 and ℎ is the 
five-minute interval. The HAR-X model, in this case, use the CBOE China ETF Volatility 
Index (VXFXI) that reflects the implied volatility for options of the FXI ETF.  

 
As previously mentioned, Figure 11 shows the 𝑅𝑉" and its decomposition in continuous, 𝐶", 

and jumps components, 𝐽". The highest peak in variance occurred during the China Black 
Monday in August 2015. The strong uncertainty resulting from this shock is strongly 
reflected by a bearish market. Moreover, this period is characterized by an highly persistent 
variance, higher than the one that follows the Covid-19 pandemic crisis. As we can see in 
the last part of the dataset, the realized variance returned to almost normal pre-crisis level. 
This countertrend is mainly due to China’s ability to stem the pandemic spread. However, 

Figure 10: iShares China Large Cap ETF - Daily price level and daily returns 
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as regards the jumps process, the pike has been reached during the Covid-19 crisis period 
and jumpy days are 1233 representing 51.37% of the total numbers of days.  

Table 7 shows descriptive statistics of 𝑟", 𝑅𝑉",	𝐶" and 𝐽" for the entire sample and for the  

 
Covid-19 period. From the data we can see that the realized variance in the pandemic crisis 
period, is slightly above the mean but far below the U.S one (2.77% versus 7.51%). 
 

Full period 16/03/2011 – 30/10/2020 
 𝑟" 𝑅𝑉" 𝐶" 𝐽" 
Mean 0.0003 0.018 0.016 0.001 
Std. dev. 0.007 0.029 0.026 0.005 
Skewness -0.116 11.974 11.610 12.423 
Kurtosis 6.282 259.117 241.448 245.639 
Min -0.040 0.0009 0.0009 0 
Max 0.040 0.825 0.726 0.146 
     

Covid-19 period 24/02/2020 – 30/10/2020 
 𝑟" 𝑅𝑉" 𝐶" 𝐽" 
Mean 0.0003 0.027 0.024 0.003 
Std. dev. 0.008 0.050 0.045 0.012 
Skewness 0.071 4.349 4.462 9.895 
Kurtosis 5.817 24.069 26.104 114.101 
Min -0.033 0.002 0.002 0 
Max 0.033 0.362 0.362 0.146 
     

Table 7: iShares China Large-Cap ETF –Descriptive statistics of 𝑟", 𝑅𝑉", 𝐶"	𝑎𝑛𝑑	𝐽".	
 

Figure 11: iShares China Large Cap ETF - Realized Variance, Continuous component and Jumps process 
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4.2.1 In-sample  
 
A first and interesting step is to assess the dynamics of the parameters of the HAR-RV model. 
From Figure 12 we can easily see the shock in the parameters occurred after the Chinese 
Black Monday. The daily coefficient declined from roughly 0.6 to 0.1, while the weekly 
coefficient increased in magnitude. It is noteworthy how the daily coefficient has acquired 
new importance after the Covid-19 crisis in February 2020. After taking this into 
consideration it is necessary to evaluate the fit for each model. Tables 8.a and 8.b contain 

results of the estimations performed throughout the entire period. The table reports the 𝑅X, 
MSE , QLike and as usual, the average score of the three previous mentioned measures. 
Looking at the coefficients of the HAR-RV and C-HAR model we can easily notice the 
significance of the daily, weekly and monthly parameters with a slightly higher incidence 
of the weekly parameter on the daily one in the first model. The results from the S-HAR 
model where the parameters are in line with the theory proposed by Patton and Sheppard 
(2015) are very interesting. Respectively the parameter of the negative and positive 
semivariance are positive and negative. The intuition is that there is a positive relation 
between the total realized variance and the one caused by negative returns.  
 

 
 Figure 12 iShares China Large-Cap ETF – HAR-RV coefficients based on a rolling window of 1000 days. 

 

Continuing the analysis we can see that the models that include jumps processes do not get 
good in-sample results and between the different horizons, the weekly jumps are always 
significant. Moving on to the results of the Q models (AR-Q, HAR-Q-D and HAR-Q-F) we 



 47 

can notice that the parameters are consistent with the results of Bollerslev et al.  (2015). The 

daily adjustment, 𝛽ø
(ë) , is negative and significant for all three models. As expected, the 

implied volatility parameter is positive and significative in HAR-X. The model with the best 
in-sample fit is the HAR-Q-F followed by the HAR-Combo while RW is the least accurate.  
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 HAR-RV AR-Q HAR-RV-
Q-D 

HAR-RV-
Q-F 

HAR-RV-
J-D 

HAR-RV-
J-F 

𝑐 1.46x10-5 

(5.280) 
1.22x10-5 

(5.120) 
8.30x10-6 

(3.072) 
3.38x10-6 

(1.000) 
1.49x10-5 

(5.363) 
1.31x10-5 

(4.580) 
𝛽öä
(ë) 0.310 

(12.79) 
 0.711 

(19.002) 
0.666 

(16.513) 
0.330 

(11.203) 
0.341 

(11.522) 
𝛽öä
(ì) 0.353 

(9.083) 
 0.154 

(3.831) 
0.280 

(4.074) 
0.345 

(8.701) 
0.247 

(5.047) 
𝛽öä
(^) 0.125 

(3.105) 
 0.046 

(1.194) 
0.061 

(0.876) 
0.124 

(3.070) 
0.139 

(2.222) 
𝛽Ú
(ë)       

𝛽Ú
(ì)       

𝛽Ú
(^)       

𝛽U
(ë)     -0.133 

(-1.201) 
-0.310 

(-2.548) 
𝛽U
(ì)      0.903 

(3.066) 
𝛽U
(^)      0.211 

(0.353) 
𝛾(ë)       
𝛾(ì)       
𝛾(^)       

𝛽öäÌ
(ë)        

𝛽öäÊ
(ë)        

𝛽ø
(ë)  -1.558 

(-19.028) 
-1.303 

(-13.707) 
-1.164 

(-10.966) 
  

𝛽ø
(ì)    -0.808 

(-2.039) 
  

𝛽ø
(^)    -1.272 

(-1.362) 
  

𝛽ù
(ë)       

𝑅X 0.346 0.387 0.394 0.396 0.3468 0.350 
MSE 0.714 0.669 0.661 0.658 0.713 0.709 
QLike 0.964 0.965 0.957 0.956 0.964 0.966 
Avg. Score 9.33 6 3.33 2.33 8.33 9 
       

Table 8.a: iShares China Large-Cap ETF - In-sample analysis. The table shows the OLS estimation of 
parameters reported with t-statistics in brackets, RX, MSE, and QLike losses standardized by the loss of the 
random walk model. In bold the models with the best result. 
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 C-HAR S-HAR HAR-RV-
CJ 

HAR-RV-
LCJ 

HAR-X HAR-
Combo 

RW 

𝑐 1.67x10-5 

(6.101) 
1.22x10-5 

(4.586) 
1.31x10-5 

(4.580) 
-1.69x10-6 

(4.580) 
-6.42x10-6 

(-1.734) 
  

𝛽öä
(ë)     0.293 

(12.244) 
  

𝛽öä
(ì)  0.263 

(6.944) 
  0.210 

(4.994) 
  

𝛽öä
(^)  0.102 

(2.646) 
  -0.085 

(-1.814) 
  

𝛽Ú
(ë) 0.371 

(13.550) 
 0.341 

(11.522) 
0.296 

(10.193) 
   

𝛽Ú
(ì) 0.346 

(7.989) 
 0.247 

(5.047) 
0.213 

(4.273) 
   

𝛽Ú
(^) 0.129 

(2.920) 
 0.139 

(2.222) 
0.026 

(0.359) 
   

𝛽U
(ë)   0.030 

(0.284) 
0.016 

(0.157) 
   

𝛽U
(ì)   1.150 

(4.263) 
1.111 

(4.209) 
   

𝛽U
(^)   0.350 

(0.636) 
0.774 

(1.428) 
   

𝛾(ë)    -0.004 
(-8.798) 

   

𝛾(ì)    -0.002 
(-2.094) 

   

𝛾(^)    -0.002 
(-1.114) 

   

𝛽öäÌ
(ë)   -0.389 

(-7.269) 
     

𝛽öäÊ
(ë)   1.326 

(17.969) 
     

𝛽ø
(ë)        

𝛽ø
(ì)        

𝛽ø
(^)        

𝛽ù
(ë)     0.170 

(8.410) 
  

𝑅X 0.341 0.399 0.350 0.387 0.365 0.392 0.2941 
MSE 0.719 0.655 0.709 0.669 0.693 0.664 1 
QLike 0.964 0.970 0.966 0.977 0.956 0.956 1 
Avg. Score 10.33 4.33 8.66 8 5.33 3 13 
        

Table 8.b: iShares China Large-Cap ETF - In-sample analysis. The table shows the OLS estimation of 
parameters reported with t-statistics in brackets, RX, MSE, and QLike losses standardized by the loss of the 
random walk model. In bold the models with the best result. 
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4.2.2 Out-of-sample 

As seen previously, the forecasts are performed on h=1, 5, 10, 22 days-ahead corresponding 
to one day, one week, two weeks and one month out-of-sample analysis. In Table 11 reports 

the results of the individual forecast analysis based on 𝑅X, MSE and Qlike. Furthermore it 
reports, average results of the model based on the three previously motioned measures. The 
results obtained from a simultaneous comparison conducted by the Model Confidence Set 
are shown in Table 9. Starting from h=1 we can see that the model that allows for a 
parameter correction achieved better results. HAR-Q-D and AR-Q are the models with the 
best fit.  

In contrast, the models that include the jumps components, do not get good performance in 
the one day-ahead forecast. Excluding the models from the Q family, the best results is 
achieved by the HAR-X. The previous outcomes are also confirmed by the MCS in Table 9. 
When continuing the analysis for longer forecast time horizons, is evident that models with 
jumps acquire predictive power. However, also in the case of h=5, 10, the models with the 

Table 9: iShares China Large Cap ETF– Model Confidence Set based on MSE and Q-Like loss function 
computed with 999 bootstrap replications, average block length of 5 and 𝛼 = 0.05. The included models are 
all of these with p-value>	𝛼 



 51 

best out-of-sample performance are the HAR-X, HAR-Q-D and HAR-Combo. These results 
are also confirmed for the longer forecast period. In the one month-ahead forecast, the best 
model according to the individual and simultaneous comparison, is the HAR-X followed by 
the HAR-Combo. This last model, in the S&P 500 Index, was the preferred in almost all of 
the forecasted times considered, while for the FXI ETF it has never been the first choice. 
Figure 13 shows the comparison between the best forecast models and the realized value on 
the different time horizons considered. Where h=1 is represented by HAR-Q-D and h=5, 10, 
22 represented by the HAR-X. Table 10 reports the p-values of the Berkowitz test relative to 
the out-of-sample forecast of different models. It is possible to see that the null hypothesis 
is not rejected, at 5% significance level, for the RW (h=1,5) and AR-Q (h=3) . 

 

Figure 13: iShares China Large Cap ETF – Out-of-sample forecasts . h=1: HAR-Q-D, h=5,10,22 HAR-X 

Table 10: iShares China Large Cap ETF – P-value of the Berkowitz test on the entire standard Gaussian 
distribution,  relative to the out-of-sample analysis. 
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4.3 Apple Inc (AAPL) 

Founded in 1976 by Steve Jobs and Steve Wozniak, Apple Inc is an American multinational 
corporation specialized in computer, software, consumer electronics and online services. 
With more than 506 stores and more than 147000 employees. It is the 3th largest company 
in the world and also the one with the greatest weight within the S&P 500 Index at the end 
of December 2020. After the 2018 correction, the Apple Inc stock price increased steadily 
until the Covid-19 crisis. However, a strong rebound allowed the title to reach historic highs 
at the beginning of September 2020. The dataset contains five-minute observation, 
considering the trading hours 09:30:00 – 15:55:00, from February 24, 2011 to October 30, 2020 
for a total of 2412 days and 188136 observations. The HAR-X model, in this case, uses the 
CBOE Apple VIX Volatility Index (VXAPL) that estimates the expected 30-day volatility of 
Apple Inc stock returns. 

 

As usual the five-minutes log-returns (that are the basis to get the realized variance) were 

calculated as 𝑟",A = lnl𝑃" 𝑃",A⁄ n, where 𝑃" is the price of the index at time 𝑡 and ℎ is the five-
minute interval. Figure 15 depicts the realized variance and its decomposition in continuous 
and jumps components. From the trend of realized variance we can extract two key 
moments: China Black Monday, August 2015 and Covid-19 crisis, February 2020. In 

Figure 14: Apple Inc - Daily price level and daily returns 
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particular, the highest level of volatility was achieved during the pandemic crisis, and the 
following period is characterized by a level of volatility above average with another 
significant peak in September 2020.  

Looking at Table 12 we can see that the mean value of the realized variance recorded during 
the Covid-19 crisis, is much higher than that of the whole period, 14.69% vs 4.40%. In 
addition, with a more general outlook to the other financial instruments considered in this 
thesis, the mean realized variance of Apple Inc is the highest evidence that the title is 
impacted not only by the systematic risk, but also by the idiosyncratic one. It should be 
noted that the jumpy days are about 47% of the entire period, slightly less compared to the 
S&P 500 and iShares China Large-Cap ETF.  

 

 

 

 

 

 

Figure 15: Apple Inc- Realized Variance, Continuous component and Jumps process 
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Full period 24/02/2011 – 30/10/2020 
 𝑟" 𝑅𝑉" 𝐶" 𝐽" 
Mean -0.0003 0.044 0.039 0.004 
Std. dev. 0.012 0.080 0.073 0.014 
Skewness -0.127 9.063 9.525 12.396 
Kurtosis 5.542 112.158 125.915 207.611 
Min -0.084 0.002 0.0021 0 
Max 0.060 1.274 1.269 0.287 
     

Covid-19 period 14/02/2020 – 30/10/2020 
 𝑟" 𝑅𝑉" 𝐶" 𝐽" 
Mean 4.46x10-5 0.146 0.133 0.013 
Std. dev. 0.020 0.220 0.198 0.042 
Skewness -0.276 3.212 3.374 5.140 
Kurtosis 4.226 13.731 15.405 31.181 
Min -0.084 0.011 0.006 0 
Max 0.060 1.274 1.243 0.287 
     
     

Table 12: Apple Inc –Descriptive statistics of 𝑟", 𝑅𝑉", 𝐶"	𝑎𝑛𝑑	𝐽". 

 

4.3.1 In-sample  

Looking at Figure 16 we can see that until the Covid-19 crisis the coefficient with the biggest 
impact on realized variance are the daily and the monthly parameters. After the pandemic 
shock, the weekly coefficient increased in importance This phenomenon recurs in each 
financial instrument seen previously. Tables 13.a and 13.b show the results of the full sample 

estimation of the different models, also taking into consideration 𝑅X, MSE, Qlike and the 
average score. The daily, weekly parameters of the HAR-RV model are significant while the 
monthly is not. Interestingly, if we only consider the continuous component of realized 
variance, in C-HAR model, the monthly parameter becomes significant. However, the full 
sample fit of these two models is very similar.  
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Figure 16: Apple Inc – HAR-RV coefficients based on a rolling window of 1000 days. 

 

The parameters of the S-HAR confirm that the variance, deriving from negative returns, has 
a positive and direct impact on the total realized variance, confirming the result of Patton 
and Sheppard (2015). The results of the AR-Q, HAR-Q-D and HAR-Q-F confirm the 

negativity and significance of the 𝛽ø
(ë). Taking into account the time-varying nature of the 

measurement error, allows us to obtain better results than those of the parsimonious HAR-
RV model. In regards to the models that include the jumps components we can see that the 
daily jumps are not significant. However, the weekly and monthly jumps are significant for 
all the models we have considered. In addition the weekly jumps contribute positively to 
the daily realized variance while the monthly jumps contribute negatively. A good fitting is 
achieved by the HAR-RV-LCJ, the model that includes the continuous components of 
realized variance, jumps and leverage effect. A very strong fit is also obtained by the model 

that includes the implied volatility. From the results is evident that the 𝛽8
(ë)  is strongly 

significative and positive. As for the S&P 500 Index, the model with the best in the sample 
fit is the one that collects all the others, the HAR-Combo. 
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 HAR-RV AR-Q HAR-RV-
Q-Day 

HAR-RV-
Q-F 

HAR-RV-
J-D 

HAR-RV-
J-F 

𝑐 3.41x10-5 

(5.218) 
3.21x10-5 

(4.742) 
1.93x10-5 

(2.740) 
3.57x10-6 

(0.351) 
3.40x10-5 

(5.214) 
3.50x10-5 
(5.384) 

𝛽öä
(ë) 0.360 

(14.919) 
0.861 

(27.458) 
0.544 

(12.864) 
0.540 

(11.878) 
0.364 

(13.356) 
0.364 

(13.401) 
𝛽öä
(ì) 0.360 

(9.537) 
 0.314 

(8.146) 
0.235 

(3.319) 
0.358 

(9.383) 
0.256 

(5.899) 
𝛽öä
(^) 0.07 

(2.182) 
 0.057 

(1.568) 
0.25304 
(3.072) 

0.080 
(2.199) 

0.220 
(3.080) 

 
𝛽Ú
(ë)       

𝛽Ú
(ì)       

𝛽Ú
(^)       

𝛽U
(ë)     -0.030 

(-0.287) 
-0.232 

(-2.017) 
𝛽U
(ì)      1.357 

(4.830) 
𝛽U
(^)      -1.591 

(-2.60) 
𝛾(ë)       
𝛾(ì)       
𝛾(^)       

𝛽öäÌ
(ë)        

𝛽öäÊ
(ë)        

𝛽ø
(ë)  -0.665 

(-9.651) 
-0.382 

(-5.279) 
-0.381 

(-4.745) 
  

𝛽ø
(ì)    0.236 

(1.376) 
  

𝛽ø
(^)    -0.8 

(-2.644) 
  

𝛽ù
(ë)       

𝑅X 0.407 0.385 0.414 0.416 0.407 0.413 
MSE 0.743 0.770 0.734 0.732 0.743 0.735 
QLike 0.968 0.970 0.965 0.966 0.967 0.971 
Avg. Score 8.66 10.66 4.67 4.33 7.67 8.33 
       

Table 13.a: Apple Inc - In-sample analysis. The table shows the OLS estimation of parameters reported with 
t-statistics in brackets, 𝑅X, MSE, and QLike losses standardized by the loss of the random walk model In bold 
the models with the best result.	
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 C-HAR S-HAR HAR-RV-
CJ 

HAR-RV-
LCJ 

HAR-X HAR-
Combo 

RW 

𝑐 3.42x10-5 

(5.215) 
3.15x10-5 

(4.890) 
3.50x10-5 

(5.384) 
1.12x10-5 
(0.979) 

-5.52x10-5 
(-6.446) 

  

𝛽öä
(ë)     0.264 

(11.047) 
  

𝛽öä
(ì)  0.365 

(9.790) 
  0.264 

(4.814) 
  

𝛽öä
(^)  0.076 

(2.120) 
  -0.246 

(-6.001) 
  

𝛽Ú
(ë) 0.410 

(15.603) 
 0.364 

(13.401) 
0.312 

(11.775) 
 

   

𝛽Ú
(ì) 0.336 

(8.240) 
 0.256 

(5.899) 
0.283 

(6.483) 
   

𝛽Ú
(^) 0.138 

(3.430) 
 0.220 

(3.080) 
0.190 

(2.442) 
   

𝛽U
(ë)   0.131 

(1.239) 
-0.038 

(-0.374) 
   

𝛽U
(ì)   1.614 

(6.133) 
1.802 

(7.011) 
   

𝛽U
(^)   -1.371 

(-2.488) 
-1.440 

(-2.699) 
   

𝛾(ë)    -0.008 
(-12.324) 

   

𝛾(ì)    0.003 
(1.697) 

   

𝛾(^)    -0.001 
(-0.425) 

   

𝛽öäÌ
(ë)   -0.103 

(-1.623) 
     

𝛽öäÊ
(ë)   0.831 

(12.919) 
     

𝛽ø
(ë)        

𝛽ø
(ì)        

𝛽ø
(^)        

𝛽ù
(ë)     0.528 

(15.204) 
  

𝑅X 0.399 0.422 0.413 0.453 0.458 0.434 0.361 
MSE 0.735 0.724 0.735 0.686 0.679 0.710 1 
QLike 0.967 0.968 0.971 0.986 0.997 0.962 1 
Avg. Score 8.67 5 8 5 4.67 2.33 13 
        

Table 13.b: Apple Inc - In-sample analysis. The table shows the OLS estimation of parameters reported with 
t-statistics in brackets, 𝑅X, MSE, and QLike losses standardized by the loss of the random walk model. In 
bold the models with the best result.	
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4.3.2 Out-of-sample  

As previously, the forecasts are performed on h=1, 5, 10, 22 days-ahead corresponding to 
one day, one week, two weeks and one month out of sample analysis. Table 16 reports 

results of the individual forecast analysis based on 𝑅X, MSE and QLike while the outcome 
of the simultaneous comparison performed by the Model Confident Set, both with MSE and 
QLike loss function are shown in Table 14. Starting from the classic HAR-RV model we can 
see that especially for one and five days-ahead the model is able to achieve a better forecast 
than more complex models. In the shortest forecast period this model is one of the finest. 
The HAR-RV is also generally preferred to the C-HAR model for h=1,5 and 10. The C-HAR 
model achieved a better result in one month-ahead forecast. Moving to the Q-family models 
the simple AR-Q is preferred to the HAR-Q-D and HAR-Q-F particularly for two weeks  and 
one month ahead forecast. In addition, for h=10, the AR-Q is the model with the greatest 
predictive power. For one days-ahead the HAR-Q-D, HAR-Q-F and AR-Q are not the best 
choice.  

Table 14:  Apple Inc– Model Confidence Set based on MSE and Q-Like loss function computed with 999 
bootstrap replications, average block length of 5 and 𝛼 = 0.05. The included models are all of these with p-
value>	𝛼 
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Looking at the results of the models that include jumps components we note that the 
prediction power increases with the forecast time horizon. All the models get unsatisfactory 
results for one day ahead forecast. When comparing the HAR-RV-J-D and HAR-RV-J-F 
models, we see the one which includes, not only the daily but also the weekly and monthly 
jumps achieved better results. It is clearly visible that the jumps matter especially in the one 
month-ahead forecast where the best models are the HAR-RV-J-F, HAR-RV-CJ and HAR-
RV-LCJ. Unlike the results of the S&P500 Index, but in line with those seen for the iShares 
China Large-Cap, the HAR-X model achieved solid outcomes on every forecast period 
considered, especially for h=10.   

The results obtained from density forecast analysis in Table 15 are noteworthy. The null 
hypothesis is not rejected at the 5% significance level for the following models: 

• h=1: HAR-RV, HAR-RV-Q-F 

• h=5: HAR-Q-F 

• h=10: HAR-RV, HAR-RV-J-D, HAR-RV-J-D, HAR-RV-J-D, HAR-RV-CJ,            
HAR-RV-LCJ and HAR-X. 

It is important to note that on a 2 weeks forecasting horizon the inclusion of the jumps 
components allows us to obtain good density forecast results as proof that for long forecast 
times the jumps contribute to improve the prediction performance. Figure 17 shows the 
comparison between the best forecast model and the realized value on the different time 
horizons considered. For different forecast time horizons the models with the finest results 
are respectively: HAR-Combo, HAR-X, HAR-Combo and HAR-RV-J-F 

Table 15: Apple Inc – P-value of the Berkowitz test on the entire standard Gaussian 
distribution,  relative to the out-of-sample analysis.  
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Figure 17: Apple Inc - HAR-Combo Out-of-sample forecasts. h=1, HAR-Combo; h=2, HAR-X; h=10 HAR-
Combo; h=22, HAR-RV-J-F 
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5 Variance risk premium and returns prediction 

When investing in a security, investors face at least two sources of uncertainty, namely the 
uncertainty of returns, represented by the returns variance, and the uncertainty of the 
returns variance itself. This gives rise to the so called variance risk premium, introduced by 
Carr and Wu (2009), which is measured as the difference between the risk neutral and 
physical expectations of an asset’s total return variation. The variance risk premium not 
only captures aggregate market risk aversion but also has been found to carry predictability 
for future equity returns (Bollerslev, Tauchen and Zhou, 2008). The VRP is therefore 
computed as the difference between a squared measure of implied volatility deriving from 
option prices and the expected realized variance computed with high frequency historical 
returns as shown in the theoretical Chapter 2. Table 1 shows the financial instruments used 
in the following analysis with the relative implied volatility measures. Following the 
notation of Rombouts, Stentoft and Violante (2017), a generic VRP  is defined as 

 Π","HE} = 𝐸"
øM𝑄𝑉","HEO − 𝐸"JM𝑄𝑉","HEO (5.1) 

Where 𝜏=1 month, 𝑄𝑉","HE is the (latent) quadratic variation of the underlying price process 
and the conditional expectations are under the risk neutral (Q) and physical (P) measures, 
respectively. According to Carr and Wu (2009) the VRP is the expected profit to the long 
position of a variance swap contract and is expected to be positive. In practice, the risk 

neutral measure, 𝐸"
øM𝑄𝑉","HEO, is directly computed from the square of option market implied 

volatility index, while the physical measure, 𝐸"
øM𝑄𝑉","HEO, is the forecast of realized variance 

over the next month using five minutes returns computed with the models that achieved 
the best out-of-sample performance in the previous Chapter. In particular the models used 
in the computation of the VRP are shown in Table 16. Figure 18 depicts the variance risk 
premium for the different financial instruments considered. As expected VRP is generally 
positive for all the three financial instruments. However, it becomes slightly negative for 
S&P 500 Index and Apple Inc during the crisis period, particularly during the Covid-19 
crisis. Regarding the difference in VRP which results from the use of different models, is it 
possible to note that during less volatile period the spread is limited, while during more 
volatile periods the difference is more marked. This is notable in the variance risk premium 
deriving from the S&P500 Index during the pandemic crisis where the second negative 
spike in VRP is not present if we consider the HAR-Combo. For a better understanding of 
the data, Table 17 shows the descriptive statistics of the different VRP’s. 
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The VRP can also be estimated with a random walk model for realized variance, however, 
from the results in the previous paragraph we can assess that the predictions of random 
walk are always inferior to the other models, particularly in one month-ahead forecast. 
Figure 18 depicts the VRP’s based on random walk model. These time series present high 
negative values mainly due to the asynchronicity in time between the risk neutral and 
physical measures. 

 Model 

S&P 500 Index 
HAR-Combo 
HAR-RV-J-F 

iShares China Large-Cap ETF 
HAR-Combo 

HAR-X 

Apple Inc 
HAR-RV-LCJ 
HAR-RV-J-F 

Table 16: One month-ahead forecast winning models 

Table 17: Descriptive statistics for different VRP computed with the winning models 
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Figure 18: Variance Risk Premium of the winning models 

Figure 19: Variance Risk Premium of the random walk model 
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5.1 Returns predictability – full period 

Motivated by the fact that the variance risk premium harbors information about aggregate 
risk aversion, Bollerslev et al. (2009) demonstrated that it has predictive power for future 
monthly returns. The predictive regression is defined as 

 
1
ℎr𝑟"Hb = 𝛼 + 𝛽Π","H_}

A

b�_

+ 𝜀"HA," (5.2) 

where h is the forecast horizon, 𝑟" is the monthly return for month 𝑡 and Π","H_}  is one of the 
VRP’s estimated with the winning model exhibit in Table 16. Predictability is measured by 

the adjusted 𝑅X , and the possible serial correlation generated by the overlapping of the 
averaging returns is corrected by the Newey-West Standard Errors. To compare the returns 
predictably obtained with the winning model we also include the results obtained with the 

random walk, Π","H_}  , computed by 

 Π","H_ö& =𝐸"
øM𝑄𝑉","HEO − 𝑅𝑉"B_," (5.3) 

Table 18 show the results of the above regression respectively for S&P 500 Index, iShares 
China-Large-Cap ETF and Apple Inc stock. Starting from the first asset we find that the peak 

in 𝑅X is reached in h=1 for all the models considered. Particularly for the one month-ahead 

forecast the results are in favor of the Π","H_ö&  while, for longer prediction time horizons, the 
results of the two more sophisticated model are superior and quite similar. For a better 

understand of the data, Figure 20 depicts the pattern in the 𝑅X for all the models. Moving to 

the Chinese ETF we can observe puzzling results. The 𝑅X are mixed until h=5, after that the 

clear superior performance of Π","H_ÈLö–ù  and Π","H_ÈLö–Ú"^#"	is	evident.	 The peak of 3.51% is 

reached by the Π","H_ÈLö–ù for the 12 month ahead forecasting. For Apple Inc the results are 

consistent with those of Bollerslev et al. (2009). At the 6th months ahead the pattern in 𝑅X 

follows an inverse U-shaped curve, with a peak of 6.68% shown by the Π","H_
ÈLö–öä–�ÚU. In this 

case, the difference in using the VRP computed with the winning model compared to the 
random walk is particularly evident. 
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Table 18: Return predictability results – Full sample. The Table shows the results of the return predictability 
regression for the S&P 500 Index, iShares China Large-Cap ETF and Apple Inc. t-statistics in brackets is 
computed using Newey-West standard errors. 𝑅X is in percentage. 
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5.2 Returns predictability – excluding Covid-19 pandemic crisis 

The previous analysis is carried out considering the Covid-19 pandemic crisis with its 
extreme impact on both the realized variance side and returns side. The following results, 
presented in Table 19, show the outcome of return prediction regression, without 
considering the pandemic shock. The first result of excluding this crisis is an important and 

general increase in 𝑅X except for the iShares China Large-Cap. For this ETF the outcomes 
are puzzling considering that the results of using the random walk are in line with the other 
more sophisticated model. Nevertheless, this may be due to fact that the pandemic crisis is 
not the only relevant shock. We can observe from Figure 18 that the VRP of the ETF is 
affected by a period of high instability in 2015, much more that the other two financial 
instruments. The greatest improvement is for the S&P 500 Index, especially if we compare 

the results of the most sophisticated models with the random walk. The increase in 𝑅X is 
also confirmed by the results of Apple Inc stock. Even in this case the forecast of the VRP 
generated by the winning model is superior to the random walk. These results lead us to 
the conclusion that the VRP has predictive power for returns especially when we exclude 

Figure 20:Returns predictability 𝑅Xpattern – Full sample. The figure shows the pattern of the 𝑅X deriving 
from the returns prediction regression for the S&P 500 Index, iShares China Large-Cap ETF and Apple 
Inc. 
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the Covid-19 pandemic crisis or more in general, during a low volatility period. It is also 
evident that using the VRP deriving from the winning model, summarized in Table 16, it is 
possible to obtain better prediction results than when using the random walk model. 

 

Table 19: Return predictability results – Excluding Covid-19 crisis. The Table shows the results of the return 
predictability regression for the S&P 500 Index, iShares China Large-Cap ETF and Apple Inc. t-statistics in 
brackets is computed using Newey-West standard errors. 𝑅X is in percentage. 
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Table 20: Returns predictability 𝑅Xpattern – Excluding Covid-19 crisis. The figure shows the pattern of the 𝑅X 
deriving from the returns prediction regression for the S&P 500 Index, iShares China Large-Cap ETF and Apple 
Inc. 
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6 Conclusion 
 
This thesis deals with the measurement as well as the forecast of realized variance, 
computed by using high frequency data of three times series: S&P 500 Index, iShares China 
Large-Cap ETF and Apple Inc. The main problem with asset volatility is that it is not directly 
observable and must be estimated. A common measure is to use the daily square return, but 
as we have seen in the second Chapter, we can embed more information in the computation 
of volatility using high frequency data. 
 
Specifically, in the first part of the thesis we introduced the theory behind realized volatility 
by defining the concept of the logarithmic price process, quadratic variation and realized 
variance computed with the average sum of squares of log returns samples at high 
frequency. To deal with the market microstructure noise we use 5 minute interval. The last 
part of Chapter 2 is dedicated to the decomposition of realized variance into continuous and 
jump components using the method proposed by Corsi et al. (2010). This method allowed 
us to overcome the problem of underestimating jumps. Then, in the 3rd Chapter, we 
introduced the 12 models used to forecast the realized variance, starting from the 
parsimonious HAR-RV model proposed by Corsi (2009) and addressed more complex 
models such as HAR-RV-LCJ, HAR-RV-CJ and HAR-Q-F. Thus, we question whether 
adding or modifying the starting model leads to an improvement in predictive power. The 
last part of the Chapter is dedicated to the evaluation of the forecast, introducing both the 
point forecast and density forecast evaluation methodology.  
 
Moving to the empirical application, we can immediately see many points of interest. The 
first one is the dynamics of the HAR-RV components for the three financial instruments. In 
particular, we see that during the less volatile periods, for the S&P 500 Index and Apple Inc 
stock, the volatility is driven by the daily component while after the Covid-19 pandemic 
crisis, the weekly components take over. However, for iShares China Large-Cap we 
observed a different outcome. During low volatility periods, the weekly component drives 
the volatility while the daily parameter increases in importance only after the turmoil period 
at the end of 2019 and after the pandemic crisis. Another key point of interest is the in-
sample fitting results. The most complex models get the best results with respect to the 
simplest such as the HAR-RV and C-HAR model. In particular, we can observe that the 
results deriving from Apple Inc and iShares China Large-Cape are quite similar. For both 
instruments the best models are the HAR-Combo, HAR-Q-D and HAR-Q-F models. If we 
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consider the three instruments together the model with the best in-sample fitting is the 
HAR-Combo.  
 
The most interesting part of the thesis is the out-of-sample forecast comparison based on 
four different forecast horizons: one day, one week, two weeks and one month. Looking at 
the results for each financial instrument, we can see that there is not a single model that 
constantly outperform the others. However, it is possible to see a fil rouge that connects the 
three assets:  
 

i. In one day-ahead forecast simple is better in fact the parsimonious HAR-RV model 
generally outperformed the most complex models. 

ii. The performance of the Q-family models generally decreases with an increase in 
forecast time horizons. This is especially evident for the S&P 500 Index and iShares 
China Large-Cap ETF. Excluding the random walk, the HAR-Q-F model is the least 
performing of all the three instruments and for all the forecast periods. 

iii. Jumps matter. The models that included the jumps component get good out-of-
sample forecasting results especially on longer horizons. For example, the two best 
models for the one month ahead forecast with regards to the theiShares China Large-
Cap ETF are the HAR-RV-LCJ and HAR-RV-J-F. 

iv. HAR-Combo is a solid model that achieves very good results not only in-sample but 
also in the out-of-sample analysis. 

 
It is also possible to predict returns with volatility. In Chapter 5, we used the one month 
ahead volatility forecast in order to compute the Variance Risk Premium. In particular, we 
saw that using the VRP which derives from the best one month-ahead realized variance 
forecasting models (Table 12) we can obtain a better returns prediction with respect to the 
use of the random walk model. Moreover, we saw that when excluding the Covid-19 
pandemic shock we obtain an important increment in the predictive power of the VRP 
especially for the S&P 500 Index and Apple Inc stock while for the iShares China Large-Cap 
ETF the results are quite puzzling. 
 
In conclusion, we can affirm that for the three different financial instruments considered, no 
forecast model definitively prevails in comparison to the others. This leads us to two 
possible improvements, the first one directly concerns the forecasting models, and the latter 
the typology of assets which object of our analysis. Related to the models, we saw the good 
results of the HAR-Combo, however, this model is simply computed with an average of the 
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other 11 models. A simple improvement may be to exclude, or underweight, models that 
have had unsatisfactory predictions. We can also move to models that are not based on the 
HAR-RV such as the MEM (Engle and Gallo (2006), Mixture-MEM (Lanne (2006)), HEAVY 
(Shephard and Sheppard (2010)) and Realized GARCH (Hansen et al. (2012)). Concerning 
the second point of improvement, we can continue the analysis to other Indices, ETFs and 
stocks to assess whether the results obtained for the S&P 500 Index, iShares China Large-
Cap ETF and Apple Inc, are confirmed. However, the biggest disadvantage of the use of 
high frequency data remains the difficulty in dealing with a considerable amount of data as 
well as it’s availability. 
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