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Abstract

This work delves into the mathematical foundations and elaborates on a methodology for network

generation based on spectral properties of graph-associated matrices. First, a comprehensive mathe-

matical framework focusing on eigenvalues, eigenvectors, and matrix diagonalization was established.

Next, network theory was explored, detailing basic concepts, standard models for network genera-

tion, and the spectral properties of matrices related to graphs.

Then, the Spectral Graph Forge (SGF) method was introduced, leveraging these spectral prop-

erties to generate synthetic networks with the same community structure of a target one. Detailed

mathematical formulations and coding implementations are provided, demonstrating the application

of the method to both small and large networks. Finally, the algorithm was extended by introducing

new transformations, with the goal to broaden the range of global properties that can be preserved

in the synthetic network.
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Chapter 1

Introduction

Network science is a field that focuses on the study of complex networks, aiming to analyze and

understand the structure and dynamics of interconnected systems. This work delves into the math-

ematical and theoretical frameworks underlying network generation and analysis, with a specific

focus on spectral methods. By leveraging the properties of matrices associated with graphs, it aims

to dissect and extend a spectral-based methodology for generating synthetic networks that closely

resembles community structures, or other global properties, of real world networks. The work is

structured to provide an understanding of both the foundational mathematics and the applications

in network science of the spectra of matrices.

1.1 Research scope

This work aims to thoroughly study the spectra of matrices from a mathematical standpoint and

to understand what the spectrum of both well-known and lesser-known matrices in network theory

represents and what information it encodes. We then apply this knowledge to the generation of

synthetic networks.

1.2 Outline

This dissertation is organized into four chapters, each addressing a specific aspect of our research.

Following this introduction, the work proceeds with the study of the mathematics behind the spectra

of matrices in Chapter 2. A primer on linear algebra is provided (Section 2.2) followed by the

derivation of eigenvalues and eigenvectors of matrices, analysis of their properties, interpretation

and application (Section 2.3). The chapter concludes with a dissertation on diagonalization and

orthogonal diagonalization (Section 2.4). Chapter 3 delves into network theory, starting from an

overview of foundational concepts (Section 3.2) and an introduction to standard methods for network
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CHAPTER 1. INTRODUCTION 7

generation (Section 3.3), moving to the derivation of different matrices associated with graphs and,

for the more interesting ones, the study of their spectral properties (Section 3.4). The final section

of Chapter 3 focuses on the global properties of networks and provides some metrics to measure

them (Section 3.5). In Chapter 4 the mathematical knowledge acquired in Chapter 2 is applied to

the field of network theory, and more in detail to the generation of synthetic networks. The Spectral

Graph Forge Method is introduced, discussed, analysed and implemented (Section 4.2), and it is

then extended (Section 4.3). The conclusions of the work are provided in chapter 5

1.3 Symbols

Throughout this work we will adhere to the following notation unless otherwise stated.

Matrices are denoted by capital letters (e.g. A,Q, · · · ). Vectors are denoted by bold lowercase let-

ters (e.g. v,w,q, · · · ). Scalars and variables are denoted by lowercase letters (e.g. a, i, j, α, λ, · · · ).

Sets in linear algebra are denoted by uppercase calligraphic letters (e.g. V,R,Mn,m, · · · ), while in

network theory are denoted by uppercase calligraphic bold letters (e.g. G,N , E , · · · ). Functions

are denoted by lowercase (sometimes greek) letters followed by parenthesis (e.g. σ(· · · ), ρ(· · · ), · · · ).

Distributions are denoted by uppercase calligraphic italic letters (e.g. D , E , · · · ).
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Linear algebra

R ≜ set of real numbers.

Rn ≜ n-dimensional real vector space.

C ≜ set of complex numbers.

wT ≜ transpose of vector w

⟨v,w⟩ ≜ inner product of vectors v,w

d(v,w) ≜ euclidean distance between vectors v,w

∥w∥ ≜ norm of vector w

Mn,m ≜ set of matrices of the form


a11 · · · a1m
...

. . .
...

an1 · · · anm

. Note that: Mn,m ≡ Rm,n

detA ≜ determinant of a square matrix

diag(α1, · · · , αn) ≜ diagonal matrix whose entries on the main diagonal are listed, with all

off-diagonal elements being zero.

dim(V) ≜ dimension of vector space V

I ≜ identity matrix. i.e. diagonal matrix whose entries on the main diagonal

are all equal to one, with all off-diagonal elements being zero.

A−1 ≜ inverse of matrix A

AT ≜ transpose of matrix A

σ(A) ≜ spectrum of matrix A

ρ(A) ≜ spectral radius function of matrix A

cA(λ) ≜ characteristic polynomial of matrix A

Eλ(A) ≜ eigenspace of matrix A associated to eigenvalue λ

ma(λ) ≜ algebraic multiplicity of eigenvalue λ

mg(λ) ≜ geometric multiplicity of eigenvalue λ
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Network theory

G = (N , E) ≜ graph G with set of nodes N and set of edges E

N ≜ set of nodes of graph G

E ≜ set of edges of graph G

eu,v ≜ edge connecting nodes u and v

u ∼ v ≜ u and v are adjacent nodes

δu ≜ degree of node u

δmax ≜ maximum degree of a graph G



Chapter 2

Mathematical Framework

In this chapter we delve into the mathematics underlying the spectra of matrices that will serve

as foundation for the subsequent work. This chapter draws upon the theoretical framework and

methodologies delineated in (Nicholson, 2019), (Axler, 1995), (Solomon, 2015), and (Simon & Blume,

1994).

2.1 Structure of the chapter

The structure of the chapter is as follows. An introduction to the essential premises of the discussion

is provided in Section 2.2. For other basic concepts that are not covered in this Section or in the

main text, the reader is referred to Appendix A. Section 2.3 is dedicated to the study of eigenvalues

and eigenvectors, which are at the core of the spectral analysis of networks, addressed in later

chapters. The study of eigenvalues and eigenvectors begins with their definition and derivation in

Subsection 2.3.1, followed by an analysis of their properties in Subsection 2.3.2 and a discussion on

their interpretation and application in Subsection 2.3.3. The concept of diagonalization is elaborated

in Section 2.4, beginning with an deep introduction on the topic in Subsection 2.4 which frames

diagonalization under the lens of eigenvalues and eigenvectors showing how diagonalization can be

interpreted as a representation of the matrix in the basis of the eigenvectors. This is followed by

an analysis of orthogonal diagonalization in Section 2.4.2, which also summarize the properties of

symmetric matrices in the Real Spectral Theorem and its implications.

10
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2.2 Primer on linear algebra

2.2.1 Linear independence, inner product and euclidean distance

Definition 1 (Linear independence). Let v1, · · · ,vk ∈ Rn. Then, the set {v1, · · · ,vk} is linearly

independent if and only if:

α1v1 + · · ·+ αkvk = 0 ⇔ α1 = · · · = αk = 0

As a result, none of these vectors can be expressed as a linear combination of the others.

Definition 2 (Inner product). Let v,w ∈ Rn. Then, the inner product of v and w, denoted as

⟨v,w⟩, is the real number:

⟨v,w⟩ = vTw =

n∑
i=1

viwi

Definition 3 (Orthogonality). Let v,w ∈ Rn. Then, v,w are orthogonal if and only if:

⟨v,w⟩ = 0

We write v ⊥ w. Two vectors that are orthogonal are always linearly independent.

Theorem 1 (Carnot Theorem). Let v,w ∈ Rn and θ be the angle between them. Then, we have:

⟨u, v⟩ = ∥v∥ · ∥w∥ · cos(θ)

Definition 4 (Euclidean distance). Let v,w ∈ Rn. Then, the euclidean distance between v and w,

denoted as d(v,w), is the real number:

d(v,w) = ∥v −w∥ =
√
⟨v −w,v −w⟩ =

√√√√ n∑
i=1

(vi − wi)2

In particular, we have that d(v,0) = ∥v∥ =
√
⟨v,v⟩ =

√∑n
i=1 v

2
i

Definition 5 (Euclidean norm). Let v ∈ Rn. Then, the euclidean norm of v, denoted as ∥v∥, is

the real number:

∥v∥ = d(x,0) =
√

⟨v,v⟩ =

√√√√ n∑
i=1

v2i

It correspond to the length of the vector v seen as an oriented segment.

Definition 6 (Vector space). A vector space is a non-empty set V of objects, called vectors, such

that it is endowed with the two operations of vector addition, expressed as v +w ∀v,w ∈ V, and

scalar multiplication, expressed as αv ∈ V ∀v,w ∈ R× V, that adhere to the following axioms:

– v +w ∈ V ∀ v,w ∈ V
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– v +w = w + v ∀ v,w ∈ V

– v + (w + z) = (v +w) + z ∀ v,w, z ∈ V

– 0 ∈ V : v + 0 = v ∀v ∈ V

– ∃w ∈ V : v +w = 0 ∀v ∈ V

– αv ∈ V ∀ α ∈ R, v ∈ V

– α(v +w) = αv + αw ∀ α ∈ R, v,w ∈ V

– (α+ β)v = αv + βv ∀ α, β ∈ R, v ∈ V

– α(βv) = (αβ)v ∀ α, β ∈ R, v ∈ V

– v = v ∀ v ∈ V

Definition 7 (Vector subspace). Let V be a vector space. Then, U is a subspace of V if U ⊂ V is a

set containing 0V, closed under the operations of addition and scalar multiplication of V, and hence

a vector space itself.

Definition 8 (Spanning set). Let {v1, · · · ,vk} ⊂ V. Then, we define the span of this set as the set

generated by all the linear combinations of such vectors, i.e. the set:

span(v1, · · · ,vk) = {w ∈ V | ∃(α1, · · · , αk) ∈ Rk,w =

k∑
i=1

αiv
i}

Which is is a subspace of V.

Definition 9 (Basis). Let V be a vector space. Then, a set B = {b1, · · · ,bk} ⊂ V is a basis for V

if V = span(b1, · · · ,bk) and b1, · · · ,bk are linearly independent.

Proposition 1. Let V be a subspace of Rn, spanned by a set of m vectors, k of which are linearly

independent. Then, k ≤ m

Definition 10 (Dimension). Let V be a subspace of Rn, and {b1, · · · ,bm} be a basis for V. Then,

we define as dimension of V, denoted as dim(V), the number of (linearly independent) vectors forming

the basis. Hence, dim(V) = m.

2.3 Eigenvalues and eigenvectors

2.3.1 Fundamentals and derivation

Definition 11 (Eigenvalues, eigenvectors). Let A ∈ Mn,n. Then, a scalar λ ∈ C is defined as an

eigenvalue of A, and a non-zero vector q ∈ Rn as an eigenvector of A corresponding to λ (or a

λ-eigenvector), if and only if the following condition is satisfied:

Aq = λq (2.1)
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This implies that q is a vector that, when multiplied by A, results in a scalar multiple of itself, with

λ being the scalar.

To determine the eigenvalues λ and the corresponding eigenvectors of a matrix A, we seek non-zero

solutions to the homogeneous system:

(λI −A)q = 0.

That has solutions if and only if the coefficient matrix λI −A is non-invertible, which occurs when:

det(λI −A) = 0.

(see Appendix A for definition of determinant)

Definition 12 (Characteristic polynomial). Let A ∈ Mn,n. Then, the characteristic polynomial of

A, denoted by cA(λ), is defined as:

cA(λ) := det(λI −A) (2.2)

This polynomial is of degree n in variable λ and its roots correspond to the eigenvalues of A.

Hence, by the Fundamental Theorem of Algebra, cA(λ) has at most n distinct roots ∈ C. It can be

asserted that the characteristic polynomial of A is identical to that of AT , symbolized as cAT (λ).

Consequently, the eigenvalues of A coincide with those of AT .

Proof.

cAT (λ) = det(λI −AT ) = det[(λI −A)T ] = det(λI −A) = cA(λ)

Definition 13 (Spectrum). Let A ∈ Mn,n and λ1, · · · , λn be the eigenvalues of A. Then, the set of

all λi is called the spectrum of A, denoted as:

σ(A) = {λ ∈ C | cA(λ) = 0} ⊂ C

Since cA has real coefficients, when λ ∈ σ(A), also the conjugate λ̂ ∈ σ(A). The number of non-real

eigenvalues is always even.

Definition 14 (Algebraic multiplicity). Let λ be an eigenvalue of A ∈ Mn,n. The algebraic multi-

plicity of λ, denoted as ma(λ), is the frequency of λ as a root of cA(λ).

It corresponds to the highest power of (λ − zi) in the factorized form of cA(λ), where cA(λ) =

det(λI −A). This is expressed as:

cA(λ) = (λ− zi)
mg(λ) with g(λ) ̸= 0 at zi
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Definition 15 (Eigenspace). Let A ∈ Mn,n and λ be an eigenvalue of A. Then, the eigenspace of

A associated to λ, denoted as Eλ(A), is the set:

Eλ(A) := {q ∈ Rn | Aq = λq}

Since Aq = λq is equivalent to (λI −A)q = 0:

Eλ(A) := {q | (λI −A)q = 0}

Because the solution set of this linear system forms the kernel of the matrix (λI −A):

Eλ(A) := ker(λI −A)

It is a subspace of Cn and, if λ ∈ Rn it is also a subspace of Rn.

Definition 16 (Geometric multiplicity). Let λ be an eigenvalue of A ∈ Mn,n. Then, the geometric

multiplicity of λ, denoted as mg(λ), is the dimension of the eigenspace corresponding to λ, which is

denoted as dim(ker(A− λI)).

Hence, it is the maximum number of linearly independent eigenvectors that can be associated with

the eigenvalue λ.

Proposition 2. Let A ∈ Mn,n. Then, for every eigenvalue λ ∈ σ:

1 ≤ mg(λ) ≤ ma(λ) ≤ n

2.3.2 Properties

Proposition 3. Let A ∈ Mn,n. Let λ1, λ2 be distinct eigenvalues of A, with q1,q2 corresponding

eigenvectors. Then, q1 and q2 are linearly independent.

Moreover, let σ(A) = λ1, · · · , λi, · · · , λk be distinct eigenvalues of A for i = 1, · · · , k, with k ≤

n, and qλi1
, · · · ,qλihi

be linearly independent eigenvectors associated to λi where hi = mg(λi) =

dim(Eλi
(A)). Then, the vectors

qλ11
, · · · ,qλ1h1

, · · · , qλi1
, · · · ,qλihi

, · · · , qλk1
, · · · ,qλkhk

are linearly independent.

Proof (by contradiction). Assume that q1, · · · ,qn are linearly dependent. Then, there exists a vector

qp+1, with p < n that can be expressed as a linear combination of the others in the set:

qp+1 = α1q1 + · · ·+ αpqp (2.3)

where α1, · · · , αp are scalars with at least one αi ̸= 0 for some i = 1, · · · , p. Now we multiply both

sides of the equation by A:

Aqp+1 = A(α1q1 + · · ·+ αpqp)
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Since qi is an eigenvector of A corresponding to eigenvalue λi, we can express Aqi as λiqi for

i = 1, · · · , p. Hence, we have:

λp+1qp+1 = α1λ1q1 + · · ·+ αpλpqp (2.4)

Now we multiply both sides of Equation 2.3 by λp+1:

λp+1qp+1 = λp+1(α1q1 + · · ·+ αpqp)

And we subtract it from Equation 2.4:

λp+1qp+1 − λp+1qp+1 = α1λ1q1 + · · ·+ αpλpqp − λp+1(α1q1 + · · ·+ αpqp)

0 = α1(λ1 − λp+1)q1 + · · ·+ αp(λp − λp+1)qp (2.5)

Since the set {q1 · · · ,qp} is linearly independent, the coefficients αi(λi − λp+1) in Equation 2.5

must all be zero, but since λi ̸= λp+1 this implies that αi = 0 ∀i = 1 · · · , p. This implies that

qp+1 = α1q1 + · · ·+ αpqp = 0 which is a contradiction since eigenvectors are by definition non-zero

vectors.

The number of linearly independent vectors equals
∑k

i=1mg(λi).

Proposition 4. Let A ∈ Mn,n. Then, we have mg(λ) = ma(λ) ∀λ ∈ σ(A) if and only if Cn has a

basis made by eigenvectors of A.

It follows that we have n linearly independent eigenvectors.

If σ(A) ⊂ R then such a basis is made of real eigenvectors of A. In such a case, if expressed in the

basis of eigenvectors, the matrix A becomes a diagonal matrix Λ = diag(λ1, · · · , λi) where λi are the

eigenvalues of A counted with their multiplicity.

Definition 17. Let A ∈ Mn,n. Then, the spectral radius of A, denoted as ρ(A), is the supremum

of the magnitudes of the elements of the spectrum of A.

ρ(A) = sup
λ∈σ(A)

|λ|

2.3.3 Interpretation and applications

Eigenvalues and eigenvectors of matrices can be interpreted in a variety of ways, depending on

what the matrix they are associated to represents and the context of application. Some of these

interpretations are analysed below.

Linear transformations

Definition 18. Let V,W be vector spaces with dim(V) = n and dim(W) = m. Then, a function

T : V → W is a linear transformation (or linear operator) if it satisfies the following properties:
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– T (v +w) = T (v) + T (w) ∀ v,w ∈ V

– T (αv) = αT (v) ∀ α ∈ R, v ∈ V

– T (0) = 0

– T (−v) = −T (v) ∀v ∈ V

– T (αiv1 + · · ·αkvk) = α1T (v1) + · · ·+ αkT (vk) ∀α ∈ R, v1, · · · ,vk ∈ V

For each linear transformation T : Rn → Rm, there exists a matrix A ∈ Mn,m such that:

T (v) = Av ∀v ∈ Rn

Hence, applying a linear transformation T : Rn → Rm to a vector v ∈ Rn via a matrix A ∈ Mn,m,

a new vector Av ∈ Rm is produced, that is the image of v under T , expressed in the basis of the

codomain W.

When a linear transformation T : Rn → Rm is applied to vectors, it rotates and/or scales it. The only

case in which a vector is only scaled by a linear transformation, without being rotated, is the case

in which the vector is an eigenvectors q of the matrix A associated with the linear transformation.

Hence, when an eigenvector q of A is applied to the linear transformation T associated to A, it

results in a scaled version of itself. The factor λ by which the eigenvector is scaled corresponds

to the eigenvalue associated to it (a negative eigenvalue implies that the eigenvector is reversed in

direction as a result of the transformation). This relationship can be expressed as:

T (q) = λq

In other words, eigenvectors characterize the linear transformation by determining the directions

along which vectors are transformed (stretched or compressed), while eigenvalues quantify the extent

to which each eigenvector influences this transformation.

Principal Component Analysis (PCA)

In the context of statistics, PCA is a technique used to reduce the dimensionality of data by project-

ing it onto a lower-dimensional space, with the aim to retain as much variance as possible. This is

achieved by projecting the data onto the principal components, which are the directions along which

the data varies the most. These directions are determined by the eigenvectors of the covariance ma-

trix associated to the data, while the eigenvalues quantify the variance of the data explained along

the directions of the principal components. Therefore, the eigenvector associated with the largest

eigenvalue is the principal component that captures the most variance in the data, while the eigen-

vectors associated with smaller eigenvalues capture portions of the remaining variance (proportional

to the associated eigenvalues).
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Markov chains

A Markov chain (or Markov process) is defined as a stochastic model that describes a sequence of

events, each of which can assume a state with likelihood solely dependent on the state achieved in

the preceding event. The model can be encoded in a stochastic matrix A whose entries ai,j signify

the transition probabilities from state i to state j. Notably, each entry is non-negative and each row

sums to 1, reflecting the total probability of transitioning from a specific state to any other state

within the system. Because of the Perron-Frobenius Theorem (Perron, 1907), (Frobenius, 1912) the

matrix A, being square and having non-negative entries, is shown to have a unique dominant real

eigenvalue, which in the case of Markov matrices equals 1 by the Gerschgorin Theorem (Gerschgorin,

1931). The eigenvector corresponding to this eigenvalue represents the stationary distribution of

the Markov chain, meaning the convergence of the system to a steady state. The entries of this

eigenvector represent the unconditional probabilities of being in each state of the system (i.e. the

probability of an event assuming a state regardless of the state of the previous event).

PageRank

The concept of the PageRank algorithm (Brin & Page, 1998), which ranks the importance of a

web page by determining the number of incoming hyperlinks it receives from other pages and the

importance of the pages linking to it, can be interpreted as an eigenvector problem. The web can

be represented as a matrix A having as entries ai,j the existence of a hyperlink from page j to page

i. This original matrix is usually normalized and adjusted by adding a damping factor d, to ensure

that every page can be reached from every other page and that the probabilities converge to a steady

state. The modified matrix G is defined as:

G = dP +
(1− d)

n
E

where P is the normalized adjacency matrix (in which the rows sum to 1), n is the total number of

pages and E is a matrix of all ones. In order to determine the PageRank scores of the pages, it is

necessary to find the stationary distribution of the Markov chain modelled by the matrix G. Hence,

we need to find a vector q such that:

q = Gq

Notably, q is the eigenvector of G corresponding to the eigenvalue 1. The entries of this vector give

the PageRank of each page, normalized to sum to 1 (Wilf, 2002), (Moler, 2002), (Chandrashekhar

et al., 2022).
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2.4 Diagonalization

2.4.1 The role of eigenvalues and eigenvectors

Definition 19 (Diagonal matrix). Let Λ ∈ Mn,n. Then, it is diagonal if all entries outside its

principal diagonal are zero. This is expressed as diag(λ1, · · · , λn) where λi is a scalar.

Λ can be represented as:

Λ =


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn


where λ1, . . . , λn are scalar values.

Definition 20 (Diagonalizable matrix). Let A ∈ Mn,n. Then, it is diagonalizable if it exists a

matrix Q ∈ Mn,n, referred as diagonalizing matrix, that is invertible such that:

Λ = Q−1AQ is diagonal (2.6)

(see Appendix A for definition of invertible matrices)

A matrix is considered to be diagonalizable if it is similar to a diagonal matrix (see Appendix A for

definition of similar matrices).

Proposition 5. Let A ∈ Mn,n have n distinct eigenvalues λ1, · · · , λn and n corresponding eigen-

vectors q1, · · · ,qn. Let Q = [q1, · · · ,qn] be an invertible matrix and Λ = diag(λ1, · · · , λn). Then:

A = QΛQ−1 (2.7)

Proof. To derive matrix Λ, we start from Equation 2.6 and bring to the RHS matrix Q−1:

AQ = QΛ

Upon expanding the terms, we have:

A[q1,q1, · · · ,qn] = [q1,q2, · · · ,qn]


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn


After performing matrix multiplication:

A[q1,q2, . . . ,qn] = [λ1q1, λ2q2, . . . , λnqn]

This implies that for each i, where 1 ≤ i ≤ n, the relationship:

Aqi = λiqi

holds true, indicating that each qi is an eigenvector of A associated with the eigenvalue λi
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We can choose the diagonalizing matrix Q so that the eigenvalues λi appear in any order we want

along the main diagonal of Λ.

It is interesting to notice that the diagonal matrix Λ corresponds to matrix A expressed in the basis

of its eigenvectors, and that matrix Q represents the change of basis matrix (which maps matrix A

from the canonical basis into the basis of its eigenvectors). Therefore, A = QΛQ−1 can be seen as

the change of basis formula.

Proposition 6. Let A ∈ Mn,n. Then, it is diagonalizable if and only if every eigenvalue λ of A has

mg(λ) = ma(λ) = k ≤ n linearly independent associated eigenvectors.

Hence, a matrix A ∈ Mn,n is diagonalizable if and only the algebraic multiplicity of each eigenvalue

λ equals dim[Eλ(A)]. Note that in the case in which the algebraic multiplicity of an eigenvalue λ is

less than dim[Eλ(A)], then A is not diagonalizable.

Therefore, we can state that a matrix A ∈ Mn,n is diagonalizable if and only if has n linearly

independent eigenvectors {q1, · · · ,qn} (as a necessary and sufficient condition for Q to be invertible

is the linear independence of its columns). This brings us to the following result:

Proposition 7. Let A ∈ Mn,n. Then it is diagonalizable (with real spectrum) if and only if Rn

admits as a basis the set of its eigenvectors. That is, if and only if the spectrum of A is made of

simple eigenvalues, which means:

σ(A) ⊂ R and mg(λ) = ma(λ), ∀λ ∈ σ(A)

In the specific case in which A ∈ Mn,n has n distinct real eigenvalues, then A is diagonalizable with

real eigenvectors. The fact that eigenvalues are real means that σ(A) ⊂ R, while the fact that are

distinct implies that mg(λ) = ma(λ) = 1, ∀λ ∈ σ(A), since the algebraic multiplicity acts as an

upper bound for the geometric multiplicity, hence the eigenvalues are simple. It is worth specify that

the existence of n distinct real eigenvalues is a sufficient but not necessary condition for a matrix to

be diagonalizable: there might be cases in which a matrix has k ≤ n distinct real eigenvalues, but

the matrix will still be diagonalizable as long as the algebraic multiplicity of each eigenvalue equals

its geometric multiplicity, as there will still be n linearly independent eigenvectors forming a basis

for Rn. If the eigenvalues are not real, then A is diagonalizable with complex eigenvectors.

2.4.2 Orthogonal diagonalization

Definition 21 (Orthogonal matrix). Let Q ∈ Mn,n. Then, it is orthogonal if and only if its column

vectors form an orthonormal set.

Orthogonal matrices are invertible and Q−1 = QT . Hence, QQT = I.

Proposition 8. Let Q ∈ Mn,n. Then, (1) Q is invertible and Q−1 = QT if and only if (2) the

columns (and the rows) of Q are orthonormal.
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Proof 1 ⇒ 2. Let Q = [q1, · · ·qn]. We know that Q−1 = QT ⇔ QQT = I. This implies ⟨qi,qj⟩ = 0

if i ̸= j and ⟨qi,qj⟩ = 1 if i = j. Hence, the columns of Q are orthonormal.

Proof 2 ⇒ 1. Let Q = [q1, · · ·qn]. We know that the columns of Q are orthonormal if and only if

QTQ = I. This implies that QT = Q−1, hence Q is invertible and Q−1 = QT .

Definition 22 (Symmetric matrix). Let A ∈ Mn,n. Then, it is symmetric if and only if A = AT .

Let A ∈ Mn,n. Then, its eigenvalues are guaranteed to be real if A is symmetric. Note that a matrix

may possess real eigenvalues without necessarily being symmetric.

Relevant properties of symmetric matrices are listed in the Real Spectral Theorem, also referred to

as Principal Axes Theorem:

Theorem 2 (Real Spectral Theorem). Let A ∈ Mn,n. Then, (1) A is symmetric if and only if (2)

A has n real orthogonal eigenvectors.

Proof 1 ⇒ 2 (by induction). Let A ∈ Mn,n be real and symmetric.

If A ∈ M1,1, then A has one eigenvalue λ1 = a11 and one λ-eigenvector q1 = [1].

From induction hypothesis, assume A ∈ Mn−1,n−1 real and symmetric is orthogonally diagonalizable.

Now, let A ∈ Mn,n real and symmetric, let λ1 be an eigenvalue of A and w be the corresponding

eigenvector. Starting from this vector, we construct an orthonormal basis for Rn: {q1, · · · ,qn} such

that q1 = 1
∥w∥w. Let Q = [q1, · · · ,qn]. Then:

AQ = [Aq1, · · · , Aqn]

Because of Equation 2.1, we have:

AQ = [λq1, Aq2 · · · , Aqn]

Rewriting the product, we have:

AQ = Q

λ d

0 A′


For some d ∈ M1,n−1 and A′ ∈ Mn−1,n−1.

Because Q is orthonormal by construction, we have:

QTAQ =

λ d

0 A′


Taking the transpose of both sides, we have:

QTATQ =

λ 0

d A′T


Hence, because A = AT we have QTAQ = QTATQ, therefore d = 0 and A′ = A′T . This means that

A′ is symmetric and by induction hypothesis, it has n − 1 orthogonal eigenvectors. Hence, adding

q1, A has n orthogonal eigenvectors.
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Proof 2 ⇒ 1. Assuming that Q = [q1, · · · ,qn] is an orthogonal matrix, we have that QT = Q−1.

Hence, we can express A as:

A = QΛQ−1 = QΛQT

To prove that A is symmetric, we need to show that AT = A. We have:

AT = (QΛQT )
T
= (Q−1)

T
ΛTQT = QΛQT = A

Hence, AT = A and A is symmetric.

Summarizing, from the Real Spectral Theorem we have that given a symmetric matrix A ∈ Mn,n, it

has exactly n eigenvalues λ1, · · · , λn, counting their multiplicities, moreover the corresponding eigen-

vectors are mutually orthogonal, hence they can be chosen to form an orthonormal basis {b1, · · · ,bn}

of Rn (as from any linearly independent set of eigenvectors we can obtain an orthonormal set using the

Gram-Schmidt algorithm). Consequently, there exists an orthogonal matrixQ = [b1, · · · ,bn] ∈ Mn,n

(which has the property: Q−1 = QT ) and a diagonal matrix Λ = diag (λ1, · · · , λn) ∈ Mn,n, such

that A = QΛQ−1 = QΛQT .

Definition 23 (Orthogonally diagonalizable matrix). Let A ∈ Mn,n. Then, it is orthogonally

diagonalizable if there exists an orthogonal matrix Q such that:

A = QΛQ−1 = QΛQT

This happens if and only if A is symmetric.

Proposition 9. Let A ∈ Mn,n be a symmetric matrix. Then,

A = QΛQT =

n∑
i=1

λiqiq
T
i (2.8)

Proof. From 2 we know that:

A = QΛQT

Expanding the terms, we have:

=

n∑
i=1

qi

n∑
j=1

λi,jq
T
j


Expressing the summations under a slightly different notation, we can revrite:

=
∑

i∈[1,n]

qi

∑
j∈[1,n]

λi,jq
T
j


We now differenciate the case in which i = j from the case in which i ̸= j:

=
∑

i∈[1,n]

qi

∑
j∈{i}

λi,jq
T
j +

∑
j∈[1,n]\{i}

λi,jq
T
j


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Since λi,j = 0 ∀j ∈ [1, n] \ {i}, the term
∑

j∈[1,n]\{i} λi,jq
T
j equals zero. Hence:

=
∑

i∈[1,n]

qi

∑
j∈{i}

λi,jq
T
j


As we are considering only cases in which j = i, we have that λi,j = λi, hence:

=
∑

i∈[1,n]

(
qiλiq

T
i

)
Rearrangin the terms, we have:

=
∑

i∈[1,n]

λiqiq
T
i

Expressing the summation in the initial notation:

=

n∑
i=1

λiqiq
T
i



Chapter 3

Network Theory Framework

This chapter aims to provide a foundation in network theory and to understand the information

encoded in the spectra of matrices when they represent graphs. Hence, after an overview on the basic

notation and concepts on network theory, the work delves into the analysis of the spectral properties

of some matrices associated to graphs, fundamental for understanding community structures within

networks. The spectrum and the eigenvectors of these matrices, in fact, encode information on the

underlying structure of graphs. Despite significant progress, the literature in this field is in ongoing

discovery, with many facets yet to be fully understood. A comprehensive overview of the field is

provided in (Cvetković et al., 1980), upon which this chapter is grounded, along with the frameworks

developed in (Cvetković, 2009) and (Cvetković & Gutman, 2009).

3.1 Structure of the chapter

The structure of the chapter is as follows. An primer on the basic concepts on network theory is

provided in Section 3.2, covering fundamental concepts in Subsection 3.2.1 and definitions and no-

tation in Subsection 3.2.2. Section 3.3 is dedicated to the overview of standard methods for network

generation. The models analysed are the Erdős-Rényi model in Subsection 3.3.1, the Configuration

model in Subsection 3.3.2, the Barabási-Albert model (or Preferential Attachment model) in Subsec-

tion 3.3.3, and the Stochastic Block model in Subsection 3.3.4. Section 3.4 delves into the derivation

of matrices associated with graphs, and for the more interesting ones it provides an overview of their

spectral properties. The matrices analysed are the adjacency matrix in Subsection 3.4.1, the Seidel

matrix in Subsection 3.4.2, the incidence matrix in Subsection 3.4.3, the degree matrix in Subsection

3.4.4, the Laplacian matrix in Subsection 3.4.5, the sum connectivity matrix in Subsection 3.4.6, the

General Zagreb matrix in Subsection 3.4.7, the modularity matrix in Subsection 3.4.8, the transition

matrix of a random walk in Subsection 3.4.9, the non-backtracking matrix in Subsection 3.4.10,

and the Bethe-Hessian matrix in Subsection 3.4.11. Section 3.5 focuses on the global properties of

23
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networks, focusing on community structure in Subsection 3.5.1, connectivity in Subsection 3.5.2,

assortativity in Subsection 3.5.3 and energy in Subsection 3.5.4, alongside some metrics to measure

them.

3.2 Primer on network theory

3.2.1 Fundamental elements

Networks can be represented through graphs, sets of entities and relations between them. A graph

G = (N , E) is characterized by two sets: the set N comprising the entities of interest, referred to as

nodes (or vertex) and a set E of pairs of nodes eu,v, referred to as edges (or links), which represent

the relations interlinking nodes u, v. The set of nodes N is a finite, non-empty set whose cardinality

n = |N | represents the order of the graph. The set of edges E is a subset of the set of all possible

pairs of nodes, E ⊆ N ×N . Its cardinality m = |E| represents the size of the graph.

Depending on the nature of its edges, networks can be directed or undirected, weighted or unweighted

and can have self-loops. A graph is directed if each edge eu,v ∈ E is an ordered pair, expressing a

directional relation from node u to node v. As opposed, a graph is undirected if edges are unordered

pairs, signifying symmetric relationships between nodes. A graph is weighted if each edge is as-

sociated with a numerical value (the weight) which quantify the intensity of the relation between

its pairs of nodes. Instead, a graph is unweighted if each edge represent only the existence of the

relation. A graph has self-loops if permits edges of the form eu,v ∈ E , where a node connects to

itself. During this work, we will focus on undirected, unweighted graphs without self-loops, unless

otherwise specified.

3.2.2 Notation

Definition 24. (adjacent nodes) Let G = (N , E) be a graph, where N is the set of nodes and E is

the set of edges, let u, v ∈ N . Then u, v are said to be neighbours or adjacent if eu,v ∈ E . To say

that two nodes are adjacent, we write u ∼ v.

Definition 25. (Triangle) Let G = (N , E) be a graph, where N is the set of nodes and E is the set of

edges, let u, v, w ∈ N . Then, a triangle is a set of three nodes {u, v, w} such that eu,v, ev,w, ew,u ∈ E .

Definition 26. (Complement of a graph) Let G = (N , E) be a graph, where N is the set of nodes

and E is the set of edges. Then, the complement of the graph G′ = (N , E ′) is a graph where E ′ is

the set of edges that are not present in E (excluding self-loops).

Definition 27. (Degree of a node) Let G = (N , E) be a graph, where N is the set of nodes and E

is the set of edges, let u ∈ N . Then, the degree δu of a node u is the number of edges eu,v incident

to u.
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For undirected graphs, the degree of a node is equivalent to the number of its neighbours.

Definition 28. (Degrees of a graph) Let G = (N , E) be a graph, where N is the set of nodes and

E is the set of edges. Then, the maximum degree of the graph δmax is the maximum degree of its

nodes, while the minimum degree of the graph δmin is the minimum degree of its nodes.

Definition 29. (Path) Let G = (N , E) be a graph, where N is the set of nodes and E is the set of

edges, let eu,v ∈ E be an edge connecting nodes u, v ∈ N . Then, we define as path from node u1

to node vk a sequence of edges {eu1,v1 , · · · , euh,vh , · · · , euk,vk
} such that uh = vh−1 for h = 2, · · · , k,

and all nodes u1, . . . , vk being distinct (except possibly for u1 = vk if the path is closed).

The length k of the path is the number of its edges. The path with the smallest length connecting

u to v is the shortest path between u and v, and its length is defined as distance distance between

nodes u and v. The maximum length of the shortest path between any pair of nodes is the diameter

of the graph. A graph is said to be connected if there exists a path between any pair of nodes

belonging to it.

Definition 30. (Walk) Let G = (N , E) be a graph, where N is the set of nodes and E is the set of

edges, let eu,v ∈ E be an edge connecting nodes u, v ∈ N . Then, we define as walk from node u1 to

node vk a sequence of edges {eu1,v1 , · · · , euh,vh , · · · , euk,vk} such that uh = vh−1 for h = 2, · · · , k.

The definition of walk is less stringent with respect to the definition of path, as it allows for the

presence of repeated nodes in the sequence of edges.

Definition 31. (Random walk) Let G = (N , E) be a graph, where N is the set of nodes and E is

the set of edges, let eu,v ∈ E be an edge connecting nodes u, v ∈ N . Then, a random walk is a

walk where each edge from the current node uh (or equivalently vh−1) to the next node vh is chosen

randomly with uniform probability from among all neighbors of uh. Each step is independent of the

previous steps.

A random walk is a Markov chain, as the probability of transitioning from one node to another

depends exclusively on the current node and not on the sequence of previous nodes visited.

Definition 32. (Non-backtracking random walk) Let G = (N , E) be a graph, where N is the set

of nodes and E is the set of edges, let eu,v ∈ E be an edge connecting nodes u, v ∈ N . Then, a

non-backtracking random walk is a random walk where the next node vh is chosen randomly with

uniform probability from among all neighbors of uh except for the previous node uh−1.

Note that a non-backtracking random walk differs from a random walk and it is not a Markov chain

as the probability of transitioning from one node to another depends not only on the current node,

but also on the previous node visited.
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3.3 Standard methods for network generation

In network theory, a wide range of methodologies have been developed for the generation of networks.

These methods are designed to generate graphs that mimic different properties of real-world networks,

and differs for targeted property, goal and complexity. The most common methods for network

generation are based on random graph models and are designed to generate networks with specific

(usually local) properties.

3.3.1 Erdős-Rényi Model

A first model is the Erdős-Rényi Model G′(n,m), in which the generated random graph is a function

of the number of nodes n and the number of edges m. Under this model, a graph is chosen sampling

with uniform probability from the set of all possible graphs having n nodes and m edges. A variation

of this method is the Erdős-Rényi-Gilbert Model G′(n, p), in which the generated random graph is

a function of the number of nodes n and the probability p is the parameter of one Bernoulli trial

determining the existence of each potential edge. The model proceeds by connecting each pair of

nodes with probability p, independently of the other pairs. In this case, the number of edges m is

not fixed, but it is a random variable with expected value p
(
n
2

)
.

3.3.2 Configuration Model

The Configuration Model G′(n,D) follows a different approach, by which the generated random graph

is a function of the number of nodes n and an input degree sequence D = {δ1, · · · , δn}. The method

proceeds by creating a stub for each edge (meaning, connecting the edge to one node only), and then

connecting the stubs randomly. Under this methodology the output graph preserves information

related to the number of nodes and the degree of each node, however it does not necessarily preserve

information on the community structure of the input network.

3.3.3 Barabási-Albert Model

The Barabási-Albert Model or (Linear Preferential Attachment Model) G′(n, γ) is a model that

generates random graphs by starting with a small number of nodes and adding the others iteratively,

connecting each new node to γ existing nodes with a probability p proportional to their degree, and

hence changes at each iteration. Under this model, the output graphs are characterized by a power-

law degree distribution, meaning that the probability that a node has a degree δ is proportional to

δ−γ .
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3.3.4 Stochastic Block Model

A model focusing on community structure is the Stochastic Block Model G′(n,B, P ), which generates

graphs as function of the number of nodes n and a set of blocks B = {B1, · · · , Bk}, where each block

Bi is a disjoint subset of the set of nodes, and a symmetric matrix P ∈ Mk,k of edge probabilities.

The model proceeds by connecting two nodes i, j with a probability pi,j that depends on the block

to which the nodes belong. Notably, when the values on the main diagonal of P are higher than the

values off the main diagonal, the output graph is likely to be partitioned in k distinct communities, as

nodes belonging to the same block are more likely to be connected than nodes belonging to different

blocks. However, while the output graph is characterized by a partition into communities, the model

does not allow for a high degree of customization in the resulting graph structure.

These methods are standard for generating networks and are comparatively straightforward. A com-

prehensive examination of network generation methodologies, emphasizing algorithmic strategies, is

documented in (Penschuck et al., 2020). We will expand further the topic of network generation in

Chapter 4, which is dedicated to a methodology based on spectral properties of matrices associated

to graphs.

3.4 Derivation and spectral properties of matrices associated

to graphs

Network theory frequently employs linear algebra to represent networks and analyze network proper-

ties. Because matrices facilitate the characterization of pairwise relations they are chosen to represent

relations within graphs; furthermore, the application of algebraic methods allow to better understand

characteristics and dynamics within networks. In particular, the spectral analysis of matrices can

reveal aspects of network structure.

One fundamental application of matrices in representing relationships within graphs is through the

adjacency relation.

3.4.1 Adjacency matrix

The adjacency relation of nodes can be represented through the adjacency matrix A, which represents

the structure of the graph, encoding the relations between nodes.

Definition 33. (Adjacency matrix) Let G = (N , E) be an undirected graph where N is the set of

nodes and E is the set of edges, let n be the number of nodes and u, v ∈ N . Then, the adjacency
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matrix of G is A ∈ Mn,n, whose entries are:

au,v =

1 if u ∼ v

0 otherwise
for u, v ∈ N

For undirected graphs, as the adjacency relation is bidirectional, the associated adjacency matrix is

real and symmetric, hence it has real spectrum and, by the Real Spectral Theorem 2 it has orthogonal

eigenvectors.

Proposition 10. Let G = (N , E) be an undirected graph where N is the set of nodes and E is the set

of edges, let n be the number of nodes and A ∈ Mn,n the adjacency matrix of G. Then, the relation

Aq = λq can be interpreted as:

λqu =
∑
v∼u

qv

where q = (q1, · · · , qu, · · · , qn)T for u = 1, · · · , n and the summation is performed over the neighbours

of node u.

Hence, the eigenvectors and the spectrum of the adjacency matrix encode information about the

structural properties of the graph, as each eigenvector component quantifies the connectivity influence

of nodes.

Proposition 11. Let G = (N , E) be an undirected graph where N is the set of nodes and E is the

set of edges, let n be the number of nodes, u, v ∈ N , and A ∈ Mn,n the adjacency matrix of G.

Then, by the Perron-Frobenius Theorem, A has a non-negative dominant eigenvalue λ̈ which equals

the maximum degree of the graph δmax.

Proof.

λ̈qi = (Aq)i =

n∑
j=1

ai,jqj ≤
n∑

j=1

ai,jqj = qiδi

3.4.2 Seidel Matrix

Another way to represent the adjacency relation in a graph is through the Seidel matrix, which

captures it in a different way with respect to the adjacency matrix.

Definition 34. (Seidel matrix) Let G = (N , E) be a graph, where N is the set of nodes and E is the

set of edges, let n be the number of nodes, u, v ∈ N , A ∈ Mn,n be its adjacency matrix, and AC ∈

the adjacency matrix of the complement of the graph associated to A (recall Definition 26). Then,

the Seidel matrix of G is S ∈ Mn,n, defined as:

S = A−AC
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Hence, the Seidel matrix has entries defined as:

su,v =


−1 if u ̸= v, eu,v ∈ E

1 if u ̸= v, eu,v /∈ E

0 if u = v

3.4.3 Incidence matrix

A matrix that captures the relationship between nodes and edges in a graph is the incidence matrix,

which capture the incidence relation among nodes and edges.

Definition 35 (Incidence matrix). Let G = (N , E) be a graph, where N is the set of nodes and E

is the set of edges, let n be the number of nodes, m be the number of edges, and u, v ∈ N . Then,

the incidence matrix of G is C ∈ Mn,m, whose entries are:

cu,eu,v
=

1 if u ∼ v

0 otherwise

3.4.4 Degree matrix

Moving forward, we define the degree matrix, which captures the degree of each node in the graph.

Definition 36 (Degree matrix). Let G = (N , E) be a graph, where N is the set of nodes and E is

the set of edges, let δu be the degree of node u ∈ N . Then, the degree matrix of G is a diagonal

matrix D ∈ Mn,n, whose entries are:

du,v =

δu if u = v

0 otherwise
for u, v ∈ N

Hence, D = diag(δ1, · · · , δn).

The degree matrix is particularly useful because it encodes information about the connectivity of

the graph, meaning the ability of the elements within the network to reach one another. For this

reason, the degree matrix is often used to derive other fundamental matrices in network theory, such

as the Laplacian matrix.

3.4.5 Laplacian matrix

The Laplacian matrix can be seen as the discrete counterpart of the Laplacian operator. Playing a

similar role in graph theory, it quantifies how much a graph’s value at a particular node (i.e., the

number of connections) deviates from the values at its neighbouring nodes. Hence, it measures the

change in the graph’s structure.
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Definition 37 (Laplacian matrix). Let G = (N , E) be a graph, where N is the set of nodes and E

is the set of edges, let n be the number of nodes, A ∈ Mn,n the adjacency matrix, and D ∈ Mn,n the

degree matrix of G. Then, the Laplacian matrix of G is L ∈ Mn,n defined as:

L = D −A

An alternative derivation of the Laplacian matrix is the following:

L = CTC

Because L is real and symmetric, it has an orthogonal set of eigenvectors and real eigenvalues.

Proposition 12. Let G = (N , E) be a graph, where N is the set of nodes and E is the set of edges,

let n be the number of nodes and L ∈ Mn,n the Laplacian matrix of G. Then, the smallest eigenvalue

of L is λ̇ = 0 and its corresponding eigenvector is q1 = (1, · · · , 1)T .

The algebraic multiplicity of 0 as an eigenvalue of the Laplacian matrix corresponds to the number

of connected components in the associated graph.

The literature studying graph energy and graph irregularities also exploits matrices which are similar

to the Laplacian: the signless Laplacian and the normalized Laplacian. The signless Laplacian

matrix is defined as Lsignless = D +A, while the normalized Laplacian matrix is defined as Lnorm =

I −D− 1
2AD− 1

2 .

3.4.6 Sum Connectivity matrix

Another matrix encoding encoding information on the connectivity of a graph is the Sum Connec-

tivity matrix.

Definition 38. (Sum Connectivity matrix) Let G = (N , E) be a graph, where N is the set of nodes

and E is the set of edges, let n be the number of nodes and u, v ∈ N . Then, the Sum Connectivity

matrix of G is SC ∈ Mn,n, whose entries are:

sCu,v =


1√
δuδv

if u ∼ v

0 otherwise

For undirected graphs, the sum connectivity matrix is symmetric. The entries of its main diagonal

are zero, while the off-diagonal entries are normalized by the product of the square root of the degrees

of the nodes they connect.

3.4.7 General Zagreb Matrix

Moving forward, we define the General Zagreb matrix, firstly introduced in the field of Chemistry

Physics. It encodes information on the degree sequence of a graph, generalizing its Zagreb indices

(Horoldagva & Das, 2023).
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Definition 39. (General Zagreb matrix) Let G = (N , E) be a graph, where N is the set of nodes

and E is the set of edges, let n be the number of nodes, A ∈ Mn,n its adjacency matrix and D ∈ Mn,n

its degree matrix. Then, the General Zagreb matrix of G is Gz ∈ Mn,n, defined as:

Gz = D3 +A

3.4.8 Modularity matrix

The structure of a graph can be analysed through the modularity matrix, which encodes information

on the number of edges within nodes of the same community with respect to a random graph

generated under the configuration model (and hence with identical expected degree sequence). This

matrix was first introduced in (Newman, 2006) for the study of community structure in networks.

Definition 40 (Modularity matrix). Let G = (N , E) be a graph, where N is the set of nodes and E

is the set of edge, let n be the number of nodes, u, v ∈ N , A ∈ Mn,n be its adjacency matrix. Then,

the modularity matrix of G is B ∈ Mn,n, whose entries are:

bu,v = au,v −
δuδv
2m

(3.1)

For undirected graphs, the modularity matrix is real and symmetric. An important property of

this matrix is that it always has an eigenvector of ones associated to the zero eigenvalue, as the

sum along its rows and columns is zero. Moreover, the eigenvector q̈ associated with the largest

eigenvalue λ̈ of the modularity matrix captures important information about the global structure

of a graph. By dividing the nodes according to the signs of their corresponding elements in this

eigenvector, we obtain groups that are more densely connected internally and sparsely connected

with nodes in the other groups. The division of the network obtained following this method, is the

one that maximizes the modularity (see Definition 48) of the network. In the case in which q̈ is

exactly the eigenvector of ones, then positive modularity cannot be achieved by any division of the

network. The eigenvector q̈ provides also information about the strength of the nodes’ community

affiliations: nodes corresponding to elements of large magnitude are strongly associated with their

particular community, while nodes associated with elements of small magnitude (close to zero) have

weak affiliation to any community.

The modularity matrix is one of the most famous matrices in network theory for its powerful capa-

bility to detect community structure in networks. More recently, also some other matrices with the

same purpose have been proposed.

3.4.9 Transition matrix of a random walk

Recall Definition 31, which introduces the concept of a random walk. Based on this definition, we

define the transition matrix associated with a random walk. Specifically, this matrix is a stochastic

matrix whose entries represent the probability of transitioning from one node to another.
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Definition 41. (Transition matrix of a random walk) Let G = (N , E) be a graph, where N is the

set of nodes and E is the set of edges, let eu,v ∈ E be an edge connecting nodes u, v ∈ N . Then, the

transition matrix P of a random walk on G is a stochastic matrix P ∈ Mn,n defined as:

P = D−1A

By the characteristics of Markov chains, summarized in Paragraph 2.3.3, the stationary distribution

of a random walk is described by the eigenvector associated with the largest eigenvalue λ̈ of the

Transition matrix, which equals 1, and hence by solving the equation Pq = q.

3.4.10 Non-backtracking matrix

Recall Definition 32 of non-backtracking random walks of a graph, and the fact that they are not

Markov chains. It is possible to create a new graph Ĝ = (N̂ , Ê) from the original one G = (N , E)

such that a random walk on Ĝ is equivalent to a non-backtracking random walk on G (Glover, 2021).

The new graph Ĝ is characterized by:

– N̂ , the set obtained by taking each undirected edge eu,v ∈ E and replacing it with two directed

edges eu,v and ev,u. Hence, the cardinality of this set will be 2m (where m is the cardinality

of E).

– Ê , the set defined as:

{(u, v) ∼ (k, l) : v = k, u ̸= l}

We define the adjacency matrix of graph Ĝ as the non-backtracking matrix (or Hashimoto matrix)

H (Hashimoto, 1989) of the original graph G, as follows:

Definition 42 (Non-backtracking matrix). Let G = (N , E) be a graph, where N is the set of nodes

and E is the set of edges, let m be the number of edges and u, v, k, l ∈ N . Then, the non-backtracking

matrix of G is the matrix H ∈ M2m,2m whose entries are defined as:

h(u,v),(k,l) =

1 if v = k, u ̸= l

0 otherwise

Note that, given a graph G = (N , E), every random walk in its associated non-backtracking matrix

H is equivalent to a non-backtracking random walk in its adjacency matrix A.

The non-backtracking matrix encodes information on the structure of links of a graph (Krzakalaa

et al., 2013). Specifically, its complex spectrum can be divided by a circle of radius
√
ρ(H) (where

ρ(H) is its spectral radius) (Saade et al., 2014b) in:

– a bulk of uninformative eigenvalues lying inside the circle
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– informative (and real) eigenvalues lying outside the circle (the number of these eigenvalues, for

graphs generated under the Stochastic Block Model, equals the number of communities in the

graph)

All the eigenvalues λ of B that are different from ±1 are roots of the polynomial:

det [(λ2 − 1)I − λA+D]

Which corresponds to the Ihara-Bass formula for the graph zeta function.

3.4.11 Bethe-Hessian matrix

Definition 43. Let G = (N , E) be a graph, where N is the set of nodes and E is the set of edges,

let A be its adjacency matrix and D be its degree matrix. Then, the Bethe-Hessian matrix of G is

Z ∈ Mn,n defined as:

Z(r) = (r2 − 1)I − rA+D

where r ∈ R is a parameter and I ∈ R is the identity matrix.

The Bethe-Hessian is real and symmetric, hence it has real spectrum and orthogonal eigenvectors.

Its determinant is given by the Ihara-Bass formula for the graph zeta function, and is hence related

to the spectrum of the non-backtracking matrix:

detZ(λ) = det [(λ2 − 1)I − λA+D]

For large enough r, all the eigenvalues of Z are positive. It is possible to translate all the informative

eigenvalues of the non-backtracking matrix into negative eigenvalues of the Bethe-Hessian matrix by

choosing r =
√
ρ(H) (Saade et al., 2014a).

3.5 Global properties of networks

Global measures of a graph are quantitative metrics providing information on the structure and the

properties of a network. They include various properties, such as community structure, assortativity,

connectivity, and energy of a graph.

3.5.1 Community structure

Definition 44 (Community). Let G = (N , E) be a graph, where N is the set of nodes and E is

the set of edges. Then, a community (or cluster) is a subset C ⊆ N of nodes that are more densely

connected to each other than to the rest of the graph.
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A community is therefore characterized by a high density of edges within nodes belonging to it

(high cohesion) and by a low density of edges between nodes belonging to it and the rest of the

graph (high separation). Despite this intuitive conceptual notion of community the discipline lacks

of a single, precise, and universally agreed-upon definition of community. This is largely due to the

inherent complexity and variability of network structures, which exhibit diverse characteristics that

necessitate different measures for their accurate identification.

Definition 45. (Community detection) Let G = (N , E) be a graph, where N is the set of nodes and

E is the set of edges, let C ⊆ N be a community. Then, the community detection (or clustering) is

the process of partitioning N into subsets such that each subset, denoted as a community, comprises

vertices that are more densely connected internally than with vertices outside the subset.

Because of the absence of an unequivocal definition of what constitutes a community, the literature

developed a wide range of methodologies for community detection, each distinct in metrics, approach,

and underlying principles. This variety allows for the identification of different types of communities,

yet it also prevents the methodologies from being directly compared.

We proceed by introducing two different methods for community detection, which are the average

clustering coefficient and the number of partitions under modularity maximization.

Average clustering coefficient

The concept of clustering coefficient (Watts & Strogatz, 1998) is a measure of the degree to which

nodes in a graph tend to create strongly connected groups.

Definition 46. (Local clustering coefficient) Let G = (N , E) be a graph, where N is the set of nodes

and E is the set of edges, let u ∈ N . Then, the local clustering coefficient cu of a node u is the

fraction of pairs of neighbours of u that are connected with each other.

cu =
2τu

δu(δu − 1)

where τu is the number of triangles through node u and δu is the degree of node u.

These local clustering coefficient is 1 if every neighbour of node u is also connected to every other

node within the neighbourhood, and 0 if no neighbour of node u is connected to any other node

within the neighbourhood.

Definition 47. (average clustering coefficient) Let G = (N , E) be a graph, where N is the set of

nodes and E is the set of edges, let n be the number of nodes and u, v ∈ N . Then, the clustering

coefficient c of G is the average of the local clustering coefficients of all nodes in N :

c =
1

n

∑
u∈N

cu
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A high value of average clustering coefficient (close to 1) implies a tightly-knit network with few

interconnected communities, while a small value (close to 0) implies a lack of cohesion and a more

fragmented community structure.

Modularity maximization

Modularity is a measure of the strength by which a network is divided into communities.

Definition 48 (Modularity). Let G = (N , E) be a graph, where N is the set of nodes and E is the

set of edges, u, v ∈ N , and B be its modularity matrix. Then, the modularity Q of G is:

q =
1

2m

∑
u,v∈N

(
bu,vδCu,Cv

)
where m is the number of edges in G, δCu,Cv is the Kronecker delta function (meaning that δCu,Cv =

1 if Cu = Cv and 0 otherwise), and Cu is the community of node u.

The modularity q is therefore a measure of the quality of a partition of a graph into communities. It

assumes values in [−1, 1], where a value close to 1 indicates a partitioning of the graph into cohesive

communities with few links connecting them, 0 indicates a partitioning with fewer differences in

connectivity within communities than between communities, while a negative value means that the

graph have few edges within communities with respect to a randomly generated graph (under the

configuration model). It is worth noting that for most networks the modularity is positive.

3.5.2 Connectivity

Connectivity refers to the degree to which the nodes in a graph are connected to one another through

paths in the set of edges. It is an important property for analysing the robustness of networks.

To quantitatively measure connectivity, we employ the Beta index and the Sum connectivity index.

Beta index

Definition 49 (Beta index). Let G = (N , E) be a graph, where N is the set of nodes and E is the

set of edges, let n be the number of nodes and m be the number of edges. Then, the beta index

(β − index) of G is defined as:

β =
m

n

In a network with a fixed number of nodes, the higher the number of edges, the higher the number

of possible paths in the network, hence the higher the β − index.

Sum connectivity index

Definition 50 (Sum connectivity index). Let G = (N , E) be a graph, where N is the set of nodes

and E is the set of edges, let δu be the degree of node u. Then, the sum connectivity index sc of G
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is defined as:

sc =

∑
eu,v∈E

1√
δuδv

n(n−1)
2

where deg(i) and deg(j) are the degrees of nodes i and j, respectively.

The sum connectivity index accounts for the influence of the degree of individual nodes when par-

ticipating in an edge, normalized by the maximum number of possible edges in the network.

3.5.3 Assortativity

Assortativity measures the tendency of nodes to connect with other nodes that are similar in some

attribute, such as degree. Hence, it indicates the tendency for nodes to attach to others that are

similar (assortative mixing) or different (disassortative mixing).

To quantitatively measure assortativity, the degree assortativity coefficient is commonly used.

Degree assortativity coefficient

Definition 51 (Degree Assortativity Coefficient). Let G = (N , E) be an undirected graph, where

N is the set of nodes and E is the set of edges, let u, v ∈ N , and δu be the degree of node u. Then,

the degree assortativity coefficient r of G is defined as the Pearson correlation coefficient of degree

between pairs of linked nodes. It is given by:

r =

∑
u,v(δu · δu(Euv − puqv))

σpσq

where, Euv is the joint probability distribution of the degrees, pi and qj are the proportions of edges

connected to nodes of degrees i and j, respectively, and σp and σq are the standard deviations of the

distributions.

Hence, it measures the tendency of having a directed edge eu,v such that, δu = δv. A positive value

of r indicates assortative mixing, while a negative value indicates disassortative mixing.

3.5.4 Energy

Definition 52 (Energy). Let G = (N , E) be a graph, where N is the set of nodes and E is the set

of edges, let u ∈ N , and A ∈ Mn,n be its adjacency matrix and λ1, · · · , λn its eigenvalues. Then,

the energy e of G is defined as:

e =

n∑
u=1

|λu|

One specific measure related to the energy of a graph is the Forgotten Zagreb Index.
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Forgotten Zagreb index

Definition 53 (Forgotten Zagreb Index). Let G = (N , E) be a graph, where N is the set of nodes

and E is the set of edges, let u ∈ N , and δu be the degree of node u. Let deg(i) be the degree of

node i. Then, the forgotten Zagreb Index fz of G is defined as:

fz =
∑
u∈N

(δu)
3



Chapter 4

Spectral Based Methodology for

Network Generation

In this chapter, we delve into a practical application of spectral properties of matrices explored in

Chapter 2 within the domain of network theory. Drawing upon the concepts introduced in Chapter

3, we concentrate on the generation of synthetic networks. In particular, this chapter is dedicated to

a mathematical analysis and subsequent elaboration of the methodology proposed by (Baldesi et al.,

2018): the Spectral Graph Forge (SGF), designed for the generation of synthetic graphs preserving

a determined rate of information on the community structure of an input network. Specifically,

the algorithm is firstly understood, then replicated and applied to real world networks, and finally

extended. Throughout the chapter, many network visualizations can be found, for which the Gephi

software was employed.

4.1 Structure of the chapter

The structure of the chapter is outlined as follows. The Spectral Graph Forge method is discerned

in Section 4.2. Within this section, the raw concept of the method is explained in Subsection 4.2.1,

followed by a detailed mathematical formulation and coding implementation of the algorithm in

Subsection 4.2.2. Subsequently, the application of the Spectral Graph Forge algorithm to two distinct

examples featuring networks of distinct sizes, a small one and a large one, is presented in Subsection

4.2.3 and in Subsection 4.2.4 respectively. The results presented in these two subsections were

computed through the Python function detailed in the section before, of which the comprehensive

code is available in Appendix B. Throughout these subsections, for display purposes, all numerical

values are rounded to the second decimal place. Some proposals of new transformations to use in the

Spectral Graph Forge method are studied in Section 4.3. Within the section, the transformations are

first introduced in Subsection 4.3.1, then a first broad graphical comparison of the synthetic networks

38
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generated by the transformations is presented in Subsection 4.3.2 and finally their performance is

evaluated in Subsection 4.3.3. The code used to implement the transformations and perform the

analysis is available in Appendix C.

4.2 Spectral Graph Forge method

4.2.1 Foundational Concept

As anticipated in the introduction to this chapter, we are interested into generating networks with

a target global property: community structure. This is particularly useful in contexts that require

reliance on the high-level structure of original graphs, such as modelling diffusion, or sharing network

data while anonymizing sensitive information of single nodes. To achieve this, the work of Baldesi et

all. leverages the spectral properties of the modularity matrix associated to a graph, which, as seen in

3.4.8, is constructed in such a way that it encodes information about the community structure of the

graph. The Spectral Graph Forge methodology is engineered to target the community structure of

an input network, specifically its modularity, by leveraging the fact that this information is encoded

in the eigenstructure of the network’s modularity matrix (or an equivalent matrix tailored to a

different measure). More precisely, the quantity of information retained by each eigenvector of this

matrix is directly proportional to the magnitude of its corresponding eigenvalue. Thus, the creation

of an output network involves generating its modularity matrix through a low-rank approximation

of the modularity matrix of the input network. This process is controlled by the parameter α,

which dictates the fraction of eigenvectors to be retained, which, in turn, determines the extent of

community structure information preserved versus the level of anonymization achieved.

4.2.2 Mathematical formulation and coding implementation

Having delineated the fundamental concept of the Spectral Graph Forge method, we now delve into

the mathematical formulation of the algorithm, detailing the specific steps it incorporates from a

mathematical viewpoint. Additionally, we have implemented the algorithm via a Python function,

adhering as closely as possible to the steps outlined in the section. Following the mathematical

explanation of each step, the corresponding code segment is presented. The full code is available in

Appendix B.

Input matrix computation

The Spectral Graph Forge algorithm starts by considering as input a matrix M which can be either

the adjacency matrix A or a real-valued, symmetry-preserving transformation of A. The chosen

input matrix will be referred as M .

An example of such transformation is the modularity matrix B, whose entries are derived from the
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ones of A as in Equation 3.1:

bu,v = au,v −
δuδv
2m

When the modularity matrix is selected as input, we preserve both the information of this matrix

and the node degrees, which are necessary to back-transform the approximated modularity matrix

to an approximated adjacency matrix.

1 # Computation of M

2 A = nx.adjacency_matrix(G).toarray()

3 M = np.zeros((len(A), len(A)))

4 if transformation == "identity":

5 M = A

6 if transformation == "modularity":

7 degrees = [G.degree[node] for node in G.nodes()]

8 m = sum(degrees) / 2

9 B = A - np.outer(degrees, degrees) / (2 * m)

10 M = B

Listing 4.1: Input matrix computation

Low rank α approximation

Because of the properties of M (reality and symmetry), we know from Equation 2.8 that it can be

expressed as a sum of its eigenvectors q1, · · · ,qn, weighted by their associated eigenvalues λ1, · · · , λn:

M = QΛQT =

n∑
i=1

λiqiq
T
i

We proceed by scaling the eigenvectors of M to have unit norm, and by sorting the eigenvalues

and associated eigenvectors in the summation by the absolute value of the eigenvalues such that the

condition |λ1| ≥ · · · ≥ |λn| is satisfied. This way, the eigenvalues and eigenvectors are now in order

of decreasing magnitude, and hence by the quantity of information they encode on the community

structure.

At this point, we perform the low rank approximation on M by truncating the summation to the

first ⌈αn⌉ terms:

M̃ =

⌈αn⌉∑
i=1

λiqiq
T
i with α ∈ [0, 1]

The parameter α determines the fraction of eigenvectors and eigenvalues of M that we want to

retain, and hence consists in the retention rate of information on the community structure of the

input network that we want to maintain. The parameter is set by the user, and it is a trade-off

between the quantity of information on the community structure that we want to preserve and the

level of anonymization of the input network that we want to achieve. The higher the value of α, the

more information on the community structure is preserved, and the lower the value of α, the more

anonymized the input network becomes.
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1 # Computation of eigenvalues and eigenvectors

2 eigenvalues, eigenvectors = np.linalg.eigh(M)

3 eigenvectors = eigenvectors.T

4

5 # sorting the eigenvectors, eigenvalues

6 paired_sorted_list = sorted(zip(eigenvalues, eigenvectors), key=lambda x: abs(x[0]),

reverse=True)

7 eigenvalues_sorted, eigenvectors_sorted = zip(*paired_sorted_list)

8

9 # Computation of M_tilde

10 M_tilde = np.zeros((eigenvectors_sorted[0].shape[0], eigenvectors_sorted[0].shape[0]))

11 for i in range(math.ceil(alpha * len(eigenvalues))):

12 contribution = eigenvalues_sorted[i] * np.outer(eigenvectors_sorted[i],

eigenvectors_sorted[i])

13 M_tilde += contribution

Listing 4.2: Low rank α approximation

Back transformation

Moving forward, depending on the transformation we used to obtainedM in the first step, we proceed

by back-transform M̃ , to obtain an approximated adjacency matrix Ã. For example, if we started

from the modularity matrix B, we can obtain Ã by reincorporating the information of the the node

degrees as follows:

ãu,v = m̃u,v +
δuδv
2m

(4.1)

This matrix however is not guaranteed to be a valid adjacency matrix, as it might contain entries

that differs from zero and one.

1 # Computation of A_tilde

2 A_tilde = np.zeros((len(M_tilde), len(M_tilde)))

3 if transformation == "identity":

4 A_tilde = M_tilde

5 if transformation == "modularity":

6 A_tilde = M_tilde + np.outer(degrees, degrees) / (2 * m)

Listing 4.3: Back transformation

Normalization

To obtain a valid adjacency matrix, we proceed by scaling the entries of Ã to the interval [0, 1] ob-

taining a new matrix Ä. This procedure furtherly masks the original adjacency matrix A, enhancing

the anonymization of the input network. This step can be performed using different kind of scaling

functions. Baldesi et al. propose the following three:

• Logistic (ãu,v, k)

äu,v =
1

1 + e(0.5−ãu,v)k
with k ∈ [2, 10]
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• Truncate (ãu,v)

äu,v =


0 if ãu,v ≤ 0

1 if ãu,v ≥ 1

ãu,v otherwise

• Scale ((ãu,v))

äu,v =
ãu,v −mins,t(ãs,t)

maxs,t(ãs,t)−mins,t(ãs,t)

Baldesi et al. identified the truncation method as the most effective. Conversely, they found the

scaling method to introduce distortions (dependent on the variance between the minimum and max-

imum values). Furthermore, they reported that the logistic function, despite being optimized with

a parameter k = 6, preserved only a minimal amount of the structure of the graph.

1 A_dots = np.zeros((len(A_tilde), len(A_tilde[0])))

2

3 # logistic

4 if normalization_type == "logistic":

5 for i in range(len(A_tilde)):

6 for j in range(len(A_tilde[i])):

7 A_dots[i][j] = 1 / (1 + math.exp((0.5 - A_tilde[i][j])*k))

8

9 # truncation

10 if normalization_type == "truncate":

11 for i in range(len(A_tilde)):

12 for j in range(len(A_tilde[i])):

13 if A_tilde[i][j] < 0:

14 A_dots[i][j] = 0

15 elif A_tilde[i][j] > 1:

16 A_dots[i][j] = 1

17 else:

18 A_dots[i][j] = A_tilde[i][j]

19

20 # scaling

21 if normalization_type == "scale":

22 A_tilde_flattened = A_tilde.flatten()

23 for i in range(len(A_tilde)):

24 for j in range(len(A_tilde[i])):

25 A_dots[i][j] = (A_tilde[i][j] - min(A_tilde_flattened)) / (

max(A_tilde_flattened) - min(A_tilde_flattened))

Listing 4.4: Normalization

Adjacency matrix generation

Since matrix Ä has entries bounded in the interval [0, 1], we can conceive each of them as a probability

of existence of an edge between the corresponding nodes. Hence, we draw matrix A′ by sampling
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from a Bernoulli distribution that has as parameters the entries of Ä:

a′i,j ∼ Bernoulli(äi,j)

Then, to obtain a valid adjacency matrix, we set a′i,j = 0 ∀i = j to avoid self-loops, and we sym-

metrize the matrix by setting a′i,j = a′j,i∀j > i.

The resulting matrix A′ is the output of the Spectral Graph Forge algorithm, representing the adja-

cency matrix of a random graph that preserves a determined rate of information on the community

structure of the input network.

1 # Bernoulli sampling

2 A_prime = np.zeros((len(A_dots), len(A_dots)))

3 for i in range(len(A_tilde)):

4 for j in range(len(A_tilde)):

5 u = random.uniform(0, 1)

6 if u < A_dots[i][j]:

7 A_prime[i][j] = 1

8 A_prime[j][i] = 1

9 else:

10 A_prime[i][j] = 0

11 A_prime[j][i] = 0

12 if i == j:

13 A_prime[i][j] = 0

Listing 4.5: Adjacency matrix generation

4.2.3 Application to a small-sized network

We apply the Spectral Graph Forge algorithm to a small-sized network to further illustrate its

steps and relative computations. The network under consideration is the well-known network of the

Florentine Families, which is a small-sized network consisting of 15 nodes and 20 edges that maps the

marriage ties between the most influential families of Florence in the 15th century. A representation

of the network is provided in the figure below:
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Figure 4.1: Florentine Families Graph

Input matrix

To begin, we compute the adjacency matrix A of the Florentine Families network. Given our focus

on the modularity matrix, we also proceed to the calculation of the network’s modularity matrix B,

which will serve as the input matrix M for the Spectral Graph Forge algorithm. The matrices A

and B are as follows:

A =



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 1 1 1 1 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 1 0 0 0

0 0 1 1 0 0 1 0 0 0 0 1 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 0 0 1 1 0

0 1 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 1 0 0 1 0 0 1

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0



M = B =



−0.02 0.85 −0.08 −0.08 −0.1 −0.05 −0.08 −0.08 −0.08 −0.05 −0.02 −0.08 −0.1 −0.02 −0.02

0.85 −0.9 −0.45 −0.45 −0.6 0.7 0.55 0.55 0.55 0.7 −0.15 −0.45 −0.6 −0.15 −0.15

−0.08 −0.45 −0.22 0.78 0.7 0.85 −0.22 −0.22 −0.22 −0.15 −0.08 −0.22 −0.3 −0.08 −0.08

−0.08 −0.45 0.78 −0.22 0.7 −0.15 −0.22 −0.22 −0.22 −0.15 −0.08 0.78 −0.3 −0.08 −0.08

−0.1 −0.6 0.7 0.7 −0.4 −0.2 0.7 −0.3 −0.3 −0.2 −0.1 0.7 −0.4 −0.1 −0.1

−0.05 0.7 0.85 −0.15 −0.2 −0.1 −0.15 −0.15 −0.15 −0.1 −0.05 −0.15 −0.2 −0.05 −0.05

−0.08 0.55 −0.22 −0.22 0.7 −0.15 −0.22 0.78 −0.22 −0.15 −0.08 −0.22 −0.3 −0.08 −0.08

−0.08 0.55 −0.22 −0.22 −0.3 −0.15 0.78 −0.22 −0.22 −0.15 −0.08 −0.22 0.7 −0.08 −0.08

−0.08 0.55 −0.22 −0.22 −0.3 −0.15 −0.22 −0.22 −0.22 −0.15 −0.08 −0.22 0.7 0.92 −0.08

−0.05 0.7 −0.15 −0.15 −0.2 −0.1 −0.15 −0.15 −0.15 −0.1 0.95 −0.15 −0.2 −0.05 −0.05

−0.02 −0.15 −0.08 −0.08 −0.1 −0.05 −0.08 −0.08 −0.08 0.95 −0.02 −0.08 −0.1 −0.02 −0.02

−0.08 −0.45 −0.22 0.78 0.7 −0.15 −0.22 −0.22 −0.22 −0.15 −0.08 −0.22 0.7 −0.08 −0.08

−0.1 −0.6 −0.3 −0.3 −0.4 −0.2 −0.3 0.7 0.7 −0.2 −0.1 0.7 −0.4 −0.1 0.9

−0.02 −0.15 −0.08 −0.08 −0.1 −0.05 −0.08 −0.08 0.92 −0.05 −0.02 −0.08 −0.1 −0.02 −0.02

−0.02 −0.15 −0.08 −0.08 −0.1 −0.05 −0.08 −0.08 −0.08 −0.05 −0.02 −0.08 0.9 −0.02 −0.02


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Low rank α approximation

To compute the low-rank α approximation of matrix M , we start by determining its spectrum

and eigenvectors. Below, we present the spectrum of M , with eigenvalues ordered by decreasing

magnitude:

σ(M) = {−2.8, 2.43,−2.07,−1.88, 1.71,−1.19, 1.11, 0.95,−0.89,−0.79, 0.6,−0.58, 0.26,−0.21, 0.0}

The eigenvectors, normalized and ordered according to their associated eigenvalues as they are shown

above, are:

q1 =



0.2

−0.64

−0.08

−0.05

−0.15

0.2

0.11

0.26

0.35

0.21

−0.1

0.14

−0.42

−0.15

0.12



, q2 =



−0.16

−0.39

0.36

0.46

0.44

−0.02

−0.08

−0.23

−0.24

−0.2

−0.08

0.34

−0.07

−0.1

−0.03



, q3 =



0.12

−0.27

−0.46

0.3

0.27

0.34

0.01

−0.07

−0.08

0.16

−0.08

−0.47

0.36

0.03

−0.18



, q4 =



−0.09

0.18

−0.22

−0.12

0.55

0.04

−0.56

0.38

0.11

−0.11

0.07

−0.05

−0.28

−0.05

0.16



, q5 =



−0.16

−0.29

−0.25

−0.04

−0.1

−0.31

−0.17

0.08

0.27

−0.24

−0.14

0.26

0.57

0.16

0.34



, q6 =



−0.13

0.15

−0.33

0.51

−0.27

0.14

0.14

−0.08

0.16

−0.45

0.37

−0.03

−0.23

−0.14

0.18



, q7 =



0.03

0.09

−0.13

−0.05

0.19

−0.13

0.57

0.5

−0.27

−0.29

−0.31

0.04

0.05

−0.29

0.0



, q8 =



0.1

0.11

0.26

−0.01

−0.03

0.35

−0.03

−0.04

0.33

−0.49

−0.53

−0.18

−0.07

0.33

−0.09



,

q9 =



0.03

0.03

0.21

−0.12

0.23

−0.16

0.09

−0.19

0.58

−0.07

0.13

−0.19

0.2

−0.59

−0.17



, q10 =



0.25

−0.24

−0.05

−0.48

0.13

0.26

0.09

−0.09

−0.16

−0.43

0.5

0.17

0.09

0.14

−0.17



, q11 =



0.03

0.01

0.25

−0.09

−0.25

0.46

−0.26

0.06

−0.29

−0.04

−0.05

−0.08

0.26

−0.47

0.45



, q12 =



0.29

−0.2

0.34

0.27

−0.21

−0.33

−0.23

0.46

−0.08

−0.17

0.24

−0.36

0.07

0.09

−0.18



, q13 =



0.76

0.2

−0.23

0.15

−0.04

−0.15

−0.23

−0.21

−0.05

−0.05

−0.21

0.32

−0.01

−0.19

−0.06



, q14 =



−0.25

0.1

−0.06

0.1

−0.22

0.28

−0.2

0.31

0.08

0.05

−0.01

0.41

0.19

−0.15

−0.64



, q15 =



−0.26

−0.26

−0.26

−0.26

−0.26

−0.26

−0.26

−0.26

−0.26

−0.26

−0.26

−0.26

−0.26

−0.26

−0.26



Subsequently, we can express the matrix M in the form M = QΛQT , where the matrices Q and Λ

are defined as follows:

Q =



0.2 −0.16 0.12 −0.09 −0.16 −0.13 0.03 0.1 0.03 0.25 0.03 0.29 0.76 −0.25 −0.26

−0.64 −0.39 −0.27 0.18 −0.29 0.15 0.09 0.11 0.03 −0.24 0.01 −0.2 0.2 0.1 −0.26

−0.08 0.36 −0.46 −0.22 −0.25 −0.33 −0.13 0.26 0.21 −0.05 0.25 0.34 −0.23 −0.06 −0.26

−0.05 0.46 0.3 −0.12 −0.04 0.51 −0.05 −0.01 −0.12 −0.48 −0.09 0.27 0.15 0.1 −0.26

−0.15 0.44 0.27 0.55 −0.1 −0.27 0.19 −0.03 0.23 0.13 −0.25 −0.21 −0.04 −0.22 −0.26

0.2 −0.02 0.34 0.04 −0.31 0.14 −0.13 0.35 −0.16 0.26 0.46 −0.33 −0.15 0.28 −0.26

0.11 −0.08 0.01 −0.56 −0.17 0.14 0.57 −0.03 0.09 0.09 −0.26 −0.23 −0.23 −0.2 −0.26

0.26 −0.23 −0.07 0.38 0.08 −0.08 0.5 −0.04 −0.19 −0.09 0.06 0.46 −0.21 0.31 −0.26

0.35 −0.24 −0.08 0.11 0.27 0.16 −0.27 0.33 0.58 −0.16 −0.29 −0.08 −0.05 0.08 −0.26

0.21 −0.2 0.16 −0.11 −0.24 −0.45 −0.29 −0.49 −0.07 −0.43 −0.04 −0.17 −0.05 0.05 −0.26

−0.1 −0.08 −0.08 0.07 −0.14 0.37 −0.31 −0.53 0.13 0.5 −0.05 0.24 −0.21 −0.01 −0.26

0.14 0.34 −0.47 −0.05 0.26 −0.03 0.04 −0.18 −0.19 0.17 −0.08 −0.36 0.32 0.41 −0.26

−0.42 −0.07 0.36 −0.28 0.57 −0.23 0.05 −0.07 0.2 0.09 0.26 0.07 −0.01 0.19 −0.26

−0.15 −0.1 0.03 −0.05 0.16 −0.14 −0.29 0.33 −0.59 0.14 −0.47 0.09 −0.19 −0.15 −0.26

0.12 −0.03 −0.18 0.16 0.34 0.18 0.0 −0.09 −0.17 −0.17 0.45 −0.18 −0.06 −0.64 −0.26


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Λ =



−2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 2.43 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 −2.07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 −1.88 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.71 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 −1.19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 1.11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.95 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −0.89 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −0.79 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −0.58 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.26 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −0.21 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0



Q
T

=



0.2 −0.64 −0.08 −0.05 −0.15 0.2 0.11 0.26 0.35 0.21 −0.1 0.14 −0.42 −0.15 0.12

−0.16 −0.39 0.36 0.46 0.44 −0.02 −0.08 −0.23 −0.24 −0.2 −0.08 0.34 −0.07 −0.1 −0.03

0.12 −0.27 −0.46 0.3 0.27 0.34 0.01 −0.07 −0.08 0.16 −0.08 −0.47 0.36 0.03 −0.18

−0.09 0.18 −0.22 −0.12 0.55 0.04 −0.56 0.38 0.11 −0.11 0.07 −0.05 −0.28 −0.05 0.16

−0.16 −0.29 −0.25 −0.04 −0.1 −0.31 −0.17 0.08 0.27 −0.24 −0.14 0.26 0.57 0.16 0.34

−0.13 0.15 −0.33 0.51 −0.27 0.14 0.14 −0.08 0.16 −0.45 0.37 −0.03 −0.23 −0.14 0.18

0.03 0.09 −0.13 −0.05 0.19 −0.13 0.57 0.5 −0.27 −0.29 −0.31 0.04 0.05 −0.29 0.0

0.1 0.11 0.26 −0.01 −0.03 0.35 −0.03 −0.04 0.33 −0.49 −0.53 −0.18 −0.07 0.33 −0.09

0.03 0.03 0.21 −0.12 0.23 −0.16 0.09 −0.19 0.58 −0.07 0.13 −0.19 0.2 −0.59 −0.17

0.25 −0.24 −0.05 −0.48 0.13 0.26 0.09 −0.09 −0.16 −0.43 0.5 0.17 0.09 0.14 −0.17

0.03 0.01 0.25 −0.09 −0.25 0.46 −0.26 0.06 −0.29 −0.04 −0.05 −0.08 0.26 −0.47 0.45

0.29 −0.2 0.34 0.27 −0.21 −0.33 −0.23 0.46 −0.08 −0.17 0.24 −0.36 0.07 0.09 −0.18

0.76 0.2 −0.23 0.15 −0.04 −0.15 −0.23 −0.21 −0.05 −0.05 −0.21 0.32 −0.01 −0.19 −0.06

−0.25 0.1 −0.06 0.1 −0.22 0.28 −0.2 0.31 0.08 0.05 −0.01 0.41 0.19 −0.15 −0.64

−0.26 −0.26 −0.26 −0.26 −0.26 −0.26 −0.26 −0.26 −0.26 −0.26 −0.26 −0.26 −0.26 −0.26 −0.26



We proceed by computing the low rank α approximation of the matrix M , by truncating the sum∑n
i=1 λiqiq

T
i to the first ⌈αn⌉ terms, considering a parameter α of 0.75. The matrix obtained from

this process, denoted as M̃ , is:

M̃ =



−0.16 0.81 −0.03 −0.11 −0.08 −0.03 −0.02 −0.05 −0.07 −0.04 0.02 −0.16 −0.11 0.02 0.02

0.81 −0.91 −0.44 −0.46 −0.6 0.71 0.56 0.57 0.55 0.7 −0.14 −0.46 −0.6 −0.14 −0.16

−0.03 −0.44 −0.24 0.78 0.7 0.84 −0.24 −0.24 −0.23 −0.15 −0.09 −0.21 −0.3 −0.08 −0.07

−0.11 −0.46 0.78 −0.23 0.7 −0.14 −0.22 −0.21 −0.22 −0.15 −0.07 0.77 −0.3 −0.07 −0.09

−0.08 −0.6 0.7 0.7 −0.39 −0.21 0.71 −0.32 −0.3 −0.2 −0.1 0.68 −0.41 −0.09 −0.07

−0.03 0.71 0.84 −0.14 −0.21 −0.09 −0.17 −0.14 −0.15 −0.1 −0.06 −0.11 −0.19 −0.07 −0.09

−0.02 0.56 −0.24 −0.22 0.71 −0.17 −0.23 0.75 −0.23 −0.16 −0.09 −0.22 −0.31 −0.08 −0.05

−0.05 0.57 −0.24 −0.21 −0.32 −0.14 0.75 −0.22 −0.22 −0.15 −0.09 −0.18 0.71 −0.1 −0.12

−0.07 0.55 −0.23 −0.22 −0.3 −0.15 −0.23 −0.22 −0.22 −0.15 −0.08 −0.21 0.7 0.92 −0.09

−0.04 0.7 −0.15 −0.15 −0.2 −0.1 −0.16 −0.15 −0.15 −0.1 0.95 −0.14 −0.2 −0.05 −0.06

0.02 −0.14 −0.09 −0.07 −0.1 −0.06 −0.09 −0.09 −0.08 0.95 −0.04 −0.06 −0.1 −0.03 −0.03

−0.16 −0.46 −0.21 0.77 0.68 −0.11 −0.22 −0.18 −0.21 −0.14 −0.06 −0.22 0.72 −0.07 −0.13

−0.11 −0.6 −0.3 −0.3 −0.41 −0.19 −0.31 0.71 0.7 −0.2 −0.1 0.72 −0.39 −0.11 0.87

0.02 −0.14 −0.08 −0.07 −0.09 −0.07 −0.08 −0.1 0.92 −0.05 −0.03 −0.07 −0.11 −0.03 −0.01

0.02 −0.16 −0.07 −0.09 −0.07 −0.09 −0.05 −0.12 −0.09 −0.06 −0.03 −0.13 0.87 −0.01 0.06



Back transformation

Given that the modularity matrix M was selected for this process, it is necessary to perform a

back transformation from the modularity matrix to the adjacency matrix, so that the results can be

interpreted in the context of a network. The entries of the this quasi-adjacency matrix Ã, calculated

using the formula ãu,v = m̃u,v +
δuδv
2m , are:
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Ã =



−0.14 0.96 0.05 −0.03 0.02 0.02 0.06 0.02 0.0 0.01 0.04 −0.08 −0.01 0.04 0.04

0.96 −0.01 0.01 −0.01 −0.0 1.01 1.01 1.02 1.0 1.0 0.01 −0.01 0.0 0.01 −0.01

0.05 0.01 −0.01 1.01 1.0 0.99 −0.01 −0.02 −0.0 −0.0 −0.01 0.01 −0.0 −0.01 0.0

−0.03 −0.01 1.01 −0.0 1.0 0.01 0.0 0.01 0.0 0.0 0.01 1.0 0.0 0.0 −0.01

0.02 −0.0 1.0 1.0 0.01 −0.01 1.01 −0.02 −0.0 −0.0 −0.0 0.98 −0.01 0.01 0.03

0.02 1.01 0.99 0.01 −0.01 0.01 −0.02 0.01 0.0 0.0 −0.01 0.04 0.01 −0.02 −0.04

0.06 1.01 −0.01 0.0 1.01 −0.02 −0.01 0.97 −0.01 −0.01 −0.01 0.0 −0.01 −0.0 0.02

0.02 1.02 −0.02 0.01 −0.02 0.01 0.97 0.01 0.0 0.0 −0.01 0.04 1.01 −0.02 −0.04

0.0 1.0 −0.0 0.0 −0.0 0.0 −0.01 0.0 0.0 0.0 −0.0 0.01 1.0 1.0 −0.01

0.01 1.0 −0.0 0.0 −0.0 0.0 −0.01 0.0 0.0 −0.0 1.0 0.01 0.0 −0.0 −0.01

0.04 0.01 −0.01 0.01 −0.0 −0.01 −0.01 −0.01 −0.0 1.0 −0.01 0.02 −0.0 −0.01 −0.0

−0.08 −0.01 0.01 1.0 0.98 0.04 0.0 0.04 0.01 0.01 0.02 0.01 1.02 0.0 −0.05

−0.01 0.0 −0.0 0.0 −0.01 0.01 −0.01 1.01 1.0 0.0 −0.0 1.02 0.01 −0.01 0.97

0.04 0.01 −0.01 0.0 0.01 −0.02 −0.0 −0.02 1.0 −0.0 −0.01 0.0 −0.01 −0.0 0.02

0.04 −0.01 0.0 −0.01 0.03 −0.04 0.02 −0.04 −0.01 −0.01 −0.0 −0.05 0.97 0.02 0.09



Normalization

The normalization of matrix Ã is carried out next, ensuring that its entries fall within the range

[0, 1]. We choose to perform the truncation function. The matrix Ä that we have obtained through

this process is:

Ä =



0.0 0.96 0.05 0.0 0.02 0.02 0.06 0.02 0.0 0.01 0.04 0.0 0.0 0.04 0.04

0.96 0.0 0.01 0.0 0.0 1.0 1.0 1.0 1.0 1.0 0.01 0.0 0.0 0.01 0.0

0.05 0.01 0.0 1.0 1.0 0.99 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0

0.0 0.0 1.0 0.0 1.0 0.01 0.0 0.01 0.0 0.0 0.01 1.0 0.0 0.0 0.0

0.02 0.0 1.0 1.0 0.01 0.0 1.0 0.0 0.0 0.0 0.0 0.98 0.0 0.01 0.03

0.02 1.0 0.99 0.01 0.0 0.01 0.0 0.01 0.0 0.0 0.0 0.04 0.01 0.0 0.0

0.06 1.0 0.0 0.0 1.0 0.0 0.0 0.97 0.0 0.0 0.0 0.0 0.0 0.0 0.02

0.02 1.0 0.0 0.01 0.0 0.01 0.97 0.01 0.0 0.0 0.0 0.04 1.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 1.0 1.0 0.0

0.01 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.01 0.0 0.0 0.0

0.04 0.01 0.0 0.01 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.02 0.0 0.0 0.0

0.0 0.0 0.01 1.0 0.98 0.04 0.0 0.04 0.01 0.01 0.02 0.01 1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.01 0.0 1.0 1.0 0.0 0.0 1.0 0.01 0.0 0.97

0.04 0.01 0.0 0.0 0.01 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.02

0.04 0.0 0.0 0.0 0.03 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.97 0.02 0.09



Adjacency matrix generation

The adjacency matrix A′ is then generated from the normalized matrix Ä, which is treated as a

matrix of probabilities for Bernoulli sampling. As explained in 4.2.2, adjustments include setting

a′i, j = 0;∀i = j to remove self-loops, and enforcing a′i, j = a′j,i;∀j > i to reflect undirected

connections. The adjacency matrix A′, showcased below, emerges from a single iteration of the

process. It’s important to note that due to the random nature of the Bernoulli sampling involved,

this matrix represents just one of the many potential outcomes that could result from the procedure:
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A
′
=



0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0

0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0



Finally, we can draw the graph corresponding to the adjacency matrix A′, which is displayed in the

figure below:

Figure 4.2: Generated Florentine Families Graph with α = 0.75

Labels are not displayed on the graph as the process has anonymized it. However, it’s worth noting

that by looking at the graph we could potentially identify some family names. This is because we set

the parameter α to 0.75, which means that the algorithm retains a significant amount of information

regarding the community structure.

4.2.4 Application to a large-sized network

We now consider a larger network representing Facebook friendships connections among users, con-

taining 3996 nodes and 88177 edges. The dataset, originally crafted by (McAuley & Leskovec., 2012),

was sourced from the Stanford Large Network Dataset Collection (Leskovec & Krevl, 2014). Exhibit-

ing a well-defined community structure with distinctly separate clusters, the network is illustrated

in the figure below:
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Figure 4.3: Facebook Graph

Following the same methodology outlined for the preceding example, we applied the Spectral Graph

Forge method to this larger network, setting however an higher α parameter of 0.85. Due to the

network’s extensive size, it was impractical to visually present the matrices resulting from the various

stages. The resulting graph, featuring 92359 nodes, is shown below. Notably, the principal clusters

in the input network remain discernible in the generated one.

Figure 4.4: Generated Facebook Graph with α = 0.85
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4.3 Extension of the Spectral Graph Forge method

4.3.1 Introduction of new transformations

As seen in the previous section, the Spectral Graph Forge Method generated synthetic networks from

an input network following steps:

1. Consider a graph G as input and compute its adjacency matrix A.

2. Compute a matrix M that is a real and symmetric transformation of the adjacency matrix A.

3. Perform a low rank α approximation on M , generating a matrix M̃ .

4. Back transform M̃ to a quasi-adjacency matrix Ã.

5. Normalize and sample from Ã to generate an effective adjacency matrix A′.

The transformation of the adjacency matrix that is mainly considered by (Baldesi et al., 2018) is

the modularity matrix, however, any real and symmetric transformation of the adjacency matrix

is in theory suitable for the method. In this section, we explore various matrices, employ them as

transformations within the Spectral Graph Forge method and assess their influence on the resulting

synthetic networks.

The considered matrices are several, starting from the adjacency matrix itself, obtained through

identity transformation, and the modularity matrix outlined in Subsection 3.4.8. We also considered

the Laplacian matrix and the signless Laplacian matrix, both discussed in Subsection 3.4.5. More-

over, we employed the General Zagreb matrix, defined in Subsection 3.4.7, the Transition matrix of

a Random Walk, which is detailed in Subsection 3.4.9, and the Bethe-Hessian matrix, which is pre-

sented and analysed in Subsection 3.4.11. Furthermore, we have introduced a new matrix, which was

developed and tuned empirically. This matrix, that we will denote as Factor-Layered-Community-

Matrix (FLCM), is defined as F = A − η δuδv
2s + ψI, where η and ψ are parameters, δu, δv are the

degrees of nodes u, v, and s =
∑n

i=1 k
2
i is a normalization factor. For the following analysis, we

tuned both η and ψ at 1
3

A summary on the matrices just discussed, their derivation and their back transformations to the

adjacency matrix (required to reconstruct the quasi-adjacency matrix during the "Back Transforma-

tion" phase of the Spectral Graph Forge method) are detailed in the Table below:
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Matrix Transformation Back-transformation

adjacency A A

modularity B = A− δuδv
2m Ã = B + δuδv

2m

Laplacian L = D −A Ã = D − L

signless Laplacian Lsignless = D +A Ã = Lsignless −D

general Zagreb GZ = D3 +A Ã = GZ −D3

sum connectivity SC =


1√
δuδv

if i ∼ j

0 otherwise
Ã =

SCu,v

√
δuδv if ai,j = 1

0 otherwise

transition Random Walk P = D−1A Ã = DP

Bethe Hessian Z(r) = (r2 − 1)I − rA+D Ã = 1
3 ((r

2 − 1) ∗ I − Z(r) +D)

FLCM F = A− η δuδv
2s + ψI Ã = F + η δuδv

2s − ψI

Table 4.1: transformations

where A is the adjacency matrix, D is the degree matrix, δu is the degree of node u, m is the number

of edges in the network, and s =
∑n

i=1 k
2
i .

4.3.2 Visual comparison of the transformations

To provide a first graphical visualization of the impact of the different transformations, we consider

again the Facebook graph used in Subsection 4.2.4:
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Figure 4.5: Facebook Graph

Below, are reported the synthetic versions of this graph generated by applying the different trans-

formations, each with an alpha value of 0.85.

Figure 4.6: identity Figure 4.7: modularity Figure 4.8: Laplacian
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Figure 4.9: signless Laplacian Figure 4.10: general Zagreb Figure 4.11: sum connectivity

Figure 4.12: transition rw Figure 4.13: Bethe Hessian Figure 4.14: FLCM

We observe some differences among the graphs above in term of density. The graphs generated under

the laplacian, the signless Laplacian, the general Zagreb and the sum connectivity transformations

appear to have a sparser community structure with respect to the others, which seems to almost

resemble the one of the input network. The graphs generated under the identity, modularity, and

FLCM transformations appear to have a slightly denser community structure. Instead, the graphs

generated under the transition rw, and the Bethe Hessian transformation present vey high density,

with no complete separation among the still distinguishable communities.

4.3.3 Performance evaluation

To assess the performance of the various transformations when employed in the Spectral Graph

Forge algorithm, we conducted an analysis based on 2000 simulations using graphs generated by

the algorithms Lancichinetti-Fortunato-Radicchi benchmark (Lancichinetti et al., 2008), Stochastic

Block Model (explained in Subsection 3.3.4), Windmill (Estrada, 2015), and Gaussian Random

Partition (Brandes et al., 2003).

Since the primary goal of the Spectral Graph Forge method is to generate synthetic networks that
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replicate the community structure of the input network, we started evaluating the performance of

the different transformations by using two metrics: the ratio of the average clustering coefficient of

the generated network to that of the input network (to which from now on we will refer to as "Avg

Clustering Ratio"), and the ratio of the number of communities found by modularity maximization

in the generated network to those in the input network (to which from now on we will refer to as

"Modularity Communities Ratio"). A good transformation should yield a generated network with a

similar community structure with respect to the input network, thus, the closer these ratios are to

1, the better the transformation.

However, we do not limit to evaluate the transformations in terms of community structure, but we

analyse also their ability to replicate in the generated networks the connectivity, the assortativity,

and the energy of the input graph. The connectivity is measured by the ratio of the beta index of

the synthetic network to that of the input network (to which from now on we will refer to as "Beta

Index Ratio") and the the ratio of the sum connectivity index of the synthetic network to that of

the input network (to which from now on we will refer to as "Sum Connectivity Index Ratio"). The

assortativity is measured by the ratio of the degree assortativity coefficient of the synthetic network to

that of the input network (to which from now on we will refer to as "Degree Assortativity Coefficient

Ratio"). The energy is measured by the ratio of the forgotten Zagreb index of the synthetic network

to that of the input network (to which from now on we will refer to as "Forgotten Zagreb Index

Ratio"). As mentioned before, the closer these ratios are to 1, the better the transformation.

The results of this analysis are presented below, reported for alpha values of 0.3, 0.6 and 0.9. The

boxplots are computed upon all the data collected from the analysed graphs as the measures are

comparable across them.

Analysis of the average clustering ratio measure

Below are reported the boxplots showing the ratio of the average clustering coefficient of the generated

network to that of the input network, achieved by the different transformations for various alpha

values.

Figure 4.15: α = 0.3 Figure 4.16: α = 0.6 Figure 4.17: α = 0.9
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Observing the three plots, it is possible to notice that the majority of the transformations are able to

produce synthetic graphs with a close average clustering to the one of the input networks, even when

retaining a small quantity of eigenvectors. However, the Laplacian, the signless Laplacian and the

general Zagreb transformations show significantly higher variability, especially for the alpha value

of 0.3, suggesting that these transformations do not preserve the average clustering well at lower

alpha values. Nevertheless, as the alpha value increases, also these transformations demonstrate

significantly reduced variability.

Analysis of the modularity ratio measure

Below are reported the boxplots showing the ratio of the number of communities found by modularity

maximization in the generated network to those in the input network, achieved by the different

transformations for various alpha values.

Figure 4.18: α = 0.3 Figure 4.19: α = 0.6 Figure 4.20: α = 0.9

As mentioned, the boxplots illustrate the ratio of the number of communities identified by modularity

maximization in the generated network to those in the input network. For the alpha value of 0.3 there

is considerable variability, especially in the signless Laplacian and the general Zagreb transformations.

At alpha of 0.6 the variability decreases slightly in all the transformations. When alpha reaches

0.9, the ratio become more consistent and closer to 1 across most transformations, excluding the

general Zagreb, indicating that the most of the synthetic networks resemble the input network in

terms of community structure. Among the transformations, the identity, the modularity, the sum

connectivity, the transition rw and the FLCM consistently show lower variability and a ratio closer

to 1, suggesting that these transformations are better at retaining the community structure of the

input network with respect to the others.

Analysis of the beta index ratio measure

Below are reported the boxplots showing the ratio of the beta index of the synthetic network to that

of the input network, achieved by the different transformations for various alpha values.
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Figure 4.21: α = 0.3 Figure 4.22: α = 0.6 Figure 4.23: α = 0.9

For all the alpha values, most transformations maintain a beta index ratio close to 1, indicating

a similar level of connectivity between the synthetic and the input network. However, the general

Zagreb transformation shows a significantly higher ratio, which remains noticeable also as the alpha

value increases at 0.9. This suggests that while most transformations preserve the connectivity

structure of the input network across different alpha values, the general Zagreb transformation

consistently results in a synthetic network with higher beta index.

Analysis of the sum connectivity index ratio measure

Below are reported the boxplots showing the ratio of the sum connectivity index of the synthetic

network to that of the input network, achieved by the different transformations for various alpha

values.

Figure 4.24: α = 0.3 Figure 4.25: α = 0.6 Figure 4.26: α = 0.9

Across all the alpha coefficients the ratio remain close to 1 for most transformations, although the

Laplacian and the general Zagreb transformations show slight deviations. This indicates that the sum

connectivity index is mostrly preserved in the synthetic network independently of the transformation

or the quantity of eigenvectors retained.



CHAPTER 4. SPECTRAL BASED METHODOLOGY FOR NETWORK GENERATION 57

Analysis of the degree assortativity coefficient ratio measure

Below are reported the boxplots showing the ratio of the degree assortativity coefficient of the

synthetic network to that of the input network, acieved by the different transformations for various

alpha values.

Figure 4.27: α = 0.3 Figure 4.28: α = 0.6 Figure 4.29: α = 0.9

Observing the first graph, displaying results for alpha value of 0.3, we notice that the ratio show

significant variability across transformations, with some like the general Zagreb displaying larger

deviations. Moving to the second one, dysplaying results for alpha value of 0.6, we observe that

most transformations exhibit a ratio closer to 1, though some variability remains. For the third

graph, displaying results for alpha value of 0.9, the ratio for most transformations are around 1,

indicating a high level of preservation of the degree assortativity coefficient. The general Zagreb

transformation, while still showing some deviation, has also improved significantly. We can conclude

that higher alpha values generally lead to better retention of the input network’s degree assortativity

characteristics, with most transformations performing well at this level.

Analysis of the forgotten Zagreb index ratio measure

Below are reported the boxplots showing the ratio of the forgotten Zagreb index of the synthetic

network to that of the input network, achieved by the different transformations for various alpha

values.
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Figure 4.30: α = 0.3 Figure 4.31: α = 0.6 Figure 4.32: α = 0.9

At alpha values of 0.3 and 0.6, there is considerable variability, particularly with the signless Lapla-

cian and general Zagreb transformations. The ratio become more consistent for most transformations,

at alpha value of 0.9. However, the general Zagreb transformation still exhibits significant deviations.

Summarizing our findings, we conclude that the identity, modularity, sum connectivity, transition

rw, and FLCM transformations are effective in preserving community structure, as evidenced by the

average clustering ratio and modularity ratio measures in the synthetic network. In terms of con-

nectivity, measured through the beta index, the sum connectivity transformation demonstrates the

best performance, with minimal differences observed across transformations when considering the

sum connectivity index. Regarding degree assortativity and graph energy, reflected by the forgotten

Zagreb index, the sum connectivity transformation again proves to be the most effective.

While assessing the performance of the transformations in terms of community structure, connectiv-

ity, assortativity and energy similarity between the generated graph and the input graph is funda-

mental, it is not sufficient on its own. In fact, if we only evaluated how similar the generated network

is to the input one, we would always prefer transformations that create networks identical to the

input one, which would not fulfil our objective, which is to generate a network that resembles the

community structure of the input one while providing anonymity to the original nodes. Therefore,

we want the synthetic network to be sufficiently distinct from the input one. Hence, we also evaluate

the transformations based on the distance between the generated network and the input network.

This distance is measured as the edit distance between their adjacency matrices, that is defined as

the minimum cost of an edit path, which is a sequence of node and edge substitutions, deletions,

and insertions, required to transform the first graph into a graph that is isomorphic to the second

graph. The edit distance is scaled between 0 and 1, where 0 indicates identical graphs and 1 indicates

maximum dissimilarity.

The figures below present the results of this analysis. Each figure corresponds to a different transfor-

mation, with the x-axis representing the alpha values and the y-axis representing the edit distance
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between the generated network and the input network. The plotted line represents the average of

the data collected from the analysed graphs.

Results for the identity transformation

Figure 4.33: Edit distance for the identity transformation

Analyzing the above graph, it is evident that the edit distance between the generated network and

the input network decreases as the alpha value increases. This occurs because, with higher alpha

values, the generated network retains more information from the input network, making them more

similar. However, this relationship is not linear. Up to an alpha value of approximately 0.7, the edit

distance does not decrease significantly. Beyond this point, the decrease becomes more pronounced,

with a substantial drop observed for alpha values greater than 0.9.

Results for the modularity transformation

Figure 4.34: Edit distance for the modularity transformation



CHAPTER 4. SPECTRAL BASED METHODOLOGY FOR NETWORK GENERATION 60

For what concernes the modularity transformation, there are not many differences compared to the

previous analysis. A significant drop in the Edit distance occurs with alpha values larger than 0.7,

with the most notable decrease observed at an alpha value of around 0.9. At an alpha value of 1,

the Edit distance is at its lowest, indicating that the generated network closely resembles the input

network.

Results for the Laplacian transformation

Figure 4.35: Edit distance for the Laplacian transformation

Observing the graph concering the Laplacian transformation we can identify a general trend of

decreasing edit distance as the alpha value increases, despite some minor fluctuations between alpha

values of 0.4 and 0.6. It is worth noting that the distance remain relatively high until the alpha

value reaches 0.8.
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Results for the signless Laplacian transformation

Figure 4.36: Edit distance for the signless Laplacian transformation

Analysing in the figure above the relation among the edit distance and the alpha values for the signless

Laplacian transformation, we observe that the Edit distance increases slightly at the beginning until

the alpha value is 0.2, then it remains relatively high and stable up to around 0.6. From this point

onwards, the edit distance begins to decrease gradually, with a very pronounced drop observed after

an alpha value of approximately 0.8.

Results for the general Zagreb transformation

Figure 4.37: Edit distance for the general Zagreb transformation

For the General Zagreb transformation, we notice that initially the Edit Distance increases, then

remains high and almost stable for alpha values ranging from 0.2 to around 0.6. From this point

onwards, a gradual decrease is observed.
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Results for the sum connectivity transformation

Figure 4.38: Edit distance for the sum connectivity transformation

By observing the above graph, we notice that the edit distance shows a consistent decreasing trend

across the entire range of alpha values. Starting high at lower alpha values, it gradually declines

as alpha increases, with more significant decreases occurring after an alpha value of approximately

0.5. Unlike other transformations, which exhibit a significant distance between the synthetic and

input graphs until an high alpha value cause a sharp drop in the edit distance, the sum connectivity

transformation appears to have a more continuous and decrease.

Results for the transition rw transformation

Figure 4.39: Edit distance for the transition rw transformation

The above graph shows a high and stable edit distance at lower alpha values, with a gradual decrease

beginning around 0.3. The decline becomes more pronounced after an alpha value of 0.7, leading to

a significant drop as alpha approaches 1.0.
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Results for the Bethe Hessian transformation

Figure 4.40: Edit distance for the Bethe Hessian transformation

Observing the graph related to the Bethe Hessian transformation, it is possible to notice a high edit

distance, between the synthetic graph and the input graph, for alpha values up to 0.9, after which a

sharp decrease is observed.

Results for the FLCM transformation

Figure 4.41: Edit distance for the FLCM transformation

Similarly to the previous graph of the Bethe Hessian, in the case of the FLCM transformation, the

edit distance remains mostly high and stable for alpha values up to 0.9, after which point, a sharp

decrease is observed.

From this analysis, it is possible to conclude that, in general, for all transformations, the gener-

ated network remains significantly different from the input network as long as the alpha value is less
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than approximately 0.8.

Finally, we aim to further evaluate the transformations that performed best in terms of commu-

nity structure, in order to identify the optimal transformation. To do so, we introduce a new metric

that combines the similarity of the community structure and the distance between the generated

network and the input network. To achieve this, we developed a metric c that considers the average

clustering ratio, the modularity ratio, and the edit distance between the two networks. This measure

is calculated as follows:

c =

√
(1− modularity_ratio)2 + (1− average_clustering_ratio)2 + edit_distance2

This formula represents the Euclidean distance from the point (1, 1, 1) in the 3-dimensional space

defined by the three metrics. An optimal situation is achieved by minimizing this metric.

Below, we present the results of this analysis for the identity, modularity, sum connectivity, transi-

tion rw, and FLCM transformations, which were identified as the best transformations in terms of

community structure. The x-axis represents the alpha values, while the y-axis represents the value of

the metric c. The plotted line represents the average of the data collected from the analysed graphs.

We expect the curve to be convex shaped, as while the community structure similarity increases with

the alpha value, the distance between the generated and input networks decreases. We will therefore

look for the alpha value that minimizes the metric c for each transformation.

Results for the identity transformation

Figure 4.42: Comparability measure for the identity transformation

The graph above shows that the optimal alpha value for the identity transformation is 0.7. However,

the transformation maintains low values of the metric c for all the alpha values in the range [0.4, 0.7].
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Results for the modularity transformation

Figure 4.43: Comparability measure for the modularity transformation

The graph above shows that the curve for the modularity transformation is not perfectly convex.

The transformatioon maintains low values of the metric c for all the alpha values smaller than 0.7,

with the optimal alpha values being 0.2 and 0.7.

Results for the sum connectivity transformation

Figure 4.44: Comparability measure for the sum connectivity transformation

The graph above shows that the optimal alpha value for the sum connectivity transformation is 0.6.
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Results for the transition rw transformation

Figure 4.45: Comparability measure for the transition rw transformation

The graph above shows that the optimal alpha values for the transition rw transformation are 0.6

and 0.7.

Results for the FLCM transformation

Figure 4.46: Comparability measure for the FLCM transformation

The graph above shows that the optimal alpha value for the FLCM transformation is 0.9. It is worth

mentioning that this transformation maintain low values of the metric c for all the alpha values in

the range [0.4, 0.9].

Comparing the transformations through this metric, we can conclude that all of them are able to

achieve a c value very close to 0 for at least one specific alpha value. We can also observe that the

ones that can achieve a low c value for a wider range of alpha values are modularity and the FLCM

transformations.



Chapter 5

Conclusions

This work began by laying the groundwork in Chapter 2 with an in-depth study of linear algebra

focusing on the spectra of matrices. The derivation, properties, interpretation, and applications of

eigenvectors and eigenvalues were studied, along with their role in diagonalization. Chapter 3, built

on this foundation by analyzing the spectral properties of matrices associated with graphs, covering

the basics of network theory, standard methods for network generation, and the global properties of

graphs.

Building on this theoretical groundwork, Chapter 4 introduced the Spectral Graph Forge (SGF)

method from a mathematical perspective, also providing a coding implementation. The method was

first analysed using the modularity matrix as a transformation, which proved effective in preserv-

ing the community structure of the input network. The method was then extended by including

new transformations, namely the identity, Laplacian, signless Laplacian, general Zagreb, sum con-

nectivity, transition random walk, Bethe-Hessian, and FLCM transformations. Their performance

was evaluated based on their ability to generate synthetic networks that closely resemble the input

network in terms of community structure, connectivity, assortativity, and energy. For community

structure, the identity, modularity, sum connectivity, and FLCM transformations appeared to be the

bests, while for the metrics of connectivity, assortativity, and energy, the sum connectivity transfor-

mation appeared to be the most effective.
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Appendix A

Further concepts on matrix algebra

Determinant of matrices

Definition 54 (Determinant of a matrix). Let A ∈ Mn,n. Then the determinant of A, denoted as

det(A), is a real valued function mapping A to a scalar value.

For a matrix A ∈ Mn,n, the determinant is given by:

det(A) = det

∣∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣∣ = a11a22 − a12a21

Generalizing the rule for a matrix A ∈ Mn,n. Then, the determinant of A can be computed by

recursive approach, assuming that the determinant of a sub matrix Aij is known, where Ai,j ∈

M(n−1),(n−1), represents the matrix obtained by excluding the ith row and the jth column from A.

Hence, det(A) is defined as:

det(A) =

n∑
j=1

(−1)i+jaij det(Aij)

Invertible matrices

Definition 55 (Invertible matrix). Let A ∈ Mn,n. Then, it is invertible when there exists a matrix

B ∈ Mn,n, referred to as the inverse of A such that:

AB = BA = I

where I is the identity matrix.

The inverse of a matrix A is unique and is denoted as A−1

Proposition 13. Let A ∈ Mn,n. Then, it has an inverse if and only if det(A) ̸= 0. In such case,

det(A−1) = 1
det(A)

Proposition 14. Let A ∈ Mn,n be invertible. Then, also AT is invertible, and its inverse is (A−1)T .

70



APPENDIX A. FURTHER CONCEPTS ON MATRIX ALGEBRA 71

Proof.

AT (A−1)T = (A−1A)T = IT = I

(A−1)TAT = (AA−1)T = IT = I

Proposition 15. Let A ∈ Mn,n. Then, det(AT ) = det(A)

Proposition 16. Let A,B ∈ Mn,n be invertible. Then, also AB is invertible, and its inverse (AB)−1

equals B−1A−1.

Proof.

AB(B−1A−1) = A(BB−1)A−1 = AA−1 = I

(B−1A−1)AB = B−1(A−1A)B = B−1B = I

Similar matrices

Definition 56 (Similar matrices). Let A,B ∈ Mn,n. Then they are similar (A ∼ B), if and only if

there exists an invertible matrix P such that B = P−1AP .

The properties of the similarity relation are:

– A ∼ A

– If A ∼ B, then B ∼ A

– If A ∼ B and B ∼ C, then A ∼ C

– If A ∼ B, then A−1 ∼ B−1

– If A ∼ B, then AT ∼ BT

– If A ∼ B, then Ak ∼ Bk for some k ≥ 1

– If A ∼ B, then A and B have the same determinant, rank, trace, characteristic polynomial,

and eigenvalues.

The similarity relation ∼ constitutes an equivalence relation on the set Mn,n.



Appendix B

Coding implementation of the SGF

The Spectral Graph Forge algorithm as outlined in 4.2.2 was replicated through a Python imple-

mentation. The code, reported below, consists of a function that take as input:

– a graph G

– a string "transformation" (either "identity" or "modularity")

– a parameter α (bounded in the interval [0, 1])

– a string "normalization_type" (either "truncate", "logistic" or "scale")

– a parameter k for the logistic function (bounded in the interval [2, 10])

The function returns a graph W that is the output of the Spectral Graph Forge methodology.

1 def SGF(G, transformation = "modularity", alpha = 0.8, normalization_type = "truncate", k = 6

):

2

3 #____________________________________________

4 # INPUT MATRIX

5

6 # Computation of M

7 A = nx.adjacency_matrix(G).toarray()

8 M = np.zeros((len(A), len(A)))

9 if transformation == "identity":

10 M = A

11 if transformation == "modularity":

12 degrees = [G.degree[node] for node in G.nodes()]

13 m = sum(degrees) / 2

14 B = A - np.outer(degrees, degrees) / (2 * m)

15 M = B

16

17 #____________________________________________

18 # LOW RANK ALPHA APPROXIMATION

19

20 # Computation of eigenvalues and eigenvectors

21 eigenvalues, eigenvectors = np.linalg.eigh(M)
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22 eigenvectors = eigenvectors.T

23

24 # sorting the eigenvectors, eigenvalues

25 paired_sorted_list = sorted(zip(eigenvalues, eigenvectors), key=lambda x: abs(x[0]),

reverse=True)

26 eigenvalues_sorted, eigenvectors_sorted = zip(*paired_sorted_list)

27

28 # Computation of M_tilde

29 M_tilde = np.zeros((eigenvectors_sorted[0].shape[0], eigenvectors_sorted[0].shape[0]))

30 for i in range(math.ceil(alpha * len(eigenvalues))):

31 contribution = eigenvalues_sorted[i] * np.outer(eigenvectors_sorted[i],

eigenvectors_sorted[i])

32 M_tilde += contribution

33

34 #____________________________________________

35 # BACK TRANSFORMATION

36

37 # Computation of A_tilde

38 A_tilde = np.zeros((len(M_tilde), len(M_tilde)))

39 if transformation == "identity":

40 A_tilde = M_tilde

41 if transformation == "modularity":

42 A_tilde = M_tilde + np.outer(degrees, degrees) / (2 * m)

43

44 #____________________________________________

45 # NORMALIZATION

46

47 A_dots = np.zeros((len(A_tilde), len(A_tilde[0])))

48 # logistic

49 if normalization_type == "logistic":

50 for i in range(len(A_tilde)):

51 for j in range(len(A_tilde[i])):

52 A_dots[i][j] = 1 / (1 + math.exp((0.5 - A_tilde[i][j])*k))

53

54 # truncation

55 if normalization_type == "truncate":

56 for i in range(len(A_tilde)):

57 for j in range(len(A_tilde[i])):

58 if A_tilde[i][j] < 0:

59 A_dots[i][j] = 0

60 elif A_tilde[i][j] > 1:

61 A_dots[i][j] = 1

62 else:

63 A_dots[i][j] = A_tilde[i][j]

64

65 # scaling

66 if normalization_type == "scale":

67 A_tilde_flattened = A_tilde.flatten()

68 for i in range(len(A_tilde)):

69 for j in range(len(A_tilde[i])):

70 A_dots[i][j] = (A_tilde[i][j] - min(A_tilde_flattened)) / (

max(A_tilde_flattened) - min(A_tilde_flattened))

71

72 #____________________________________________

73 # ADJACENCY MATRIX GENERATION
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74

75 # Bernoulli sampling

76 A_prime = np.zeros((len(A_dots), len(A_dots)))

77 for i in range(len(A_tilde)):

78 for j in range(len(A_tilde)):

79 u = random.uniform(0, 1)

80 if u < A_dots[i][j]:

81 A_prime[i][j] = 1

82 A_prime[j][i] = 1

83 else:

84 A_prime[i][j] = 0

85 A_prime[j][i] = 0

86 if i == j:

87 A_prime[i][j] = 0

88

89 W = nx.from_numpy_array(A_prime)

90 return W

Listing B.1: Spectral Graph Forge implementation



Appendix C

Coding implementation of the

Extended SGF

The Spectral Graph Forge algorithm extended with the new transformations elencated in Table 4.1

was implemented in Python. The function along with th ecode used for the simulations is reported

below. The function takes as input:

– a graph G

– a string "transformation" ("identity", "modularity", "Laplacian", "signless_Laplacian", "gen-

eral_Zagreb", "sum_connectivity", "transition_rw", "Bethe_Hessian", "FLCM")

– a parameter α (bounded in the interval [0, 1])

– a string "normalization_type" (either "truncate", "logistic" or "scale")

– a parameter k for the logistic function (bounded in the interval [2, 10])

The function returns a graph W that is the output of the Spectral Graph Forge methodology.

1 #____________________________________________

2 # SPECTRAL GRAPH FORGE

3

4 def SGF(G, transformation = "modularity", alpha = 0.8, normalization_type = "truncate", k = 6

):

5

6 #____________________________________________

7 # INPUT MATRIX

8

9 # Setting up basic parameters

10 A = nx.adjacency_matrix(G).toarray()

11 n = len(A)

12 degrees = [G.degree[node] for node in G.nodes()]

13 M = np.zeros((n, n))

14

75
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15 # identity transformation

16 if transformation == "identity":

17 M = A

18

19 # modularity transformation

20 elif transformation == "modularity":

21 m = sum(degrees) / 2

22 B = A - np.outer(degrees, degrees) / (2 * m)

23 M = B

24

25 # laplacian transformation

26 elif transformation == "Laplacian":

27 D = np.diag(degrees)

28 L = D - A

29 M = L

30

31 # signless laplacian transformation

32 elif transformation == "signless_Laplacian":

33 D = np.diag(degrees)

34 L_signless = D + A

35 M = L_signless

36

37 # General Zagreb transformation

38 elif transformation == "general_Zagreb":

39 D = np.diag(degrees)

40 GZ = pow(D,3) + A

41 M = GZ

42

43 # Sum connectivity transformation

44 elif transformation == "sum_connectivity":

45 SC = np.zeros((n, n))

46 for i in range(n):

47 for j in range(n):

48 if A[i][j] == 1:

49 SC[i][j] = A[i][j] * (1 / math.sqrt((degrees[i] * degrees[j])))

50 M = SC

51

52 # Transition Random Walk transformation

53 elif transformation == "transition_rw":

54 D = np.diag(degrees)

55 P = np.linalg.inv(D) @ A

56 M = P

57

58 # Bethe-Hessian transformation

59 elif transformation == "Bethe_Hessian":

60 # Computing the non-backtracking matrix

61 Gdirect = G.to_directed()

62 S = np.zeros((len(Gdirect.edges),len(G.nodes)))

63 T = np.zeros((len(G.nodes),len(Gdirect.edges)))

64 for i,a in enumerate(Gdirect.edges):

65 for j,b in enumerate(G.nodes):

66 if a [ 1 ] == b:

67 S[i,j]=1

68 if a [ 0 ] == b :

69 T[j,i] = 1
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70 tau = np.zeros((len(Gdirect.edges),len(Gdirect.edges)))

71 for i,a in enumerate(Gdirect.edges):

72 for j,b in enumerate(Gdirect.edges):

73 if a[0]==b[1] and a[1]==b[0]:

74 tau[i][j] = 1

75 B = S@T - tau

76 # Computing the Bethe-Hessian matrix

77 D = np.diag(degrees)

78 I = np.eye(n, n)

79 rho = max(abs(np.linalg.eigvals(B)))

80 # rho = np.mean(degrees) # alternative way to compute rho

81 r = pow(rho, 1/2)

82 # r = sum(d**2 for v, d in nx.degree(G)) / sum(d for v, d in nx.degree(G)) - 1 #

alternative way to compute r

83 H = (pow(r,2) - 1) * I - r * A + D

84 M = H

85

86 elif transformation == "FLCM":

87 s = np.sum((np.sum(A, axis=1)) ** 2)

88 D = np.diag(degrees)

89 I = np.eye(n, n)

90 T = A - (1/3)*(np.outer(degrees, degrees) / (2*s)) + (1/3)*I

91 M = T

92

93 else:

94 raise ValueError("Invalid transformation")

95

96 #____________________________________________

97 # LOW RANK ALPHA APPROXIMATION

98

99 # Computation of eigenvalues and eigenvectors

100 eigenvalues, eigenvectors = np.linalg.eigh(M)

101 eigenvectors = eigenvectors.T

102

103 # sorting the eigenvectors, eigenvalues

104 paired_sorted_list = sorted(zip(eigenvalues, eigenvectors), key=lambda x: abs(x[0]),

reverse=True)

105 eigenvalues_sorted, eigenvectors_sorted = zip(*paired_sorted_list)

106

107 # Computation of M_tilde

108 M_tilde = np.zeros((eigenvectors_sorted[0].shape[0], eigenvectors_sorted[0].shape[0]))

109 for i in range(math.ceil(alpha * len(eigenvalues))):

110 contribution = eigenvalues_sorted[i] * np.outer(eigenvectors_sorted[i],

eigenvectors_sorted[i])

111 M_tilde += contribution

112

113 #____________________________________________

114 # BACK TRANSFORMATION

115

116 # Computation of A_tilde

117 A_tilde = np.zeros((n, n))

118 if transformation == "identity":

119 A_tilde = M_tilde

120 elif transformation == "modularity":

121 A_tilde = M_tilde + np.outer(degrees, degrees) / (2 * m)
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122 elif transformation == "Laplacian":

123 A_tilde = D - M_tilde

124 elif transformation == "signless_Laplacian":

125 A_tilde = M_tilde - D

126 A_tilde = D_sqrt @ (np.eye(A.shape[0]) - M_tilde) @ D_sqrt

127 elif transformation == "general_Zagreb":

128 A_tilde = M_tilde - pow(D,3)

129 elif transformation == "sum_connectivity":

130 for i in range(n):

131 for j in range(n):

132 if A[i][j] == 1:

133 A_tilde[i][j] = M_tilde[i][j] * math.sqrt((degrees[i] * degrees[j]))

134 elif transformation == "transition_rw":

135 A_tilde = D @ M_tilde

136 elif transformation == "Bethe_Hessian":

137 A_tilde = ((r**2 - 1) * I - M_tilde + D) * (1 / r)

138 elif transformation == "FLCM":

139 A_tilde = M_tilde + (1/3)*(np.outer(degrees, degrees) / (2*s)) - (1/3)*I

140

141 #____________________________________________

142 # NORMALIZATION

143

144 A_dots = np.zeros((n, n))

145 # logistic

146 if normalization_type == "logistic":

147 for i in range(n):

148 for j in range(n):

149 A_dots[i][j] = 1 / (1 + math.exp((0.5 - A_tilde[i][j])*k))

150

151 # truncation

152 elif normalization_type == "truncate":

153 for i in range(n):

154 for j in range(n):

155 if A_tilde[i][j] < 0:

156 A_dots[i][j] = 0

157 elif A_tilde[i][j] > 1:

158 A_dots[i][j] = 1

159 else:

160 A_dots[i][j] = A_tilde[i][j]

161

162 # scaling

163 elif normalization_type == "scale":

164 A_tilde_flattened = A_tilde.flatten()

165 for i in range(n):

166 for j in range(n):

167 A_dots[i][j] = (A_tilde[i][j] - min(A_tilde_flattened)) / (

max(A_tilde_flattened) - min(A_tilde_flattened))

168

169 #____________________________________________

170 # ADJACENCY MATRIX GENERATION

171

172 # Bernoulli sampling

173 A_prime = np.zeros((n, n))

174 for i in range(n):

175 for j in range(n):
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176 u = random.uniform(0, 1)

177 if u < A_dots[i][j]:

178 A_prime[i][j] = 1

179 A_prime[j][i] = 1

180 else:

181 A_prime[i][j] = 0

182 A_prime[j][i] = 0

183 if i == j:

184 A_prime[i][j] = 0

185

186 W = nx.from_numpy_array(A_prime)

187 return W

Listing C.1: Extended Spectral Graph Forge
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